• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Independently tunable dual resonant dip refractive index sensor based on metal-insulator-metal waveguide with Q-shaped resonant cavity

    2022-03-12 07:48:18HaowenChen陳顥文YunpingQi祁云平JinghuiDing丁京徽YujiaoYuan苑玉嬌ZhentingTian田振廷andXiangxianWang王向賢
    Chinese Physics B 2022年3期

    Haowen Chen(陳顥文) Yunping Qi(祁云平) Jinghui Ding(丁京徽) Yujiao Yuan(苑玉嬌)Zhenting Tian(田振廷) and Xiangxian Wang(王向賢)

    1College of Physics and Electronic Engineering,Northwest Normal University,Lanzhou 730070,China

    2School of Science,Lanzhou University of Technology,Lanzhou 730050,China

    3Engineering Research Center of Gansu Province for Intelligent Information Technology and Application,Northwest Normal University,Lanzhou 730070,China

    Keywords: surface plasmon polaritons, refractive index sensors, metal-insulator-metal (MIM) waveguide,multi-mode interference coupling theory

    1. Introduction

    Surface plasmon polariton (SPP) is a kind of evanescent wave, which is formed when electromagnetic waves interact with metal surface charges and then collectively oscillate and intensify in a small range.[1-5]It can break the diffraction limit of light and is highly sensitive to different metals, environments,nanoscale shapes and sizes. Metal-insulator-metal(MIM) waveguide is one of the excitation sources for SPPs.In recent years, MIM waveguides have received widespread attention due to their simple structure, small size and easy integration.[6-8]As time went by,various functional photonic devices such as filters,[9]sensors,[10,11]optical switches,[12]slow light devices[13]and splitters[14]designed based on MIM waveguide structures have made great breakthrough in theoretical research and experiments.

    As one of the important optical components in many devices,[15-21]sensors have received extensive attention in the past decades. Sensitivity (S) is an important indicator to judge the performance of the sensor and higher sensitivity means higher detection range.[22]In the past few years,researchers have designed many representative sensors based on the MIM waveguide. Yanet al.proposed a MIM waveguide based annular resonator with a sensitivity of 921 nm/RIU in 2015.[23]Liet al.designed a dual circular cavity waveguide through type refractive index sensor with a sensitivity of 840 nm/RIU[24]and Tanget al.presented a MIM-coupled resonant cavity based on Fano resonant refractive index sensor with an enhanced sensitivity of 1125 nm/RIU in 2017.[25]However, the above mentioned results still have the problem of poor sensitivity as well as the impossibility of tuning each resonant mode separately.

    In this work,a refractive index sensor with independently tunable dual resonant dip based on a MIM waveguide with Qshaped cavity is designed. The structure of the sensor mainly consists of a MIM waveguide coupled with Q-shaped resonant cavity. Firstly, the transmission properties of SPPs are investigated by finite difference time domain(FDTD)method.Secondly, the dispersion equation is used for explaining the excitation process of SPPs in the MIM waveguides. The transmission performance of the sensor is theoretically analyzed by using the multimode interference coupled mode theory(MICMT)and the theoretical results are highly matched with the simulation results. And then,the relationship between the sensitivity of the two resonant dips and the model parameters is investigated. Numerical simulations show that the movement of dip I is mainly influenced by the lengthLand widthwof the rectangular cavity. Similarly,by fixing the length and width of rectangular cavity, dip II will change when the radius of the annular cavity varies while dip I remains the same.Consequently, dips I and II can be tunable independently by adjusting the geometric parameters of rectangular cavity and the annular cavity. In the meantime,multiple resonant modes indicate that the increased parallel processing power and the independent control of resonant points imply a greater range of applications. At optimum parameter settings, the sensitivity and figure of merit(FOM)are up to 1578 nm/RIU and 175,respectively, and this exceeds the sensing performance of the most devices. Due to its subwavelength scale and simple configuration,the device is easy to fabricate and highly integrated with other nanoscale devices.

    2. Device model and theoretical analysis

    The 3D model of the structure designed in this paper is shown in Fig.1(a),where the yellow part is silicon(Si)and the blue part is silver(Ag),and the whole cavity is formed by etching. When the gap width of the waveguide is about 50 nm,the difference between the 3D model and the 2D model is about zero.[26]In addition, 2D simulation of MIM plasmonic system is used by most researchers for its ability to test devices performance with shorter simulation times and lower losses,and so does this work.[27]Figure 1(b)is the 2D model,where the white part is air and the blue part is silver (Ag), S1is the incident waveguide, and S2is the outgoing waveguide. The rectangular cavity is named as cavity 1 (C1) and the annular cavity is named as cavity 2(C2)(both C1 and C2 are used in the following text), C1 is at an angle of 45°from the horizontal. The geometric parameters of Fig. 1 are set to be as follows: waveguide widthd=50 nm, C1 widthw=60 nm and lengthL=200 nm,C2 radiusR=200 nm,circular cavity radiusr=120 nm,and baffle thicknessg=10 nm.

    Fig.1. (a)The 3D schematic diagram of MIM waveguide coupled with the Q-shaped cavity.(b)The 2D schematic diagram of MIM waveguide coupled with the Q-shaped cavity.

    It is all known that TM polarized light is used as the excitation source of the MIM waveguide.The boundary conditions of the TM polarized light incident areHy1=Hy2,Ex1=Ex2,based on the Maxwell’s equations, and the dispersion equations of the SPPs are as follows:[28,29]

    whereωis the angular frequency of the incident light,ε∞=3.7 is the infinite dielectric constant,ωp= 9.1 eV is the plasma oscillation frequency andγ=0.018 eV is the damping factor.[32]

    The transmission response of this refractive index sensor is investigated below. When there are defects such as loss,deformation in the waveguide structure, or resonant cavities around the waveguide, it will cause an energy exchange between each mode in the waveguide or between the waveguide and resonant cavities. The energy exchange is known as coupling.[34]In this paper,the waveguide is designed to be Qshaped to realize the distortion in the waveguide shape. SPPs energy transfer from S1and the energy exchange occurs between the MIM waveguide and the Q-shaped cavity. It can be derived that energy transfer can be regulated by controlling structural parameters. In addition, generally MICMT is used to theoretically analyze the whole SPPs transmission process,as illustrated below:[35,36]

    whereTis the transmittance. The total coupling phase differenceφncan be approximated as a constant.φnis the phase difference between the output and the input of then-th resonate mode,which represents the decay time of the loss in then-th mode.τn0is the decay time of the coupling between the waveguide and then-th resonant mode in the resonant cavity.Since the widths of the waveguides S1and S2are equal and symmetric to the resonant cavity,there isτn0=τn1=τn2.φn1is the coupling phase between waveguide S1and then-th resonant mode in the resonant cavity.γn1is the normalization factor.ωandω0are the incident wavelength and resonant wavelength,respectively.

    In order to better study the transmission effect of the hybrid plasmonic structure, the whole system is simulated by the FDTD method. The wavelength domain solver is used in the simulation, the boundary conditions ofxdirections is set as PML boundary andydirections is set as metal boundary. The mash is set to 5 nm and the temperature is 300 K.As shown in Fig. 2, with red circle scatter, the result shows two resonate modes. The resonate mode I atλ=952 nm is called dip I and the resonate mode II atλ=1523 nm is called dip II, and the transmittance is 8.26% and 0.51%, separately.Meanwhile, the blue line in Fig.2 shows the curve fitting result based on Eq.(5).To ensure the accuracy of the calculation results,resonant peaks and dips are selected for each resonant mode, which areλ1=924 nm,λ2=952 nm,λ3=982 nm,λ4=1401 nm,λ5=1523 nm andλ6=1756 nm. The parameters in Eq. (5) are determined asφ1=0.81π,φ2=0.32π,φ3=0.47π,φ4=0.68π,φ5=0.54π,φ6=0.30π,τ1=10 fs,τ2= 235 fs,τ3= 20 fs,τ4= 39 fs,τ5= 42 fs,τ6= 8 fs,τn1=2.5 fs,τn2=241 fs,τn3=7.7 fs,τn4=4.1 fs,τn5=45 fs andτn6=16 fs, respectively. It can be seen that the FDTD simulation result agrees very well with the MICMT result.Figure 3(a)shows the comparison of the transmission response of the Q-shaped cavity with and without C1. When the Qshaped cavity does not contain C1, the standing wave resonance appears in C2, which results in the formation of one Lorentz peak named peak atλ=960 nm and another Lorentz peak with a larger full width at half maximum over the maximum wavelength(not marked in Fig.3(a)). After adding C1,the standing wave resonance appear in C1 as well and there has interference between the two resonant modes. Eventually,the new resonant modes are formed,which are named as dip I and dip II.

    Fig.2. Comparison of the simulated and theoretical transmittance values of this refractive index sensor.

    The phenomenon can be explained more clearly from the magnetic field.|Hz|in the FDTD solutions represents the absolute value of magnetic field|Hz| strength in thez-direction in a specific frequency,and it can describe the spatial shape of the input magnetic field|Hz|and the strength of the coupling between the source and cavity mode.[37]Figures 3(b)-3(f)present the magnetic field|Hz| distribution of the transmission peak atλ=960 nm, peak I atλ=924 nm, peak II atλ=982 nm and the transmission dip I atλ=952 nm, and dip II atλ=1523 nm. From Figs.3(b),3(c)and 3(e),it is observed that peaks I and II are derived from peak. Both peak I and peak II have large bandwidth and are regarded as the bright mode of continuous state. It can be clarified as, SPPs are firstly excited from S1atλ=960 nm and propagate along the waveguide into the Q-shaped cavity,and then obtain resonant enhancement in the Q-shaped cavity and can pass directly through S2. Therefore,the bright mode means there are SPPs can be observed in S2. On the contrary, from Figs. 3(d) and 3(f), due to the resonant interference of C1 and C2, SPPs are confined in the Q-shaped cavity,which led to the formation of dips I and II.Thus,the resonant mode of dips I and II exhibits a narrow bandwidth and is considered as a discrete dark mode.The dark mode means there is a lack of SPPs observed at S2.In other words,the formation of dips I and II is the dark mode of discrete state shocking the bright mode of continuous state leading to the transmission spectrum plunge.

    Fig. 3. (a) Comparison of simulation results of Q-shaped resonant cavity with and without C1. And the distribution of the magnetic field (|Hz|) of the resonant modes. (b) λ =960 nm (peak). (c) λ1 =924 nm (peak I).(d)λ2=952 nm(dip I).(e)λ3=982 nm(peak II).(f)λ4=1523 nm(dip II).

    3. Simulation results and discussion

    As a refractive index sensor, sensitivity is used to characterize the performance and is the focus in this paper. The sensitivity is defined asS= Δλ/Δn(nm/RIU),[38]which is expressed by the amount of change in resonant wavelength with changing refractive index. Since SPPs are sensitive to the size of the waveguide,changing the structural parameters will have impact on the sensor sensitivity. Therefore, the trends of transmission spectra and sensitivity with parameters will be discussed next.

    Firstly,the transmission spectra at different refractive indices is shown in Fig.4(a). Different refractive indices simulate different environmental conditions and the change of the transmission spectrum characterizes the ability of the sensor to monitor the environment. For example, when a detected sample(e.g., gas, liquid, or biomolecule)is filled in the plasmonic system, both dips would have a corresponding wavelength shift.[39]Asnchanges from 1.00 to 1.04 in steps of 0.02, dips I and II are redshift. The transmittance of dip I changes from 8.26%to 8.86%and dip II still remains the same value. As can be seen,the transmission spectrum shows a linear change with the change of the refractive index. In other words, the monitoring ability is consistent in different environments.

    Then, the effect of the lengthLof C1 on the sensitivity is discussed. Figure 4(b)gives the transmission spectra upon changingL. WhenLvaries in the range of 190 nm to 220 nm in fixed steps, a redshift of dip I can be clearly observed and there is a significant decrease of the dip I. From Fig. 3(d), it can be judged that the shift of dip I is caused by the change of parameters from C1 and the analysis of magnetic field|Hz|can explain the phenomenon. As shown in Fig.4(c),the shock domain formed by the impact of discrete dark mode on continuous bright mode will redshift with the increase ofL,which means the redshift of dip I. At the same time, C1 will be enlarged with the increase ofL, which can accommodate more SPPs,leading to the obvious decline of dip I.

    Finally, the impact of parameterLon the sensitivity is investigated. The sensitivity varies linearly and reaches the maximum value whenL=220 nm,as illustrated in Fig.4(d).Thus,Lis set to be 220 nm in the following research and the effect of other parameters on sensitivity is discussed.

    Fig.4. (a)The transmission spectrum of different C1 length L. (b)Schematic diagram of the redshift of the shock domain with the increase of L.(c)The transmission spectrum of different refractive indices n. (d)Variation curve of sensitivity S with increasing L.

    Fig. 5. (a) The transmission spectrum of different C1 widths w. (b) The transmission spectrum of different C2 radius R. (c) Variation curve of sensitivity S with increasing w. (d)Variation curve of sensitivity S with increasing R.

    Based on the magnetic field|Hz| , it can be judged that C1 widthwand C2 radiusRare also important parameters affecting the transmissive response of the sensor. The dip II is mainly controlled by C2 as shown in Fig. 3(f). The change in the optical transmission characteristics of the sensor when changing the parameterswandRis given below. Whenwincreases from 60 nm to 90 nm with a step of 10 nm, there is a significant blueshift of dip II,and the simulation results are depicted in Fig. 5(a). The principle is explained as follows:increasing the widthwof C1 makes more part of C1 occupy C2, resulting in a reduction in the total area of C2, so there will be a blueshift in dip II. The simulation results show that the variation of dip I is reasonably weak and can be considered as insensitive to the parameterw. Therefore,the independent regulation of dips I and II can be realized. Figure 5(b)shows the curves on the sensitivity of dips I and II as the parameterwvaries. It is clear that the sensitivity of dip I has moderate change and the best sensitivity of dip II is available atw=60 nm.

    Further, the effect of varying the radiusRof C2 on the transmission characteristics of SPPs is studied. The parameterRvaries in the range of 195 nm to 210 nm in steps of 5 nm and the simulation results are shown in Fig.5(c). As we envisioned, there is an obvious redshift of dip II when increasingR. Dip I is mainly controlled by the lengthLof C1, thereby the dip I does not move. Similarly, in order to visually represent the change of sensitivity, Fig. 5(d) shows the curve of sensitivity with the increasing ofR. It is clear that the sensitivity of dip I is staying consistent and the sensitivity of dip II is maximum whenR=200 nm.

    The effect of baffle thicknessgon the transmission spectrum is investigated in the end. The two dips hardly change when the baffle thickness varies with other parameters unaltered, as shown in Fig.6(a). One can find from the magnetic field|Hz|that the baffle thickness has no effect on the dips of transmission. As shown in Fig. 6(a), there is no significant change in the resonant wavelength with the thickness of the baffle increases and the sensitivity remains at a high value.

    The optimal parameter settings areL= 220 nm,w=60 nm,R= 200 nm andg= 10 nm. With this settings,dip I sensitivity is 984 nm/RIU and dip II sensitivity is 1578 nm/RIU,which are better than Ref.[40](917 nm/RIU),Ref.[41](880 nm/RIU)and Ref. [42] (1100 nm/RIU). Thus,our device has better sensitivity superiority.

    Generally, another important parameter to characterize the sensor performance is the figure of merit (FOM*), which is defined by the following equations:[43,44]

    whereT=(T1.00+T1.01)/2 represents the average transmittance of resonant mode before and after changing the refractive index,and ΔT/Δnrepresents the change of transmittance at the resonant wavelength after changing the refractive index.Figure 7 shows the FOM of the system according to the wavelength change, with the FOM of 175 for dip I and 174 for dip II.

    Fig. 6. (a) The transmission spectrum of different baffle thickness g.(b)Variation curve of sensitivity S with increasing g.

    Fig.7. FOM varying with wavelength of the whole system.

    4. Conclusion

    In summary, the transmission characteristics of SPPs in a MIM waveguide coupled with Q-shaped resonator system are studied by FDTD method. The energy exchange between C1 and C2 leads to two distinct resonant dips in the system,as indicated by the simulation result, which is in high agreement with the MICMT result. Additionally, by adjusting the geometrical parametersL,wandR,the position of the two resonant dips can be adjusted independently. Moreover,the sensing characteristics of the proposed structure possess a good robustness in terms of the structural parameters. The sensitivity is consistently at a high level,up to 1578 nm/RIU.Obviously,sensor is designed in this work with high sensitivity, small size,excellent tunability and easy integration. Therefore,this work is a guidance for the design of nanoscale sensors and has a great potential in the application of the optoelectronic integration technology in the future.

    Acknowledgments

    This study is supported by the National Natural Science Foundation of China (Grant No. 61865008) and Northwest Normal University Young Teachers’ Scientific Research Capability Upgrading Program(Grant No.NWNU-LKQN2020-11).

    日本五十路高清| 青青草视频在线视频观看| 亚洲国产av影院在线观看| 久久亚洲真实| 满18在线观看网站| 麻豆av在线久日| 欧美在线一区亚洲| 考比视频在线观看| 嫩草影视91久久| 亚洲全国av大片| 人人妻,人人澡人人爽秒播| 国产亚洲av高清不卡| 中文亚洲av片在线观看爽 | 国产伦理片在线播放av一区| a在线观看视频网站| 午夜老司机福利片| 国产1区2区3区精品| 九色亚洲精品在线播放| avwww免费| 亚洲人成77777在线视频| 亚洲熟女精品中文字幕| 国产片内射在线| 岛国在线观看网站| 在线观看一区二区三区激情| 天堂中文最新版在线下载| 国产精品偷伦视频观看了| 十分钟在线观看高清视频www| 国产人伦9x9x在线观看| 日韩免费高清中文字幕av| 久久久久久人人人人人| 99精品欧美一区二区三区四区| 国产成人精品久久二区二区91| 国产极品粉嫩免费观看在线| 我的亚洲天堂| 亚洲中文字幕日韩| 18禁国产床啪视频网站| 汤姆久久久久久久影院中文字幕| 久久人妻av系列| 国产精品国产高清国产av | 91成人精品电影| 国产精品九九99| 久久性视频一级片| 亚洲情色 制服丝袜| 国产精品熟女久久久久浪| 亚洲av成人不卡在线观看播放网| 国产成人精品在线电影| 最黄视频免费看| 国产精品一区二区在线不卡| 亚洲色图av天堂| 久久人人97超碰香蕉20202| 亚洲av美国av| 国产av又大| 男女高潮啪啪啪动态图| 久热爱精品视频在线9| 精品人妻1区二区| 国产三级黄色录像| 日韩有码中文字幕| 色视频在线一区二区三区| 侵犯人妻中文字幕一二三四区| 亚洲第一av免费看| a级毛片在线看网站| 少妇的丰满在线观看| 色播在线永久视频| 欧美精品亚洲一区二区| 精品少妇一区二区三区视频日本电影| 成人免费观看视频高清| 啦啦啦 在线观看视频| 久9热在线精品视频| 色视频在线一区二区三区| 亚洲国产欧美日韩在线播放| 黑丝袜美女国产一区| 日本vs欧美在线观看视频| 色综合婷婷激情| 97在线人人人人妻| 国产伦人伦偷精品视频| 高清在线国产一区| 12—13女人毛片做爰片一| 老汉色av国产亚洲站长工具| 99热网站在线观看| 九色亚洲精品在线播放| 91精品三级在线观看| 欧美人与性动交α欧美精品济南到| 日本av手机在线免费观看| 国产成人欧美| 日韩三级视频一区二区三区| 在线av久久热| 极品人妻少妇av视频| 国产精品电影一区二区三区 | 精品亚洲乱码少妇综合久久| 久久中文字幕一级| 国产亚洲欧美精品永久| 在线观看免费视频日本深夜| 国产主播在线观看一区二区| a级毛片在线看网站| 国产成人啪精品午夜网站| av电影中文网址| 精品人妻1区二区| 亚洲av电影在线进入| 无人区码免费观看不卡 | 美女高潮到喷水免费观看| 成人黄色视频免费在线看| 91老司机精品| 久久久久久久国产电影| 一个人免费在线观看的高清视频| 可以免费在线观看a视频的电影网站| 亚洲午夜精品一区,二区,三区| 在线永久观看黄色视频| 国产欧美日韩综合在线一区二区| 岛国在线观看网站| 午夜福利一区二区在线看| 国产精品 国内视频| av一本久久久久| 激情视频va一区二区三区| 老汉色av国产亚洲站长工具| 精品欧美一区二区三区在线| 麻豆成人av在线观看| 久久av网站| 亚洲一卡2卡3卡4卡5卡精品中文| 两性午夜刺激爽爽歪歪视频在线观看 | 久久精品国产99精品国产亚洲性色 | 国产一区有黄有色的免费视频| 亚洲国产精品一区二区三区在线| 91老司机精品| 亚洲伊人色综图| 精品免费久久久久久久清纯 | 一二三四在线观看免费中文在| 蜜桃在线观看..| 制服诱惑二区| 两性午夜刺激爽爽歪歪视频在线观看 | 97人妻天天添夜夜摸| 1024香蕉在线观看| aaaaa片日本免费| 中文字幕精品免费在线观看视频| 美女高潮喷水抽搐中文字幕| 久久久久国产一级毛片高清牌| av免费在线观看网站| 国产精品二区激情视频| 日韩大片免费观看网站| 亚洲成人免费电影在线观看| 久久久国产精品麻豆| 精品欧美一区二区三区在线| 国产视频一区二区在线看| 成年人免费黄色播放视频| 亚洲伊人久久精品综合| 又紧又爽又黄一区二区| 国产精品一区二区在线观看99| 国产单亲对白刺激| 不卡一级毛片| 亚洲欧美一区二区三区黑人| 免费在线观看日本一区| 一个人免费看片子| 亚洲五月婷婷丁香| 免费在线观看视频国产中文字幕亚洲| 亚洲av美国av| 成年女人毛片免费观看观看9 | 天天躁夜夜躁狠狠躁躁| 纵有疾风起免费观看全集完整版| 中文字幕av电影在线播放| 国产精品麻豆人妻色哟哟久久| 亚洲国产欧美一区二区综合| 中文字幕av电影在线播放| 国产一区有黄有色的免费视频| 久久精品成人免费网站| 搡老熟女国产l中国老女人| 欧美黑人精品巨大| 国产麻豆69| 欧美日韩av久久| 十八禁网站网址无遮挡| 国产成人啪精品午夜网站| 国产成人欧美| 母亲3免费完整高清在线观看| 亚洲情色 制服丝袜| 99国产极品粉嫩在线观看| 亚洲黑人精品在线| 一区二区三区国产精品乱码| 久久中文看片网| bbb黄色大片| 国产老妇伦熟女老妇高清| 欧美黄色片欧美黄色片| 最新在线观看一区二区三区| 婷婷成人精品国产| 亚洲一码二码三码区别大吗| 亚洲 欧美一区二区三区| 免费黄频网站在线观看国产| 99精品久久久久人妻精品| 亚洲专区字幕在线| 久久久欧美国产精品| av网站免费在线观看视频| 国产成人一区二区三区免费视频网站| 精品午夜福利视频在线观看一区 | 在线永久观看黄色视频| 成人国产av品久久久| 国产成人精品无人区| 久久国产精品人妻蜜桃| 午夜福利欧美成人| 中文字幕人妻熟女乱码| 下体分泌物呈黄色| 国产一区二区三区在线臀色熟女 | 久久久久视频综合| 免费在线观看影片大全网站| 免费看十八禁软件| 中文字幕精品免费在线观看视频| 美女高潮到喷水免费观看| 大片电影免费在线观看免费| 午夜视频精品福利| 男女边摸边吃奶| 真人做人爱边吃奶动态| 亚洲av美国av| 亚洲精品乱久久久久久| 国产欧美日韩一区二区三区在线| 久久免费观看电影| 日韩免费高清中文字幕av| 欧美黄色片欧美黄色片| 老司机午夜福利在线观看视频 | 亚洲国产欧美一区二区综合| 久久精品亚洲精品国产色婷小说| 大香蕉久久网| 久久国产精品人妻蜜桃| 免费黄频网站在线观看国产| 国产国语露脸激情在线看| 黄色视频在线播放观看不卡| 久久人妻福利社区极品人妻图片| 久久 成人 亚洲| 久久精品熟女亚洲av麻豆精品| 一进一出抽搐动态| 亚洲精品在线美女| 在线看a的网站| 脱女人内裤的视频| 99re在线观看精品视频| 99久久精品国产亚洲精品| 亚洲三区欧美一区| 纵有疾风起免费观看全集完整版| 一本久久精品| 黄色视频不卡| 欧美久久黑人一区二区| 精品一品国产午夜福利视频| 成人国语在线视频| 丝袜在线中文字幕| 最近最新免费中文字幕在线| 在线观看舔阴道视频| 国产欧美日韩一区二区三| 国产成人免费观看mmmm| 午夜视频精品福利| a在线观看视频网站| 高清欧美精品videossex| www.999成人在线观看| 大片电影免费在线观看免费| 日韩成人在线观看一区二区三区| 精品一区二区三区四区五区乱码| 久久久久久人人人人人| 久久午夜亚洲精品久久| 午夜两性在线视频| 色精品久久人妻99蜜桃| 欧美性长视频在线观看| 国产精品av久久久久免费| 久久人人爽av亚洲精品天堂| 他把我摸到了高潮在线观看 | 18禁国产床啪视频网站| 欧美日韩亚洲国产一区二区在线观看 | 午夜激情av网站| 成在线人永久免费视频| 欧美久久黑人一区二区| kizo精华| 丰满人妻熟妇乱又伦精品不卡| 丁香六月天网| 久久这里只有精品19| 麻豆乱淫一区二区| 天堂中文最新版在线下载| 国产99久久九九免费精品| 亚洲精品久久成人aⅴ小说| 亚洲国产av影院在线观看| 一区二区三区激情视频| 色精品久久人妻99蜜桃| 亚洲色图av天堂| 久久中文字幕一级| 欧美日韩国产mv在线观看视频| 亚洲精品美女久久久久99蜜臀| 国产亚洲欧美精品永久| 久久国产精品男人的天堂亚洲| 国产国语露脸激情在线看| 国产亚洲一区二区精品| 亚洲av欧美aⅴ国产| 咕卡用的链子| 大陆偷拍与自拍| 午夜免费鲁丝| 亚洲久久久国产精品| 亚洲欧洲日产国产| av欧美777| av片东京热男人的天堂| 亚洲av成人不卡在线观看播放网| 女警被强在线播放| 久久久久久人人人人人| 青草久久国产| 亚洲欧美激情在线| 汤姆久久久久久久影院中文字幕| 麻豆成人av在线观看| 久久99一区二区三区| 精品国产国语对白av| 99在线人妻在线中文字幕 | 麻豆乱淫一区二区| 又大又爽又粗| www日本在线高清视频| 欧美日韩中文字幕国产精品一区二区三区 | 午夜两性在线视频| a级毛片在线看网站| 老司机亚洲免费影院| 国产成人精品在线电影| 大片免费播放器 马上看| 天堂动漫精品| 亚洲精品久久午夜乱码| 久久久欧美国产精品| 高清av免费在线| videos熟女内射| 国产极品粉嫩免费观看在线| 天天躁夜夜躁狠狠躁躁| 国产成人av教育| 欧美 日韩 精品 国产| 91国产中文字幕| 国产精品免费视频内射| 亚洲精华国产精华精| 欧美性长视频在线观看| 亚洲av日韩在线播放| 亚洲专区字幕在线| 性色av乱码一区二区三区2| 精品卡一卡二卡四卡免费| 十八禁网站网址无遮挡| av国产精品久久久久影院| 国产精品二区激情视频| 一级毛片女人18水好多| 日韩三级视频一区二区三区| 黄色毛片三级朝国网站| 亚洲中文av在线| 久久99热这里只频精品6学生| 欧美激情 高清一区二区三区| www.熟女人妻精品国产| 1024香蕉在线观看| 9色porny在线观看| 人人妻人人爽人人添夜夜欢视频| 淫妇啪啪啪对白视频| 欧美午夜高清在线| 欧美大码av| 热99久久久久精品小说推荐| 制服人妻中文乱码| 国产精品免费一区二区三区在线 | 91精品国产国语对白视频| 男女床上黄色一级片免费看| 国产99久久九九免费精品| 亚洲成av片中文字幕在线观看| 精品第一国产精品| 精品少妇黑人巨大在线播放| 一级毛片女人18水好多| 国产三级黄色录像| av一本久久久久| 在线观看人妻少妇| 欧美精品人与动牲交sv欧美| 黄色丝袜av网址大全| 男人舔女人的私密视频| 一区二区av电影网| 日本五十路高清| 菩萨蛮人人尽说江南好唐韦庄| 久久精品国产a三级三级三级| 国产精品美女特级片免费视频播放器 | av超薄肉色丝袜交足视频| 老熟妇乱子伦视频在线观看| 日韩人妻精品一区2区三区| 欧美日韩av久久| 亚洲黑人精品在线| 一边摸一边做爽爽视频免费| 制服诱惑二区| 国产高清视频在线播放一区| 一进一出抽搐动态| 国产亚洲精品第一综合不卡| 欧美成人免费av一区二区三区 | 十八禁网站免费在线| 日本av手机在线免费观看| 精品人妻熟女毛片av久久网站| 91老司机精品| 国产三级黄色录像| 搡老熟女国产l中国老女人| 精品国产一区二区三区久久久樱花| 午夜91福利影院| 极品教师在线免费播放| 免费日韩欧美在线观看| 男女免费视频国产| 亚洲精品一卡2卡三卡4卡5卡| 男女边摸边吃奶| 欧美成人午夜精品| 高清毛片免费观看视频网站 | 可以免费在线观看a视频的电影网站| 少妇精品久久久久久久| 99热网站在线观看| 国产真人三级小视频在线观看| 欧美成人免费av一区二区三区 | 国产在线视频一区二区| 精品少妇内射三级| 久久中文字幕一级| 亚洲午夜精品一区,二区,三区| 母亲3免费完整高清在线观看| 黄色视频在线播放观看不卡| 一区二区三区精品91| 在线观看www视频免费| 成年人黄色毛片网站| 亚洲国产欧美日韩在线播放| 亚洲人成伊人成综合网2020| 在线观看一区二区三区激情| 午夜久久久在线观看| 啦啦啦免费观看视频1| 自拍欧美九色日韩亚洲蝌蚪91| 国产在线观看jvid| 一级毛片电影观看| 日本精品一区二区三区蜜桃| 久久国产亚洲av麻豆专区| 免费高清在线观看日韩| 免费在线观看视频国产中文字幕亚洲| a级毛片在线看网站| 亚洲成人免费电影在线观看| 免费在线观看黄色视频的| 国产深夜福利视频在线观看| 精品久久蜜臀av无| 久久天堂一区二区三区四区| 99精品在免费线老司机午夜| 久久中文字幕人妻熟女| 成年版毛片免费区| 欧美日韩成人在线一区二区| 午夜精品国产一区二区电影| 18禁裸乳无遮挡动漫免费视频| 久久狼人影院| 国产日韩一区二区三区精品不卡| 国产一区二区激情短视频| 亚洲国产欧美网| 久久中文字幕一级| 黄色视频在线播放观看不卡| 制服诱惑二区| 十八禁高潮呻吟视频| 成年女人毛片免费观看观看9 | av有码第一页| 夜夜骑夜夜射夜夜干| 精品福利永久在线观看| 另类精品久久| aaaaa片日本免费| 巨乳人妻的诱惑在线观看| 夫妻午夜视频| 十八禁网站网址无遮挡| 搡老熟女国产l中国老女人| 久久99一区二区三区| 国产亚洲av高清不卡| 69精品国产乱码久久久| 国产亚洲精品第一综合不卡| 成人18禁在线播放| 亚洲精品粉嫩美女一区| 亚洲专区字幕在线| 日韩中文字幕欧美一区二区| 久久人人爽av亚洲精品天堂| 丁香欧美五月| 久久久久久亚洲精品国产蜜桃av| 亚洲熟女毛片儿| 精品国产一区二区三区久久久樱花| 日本一区二区免费在线视频| 女同久久另类99精品国产91| 精品久久久久久久毛片微露脸| 黄片大片在线免费观看| 国产精品免费视频内射| 久久久久久久久久久久大奶| 老司机亚洲免费影院| 国产一区二区三区综合在线观看| 最近最新中文字幕大全电影3 | 桃花免费在线播放| 嫩草影视91久久| 精品熟女少妇八av免费久了| 妹子高潮喷水视频| 久久精品成人免费网站| 欧美日韩av久久| 99国产精品一区二区蜜桃av | 精品少妇一区二区三区视频日本电影| 欧美在线一区亚洲| 九色亚洲精品在线播放| 99精品久久久久人妻精品| 国产亚洲精品第一综合不卡| 在线播放国产精品三级| 岛国毛片在线播放| 老司机深夜福利视频在线观看| 一边摸一边抽搐一进一小说 | 成人免费观看视频高清| 美女国产高潮福利片在线看| 波多野结衣一区麻豆| 国产日韩欧美亚洲二区| 免费av中文字幕在线| 91精品三级在线观看| 丰满少妇做爰视频| 国产黄色免费在线视频| av线在线观看网站| 免费av中文字幕在线| 日韩三级视频一区二区三区| 欧美国产精品va在线观看不卡| 久久精品亚洲av国产电影网| 国产野战对白在线观看| 制服人妻中文乱码| 大陆偷拍与自拍| 黄色成人免费大全| 操出白浆在线播放| 精品国产一区二区三区四区第35| 亚洲情色 制服丝袜| 成在线人永久免费视频| 在线观看免费视频日本深夜| 亚洲国产av影院在线观看| 国产高清激情床上av| 精品国产乱子伦一区二区三区| 日韩欧美免费精品| 国产亚洲一区二区精品| 成人国产av品久久久| 亚洲欧洲日产国产| 五月开心婷婷网| 色老头精品视频在线观看| 成人黄色视频免费在线看| 亚洲美女黄片视频| 欧美久久黑人一区二区| 日韩欧美免费精品| 亚洲三区欧美一区| 制服诱惑二区| 亚洲国产欧美日韩在线播放| 国产欧美日韩综合在线一区二区| 变态另类成人亚洲欧美熟女 | 精品国产国语对白av| 视频区欧美日本亚洲| 色综合婷婷激情| 久热这里只有精品99| 久久影院123| 国产精品九九99| 国产成人精品久久二区二区免费| 日韩视频一区二区在线观看| 啦啦啦中文免费视频观看日本| 欧美日本中文国产一区发布| 黄色毛片三级朝国网站| 美女高潮到喷水免费观看| 真人做人爱边吃奶动态| 国产一区二区激情短视频| 黄色毛片三级朝国网站| videosex国产| 精品卡一卡二卡四卡免费| 久久中文字幕人妻熟女| 免费在线观看视频国产中文字幕亚洲| 性色av乱码一区二区三区2| www日本在线高清视频| 久久久久久久精品吃奶| 一二三四在线观看免费中文在| 国产黄色免费在线视频| 妹子高潮喷水视频| 美女主播在线视频| 日韩制服丝袜自拍偷拍| 亚洲成a人片在线一区二区| 丁香欧美五月| 国产成人啪精品午夜网站| 宅男免费午夜| xxxhd国产人妻xxx| 国产免费现黄频在线看| 咕卡用的链子| 亚洲av日韩在线播放| 建设人人有责人人尽责人人享有的| 欧美黄色淫秽网站| 精品人妻熟女毛片av久久网站| 久久久久网色| 99香蕉大伊视频| 欧美日韩中文字幕国产精品一区二区三区 | 丁香六月天网| 高潮久久久久久久久久久不卡| 亚洲精品中文字幕一二三四区 | 欧美一级毛片孕妇| 岛国毛片在线播放| 亚洲专区国产一区二区| 国产97色在线日韩免费| 国产在线视频一区二区| 国产精品99久久99久久久不卡| 国产麻豆69| 午夜福利一区二区在线看| 男男h啪啪无遮挡| 免费看十八禁软件| 免费黄频网站在线观看国产| 久久青草综合色| av网站免费在线观看视频| 亚洲伊人色综图| 制服人妻中文乱码| 亚洲av第一区精品v没综合| 亚洲国产成人一精品久久久| www.熟女人妻精品国产| 日韩欧美免费精品| 亚洲国产成人一精品久久久| 国产高清videossex| 免费观看人在逋| 美女视频免费永久观看网站| 亚洲国产中文字幕在线视频| 十八禁网站网址无遮挡| 午夜激情av网站| 国产区一区二久久| 精品人妻熟女毛片av久久网站| 国产老妇伦熟女老妇高清| 国产成人一区二区三区免费视频网站| 久久中文看片网| 女性被躁到高潮视频| 黄色片一级片一级黄色片| 欧美激情 高清一区二区三区| www日本在线高清视频| 久久这里只有精品19| 欧美激情 高清一区二区三区| 在线 av 中文字幕| 菩萨蛮人人尽说江南好唐韦庄| 男女床上黄色一级片免费看| 老司机在亚洲福利影院| 夜夜夜夜夜久久久久| 91精品三级在线观看| 黄色成人免费大全| 亚洲精品乱久久久久久| 国产精品.久久久| 欧美日韩精品网址| 在线av久久热| 女性生殖器流出的白浆|