• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Improved thermal property of strained InGaAlAs/AlGaAs quantum wells for 808-nm vertical cavity surface emitting lasers

    2022-03-12 07:48:12ZhuangZhuangZhao趙壯壯MengXun荀孟GuanZhongPan潘冠中YunSun孫昀JingTaoZhou周靜濤andDeXinWu吳德馨
    Chinese Physics B 2022年3期

    Zhuang-Zhuang Zhao(趙壯壯), Meng Xun(荀孟), Guan-Zhong Pan(潘冠中),Yun Sun(孫昀), Jing-Tao Zhou(周靜濤), and De-Xin Wu(吳德馨)

    Institute of Microelectronics,Chinese Academy of Sciences,Beijing 100029,China

    Keywords: 808-nm VCSEL,InGaAlAs/AlGaAs quantum wells,thermal property

    1. Introduction

    Vertical cavity surface emitting lasers (VCSELs) have significant advantages such as circular output beams, low threshold currents, single longitudinal modes, high speed modulations, slow wavelength shift ratesversustemperature,and easy two-dimensional integrations.[1-6]The VCSELs have been widely used in data communication and short-distance optical interconnection.[7-11]In recent years, the VCSELs have been greatly developed and widely used in the fields of three-dimensional face recognition,hand gesture recognition,and laser radar.[12]

    The wavelength of 808 nm is a very important wavelength in high-power laser applications. For example, the 808-nm laser source can be used as a pump source of solidstate laser (Nd:YAG or Nd:YVO4) used for material cutting,marking,printing,etc.[13-15]The 808-nm pulsed laser sources are also used in the medical field for skin-care related cosmetic applications such as hair removal,[16]and they also used as industrial and military infra-red illumination sources.[17,18]Compared with the conventional 808-nm edge-emitting semiconductor lasers,VCSELs have good wavelength stability for varying environment temperatures. The VCSELs also exhibit a small divergence angle and circular output beam, which is conducive to the collimation or focusing.

    To date, there have been not many reports on 808-nm VCSELs. These reports focused mainly on how to solve the heat dissipation problem in order to increase the output power in practical applications. Because of strong GaAs absorption at 808 nm, a bottom-emitting configuration cannot be used for efficient heat dissipations. Seurinet al.demonstrated 3 mm×3 mm arrays and 5 mm×5 mm arrays with the GaAs substrate completely removed from and mounted on diamond submounts. These arrays emit more than 50 W and 120 W,respectively, and exhibit a maximum power conversion efficiency of 42%.[19]Zhonget al.improved thermal stability of 808-nm VCSEL arrays by arranging the mesa distribution within the array in a nonlinear configuration.[20]Besides exploring heat dissipation measurement, it is also important to reduce the self-heating of the device for improving the temperature stability of the device. In VCSELs,the quantum well material is critical for differential gain and temperature stability. Zhanget al.numerically simulated GaAs/Al0.3Ga0.7As,GaAsxP1-x/Al0.3Ga0.7As and In1-x-yGaxAlyAs/Al0.3Ga0.7As quantum-well active regions. The output characteristics of the three designed quantum-well VCSELs were also calculated and compared.[21]

    In this work, we design and fabricate two kinds of 808-nm VCSELs with In0.13Ga0.75Al0.12As/Al0.3Ga0.7As and Al0.05Ga0.95As/Al0.3Ga0.7As quantum wells,respectively.The temperature characteristics of the two kinds of quantum wells are investigated mainly by theory. Then the output power characteristics and temperature characteristics of the fabricated VCSELs are analyzed in detail. The strained In0.13Ga0.75Al0.12As/Al0.3Ga0.7As quantum wells exhibit higher material gain and better temperature stability than Al0.05Ga0.95As/Al0.3Ga0.7As quantum wells. The tested results are in good agreement with the calculations. The VCSELs with strained InAlGaAs quantum wells are more suitable for high temperature operation.

    2. Design and fabrication

    The 808-nm top emitting laser layers to be examined here were grown by metal-organic chemical vapor deposition (MOCVD) on an N-type GaAs substrate. The bottom mirror consisted of 41.5 pairs of Ndoped Al0.25Ga0.75As/Al0.9Ga0.1As distributed Bragg reflectors (DBRs). The top mirror was composed of 23.5 pairs of P-doped Al0.25Ga0.75As/Al0.9Ga0.1As DBRs. The active region contained three pairs of 6-nm-thick In0.13Ga0.75Al0.12As quantum wells surrounded by 8-nm-thick Al0.3Ga0.7As barrier layers. Another kind of active region containing three pairs of 6-nm-thick Al0.05Ga0.95As quantum wells surrounded by 8-nm-thick Al0.3Ga0.7As barrier layers was also designed for contrast.

    The fabrication procedure is as follows. Firstly,Ti/Pt/Au electrode was deposited at the periphery of output aperture.The P-DBRs were etched by inductively coupled plasma(ICP)reactive ion etching to expose the Al0.98Ga0.02As layer. The oxide aperture was formed by the selective wet oxidation of Al0.98Ga0.02As into AlxOyat temperature of 420°C. A 200-nm-thick SiN layer was deposited on the surface of the VCSEL for electric isolation. After Ti/Au seed layer was sputtered, thick Au is electroplated to improve heat dissipation.Then,the substrate was thinned to 150 μm. The N-type electrode was evaporated on the substrate.Finally,the contacts are rapidly annealed in a nitrogen(N2)ambient.Figure 1(a)shows a microscopic image of the fabricated 808-nm VCSELs. Figure 1(b) shows the cross-section diagram of the 808-nm VCSEL along the A-A′direction in Fig.1(a).

    Fig. 1. (a) Microscopic image of actual device, and (b) cross-section diagram of device along A-A′ direction.

    3. Results and discussion

    The gains of In0.13Ga0.75Al0.12As/Al0.3Ga0.7As and Al0.05Ga0.95As/Al0.3Ga0.7As quantum wells at different ambient temperatures are calculated by the standard 8-bandk· ptheory,[22]and the results are shown in Figs. 2(a)and 2(b). At the same ambient temperature, the gain of In0.13Ga0.75Al0.12As quantum wells is higher than that of Al0.05Ga0.95As quantum wells. This is because the strain of In0.13Ga0.75Al0.12As quantum wells increases the curvature of the valence band structure,thereby greatly reducing the effective mass. The strain can reduce the valence band effective mass allowing the quasi-Fermi levels to separate more symmetrically. So not only does the material turns transparent faster, but also the gain increases faster with carrier density increasing.[23,24]

    Fig. 2. (a) Curves of gain versus wavelength of three pairs of 6-nmthick In0.13Ga0.75Al0.12As quantum wells surrounded by 8-nm-thick Al0.3Ga0.7As barrier layers at different temperatures, and (b) curves of gain versus wavelength of three pairs of 6-nm-thick Al0.05Ga0.95As quantum wells surrounded by 8-nm-thick Al0.3Ga0.7As barrier layers at different temperatures.

    Owing to increased leakage carriers at high temperatures,the gains of these two kinds of quantum wells decrease as the ambient temperature increases. The variation of the extracted peak gain with ambient temperature is shown in Fig.3(a). The drop rate of Al0.05Ga0.95As quantum wells’peak gain decreasing with ambient temperature increasing is 19.18 cm-1/°C which is faster than that of In0.13Ga0.75Al0.12As quantum wells, 17.26 cm-1/°C. In addition, the gain curves of these two kinds of quantum wells are redshifted as the ambient temperature increases. The red shift rate of the peak wavelength of In0.13Ga0.75Al0.12As quantum wellsversustemperature increasing is 0.220 nm/°C which is slower than that of Al0.05Ga0.95As quantum wells, 0.275 nm/°C as indicated in Fig. 3(b). The above calculation results show that the In0.13Ga0.75Al0.12As quantum wells exhibit higher material gain and better high-temperature stability than Al0.05Ga0.95As quantum wells.

    In addition, the gains of Al0.05Ga0.95As and In0.13Ga0.75Al0.12As quantum wells with 4 nm and 8 nm in widths are also calculated at different ambient temperatures as shown in Fig. 4. The barrier material is still Al0.3Ga0.7As with 8 nm in width. Obviously, the gains of the In0.13Ga0.75Al0.12As quantum wells with 4 nm and 8 nm in widths are significantly greater than those of the Al0.05Ga0.95As quantum wells at the same ambient temperature.This trend agrees with the result of 6-nm quantum well in Fig.2. From Figs.2 and 4,the difference in gain between the two quantum wells turns smaller as the well width increases from 4 nm to 8 nm at the same temperature. As the well width is 4 nm, 6 nm, and 8 nm, the corresponding gain difference between the In0.13Ga0.75Al0.12As and Al0.05Ga0.95As quantum wells is 2239.8 cm-1, 1418.9 cm-1, and 834.9 cm-1at temperature of 30°C.

    Fig.3. Plots of(a)peak gain and(b)peak wavelength versus ambient temperature of Al0.05Ga0.95As and In0.13Ga0.75Al0.12As quantum wells with 6-nm width.

    Fig.4. Plots of gain versus wavelength of Al0.05Ga0.95As quantum wells with(a)4-nm and(d)8-nm widths at different temperatures. Plots of gain versus wavelength of In0.13Ga0.75 Al0.12As quantum wells with(b)4-nm and(d)8-nm widths. Plots of peak gain versus ambient temperature of Al0.05Ga0.95As and In0.13Ga0.75 Al0.12As quantum wells with(c)4-nm and(f)8-nm widths.

    When the quantum well width is 4 nm, the peak-gain-dropping rate with temperature increasing for In0.13Ga0.75Al0.12As quantum wells and Al0.05Ga0.95As quantum wells are 28.09 cm-1/°C and 28.66 cm-1/°C, respectively. When the quantum well width is 8 nm, the peak-gain-dropping rate of In0.13Ga0.75Al0.12As quantum wells and Al0.05Ga0.95As quantum wells are 13.38 cm-1/°C and 13.71 cm-1/°C,respectively. Therefore,the In0.13Ga0.75Al0.12As is surely more stable than Al0.05Ga0.95As quantum wells with the temperature varying. It is also found that the quantum well with larger width exhibits more stable temperature performance. However,the gain decreases as the quantum well width increases. Therefore,the 6-nm well width is very suitable in terms of both gain and temperature stabilities.

    Fig.5. Plots of(a)output power,(b)PCE,and(c)maximum PCE versus current of the Al0.05Ga0.95As quantum wells VCSELs with 10-μm oxide aperture in a temperature range of 30 °C-130 °C,and plots of(d)output power,(e)PCE,and(f)maximum PCE versus ambient temperature of In0.13Ga0.75Al0.12As quantum wells VCSELs with 10-μm oxide aperture in a temperature range of 30 °C-130 °C.

    The VCSELs with different oxide aperture diameters are fabricated and tested. TheL-Icharacteristics of the 10-μm VCSELs with both Al0.05Ga0.95As quantum wells and In0.13Ga0.75Al0.12As quantum wells at ambient temperatures ranging from 30°C to 130°C are shown in Figs. 5(a)and 5(b). It can be found that the output power of the In0.13Ga0.75Al0.12As quantum wells VCSELs is greater than that of the Al0.05Ga0.95As quantum wells VCSELs at the same ambient temperature and injection current.The maximum output power of In0.13Ga0.75Al0.12As quantum wells VCSELs is 22.88 mW at 30°C. As the ambient temperature increases,the output power gradually decreases. The maximum output power is 15.82 mW at 70°C and 1.52 mW at 130°C. The maximum power of Al0.05Ga0.95As quantum wells VCSELs is 21.37 mW at 30°C,13.35 mW at 70°C,and only 0.031 mW at 130°C. The output power of In0.13Ga0.75Al0.12As quantum wells VCSELs decreases more slowly with the increase of ambient temperature. Therefore, the In0.13Ga0.75Al0.12As quantum wells VCSELs exhibit better high-temperature performances than Al0.05Ga0.95As quantum wells VCSELs.

    The power conversion efficiency (PCE) of the VCSELs with two kinds of quantum wells under different ambient temperatures are shown in Figs. 5(b) and 5(e). As the ambient temperature is 30°C, the maximum power conversion efficiency (PCE) of In0.13Ga0.75Al0.12As quantum wells VCSELs can reach 43.82% which is higher than that of Al.05Ga0.95As quantum wells VCSELs, 41.33%. As the ambient temperature increases to 130°C, the maximum PCE for In0.13Ga0.75Al0.12As quantum wells VCSELs and Al0.05Ga0.95As quantum wells VCSELs decrease to 8.35%and 3.36%, respectively. The plots of maximum PCE of the two devicesversusambient temperature are shown in Figs. 5(c)and 5(d). Obviously,the maximum PCE of the Al.05Ga0.95As quantum wells VCSELs decreases faster with the increase of ambient temperature. Under the same operation condition,the In0.13Ga0.75Al0.12As quantum wells VCSELs have higher output power and higher power conversion efficiency than the Al0.05Ga.95As quantum wells VCSELs, showing better hightemperature stability. The experimental results are consistent with the calculations.

    Figure 6(a)shows the plots of peak output powerversusambient temperature of In0.13Ga0.75Al0.12As quantum wells VCSELs with six oxide aperture diameters in a range of 2 μm-25 μm. The peak output power of VCSELs with the same oxide aperture decreases almost linearly with ambient temperature increasing. The extracted drop rate of peak output power increasing with oxide aperture increasing is shown in Fig.6(b).The drop rate of the peak output power of the VCSELs with an oxide aperture diameter of 2 μm, 10 μm, and 25 μm are 0.0471 mW/°C, 0.1901 mW/°C, and 0.4996 mW/°C, respectively. This is because larger active region area produces more heat, which will introduce more serious heat crosstalk.The heat dissipation in large aperture VCSELs is more difficult than that in small aperture VCSELs. As the ambient temperature increases,the phenomenon turns more serious,which accelerates the temperature rise. Therefore,the small aperture VCSELs exhibit more stable temperature characteristics.

    Fig.6. (a)Plots of peak output power versus ambient temperature of In0.13Ga0.75Al0.12As quantum wells VCSELs with 2-μm-25-μm oxide apertures,and(b)plot of drop rate of peak output power versus oxide aperture.

    Fig.7.(a)Rollover current and(b)rollover current density versus ambient temperature of 808-nm In0.13Ga0.75Al0.12As quantum wells VCSELs with 2-μm-25-μm oxide apertures.

    The rollover current of VCSELs with an oxide aperture diameter of 2 μm and 25 μm at 30°C are 9.4 mA and 69 mA,respectively. When the ambient temperature rises to 110°C,the rollover currents become 5 mA and 27.5 mA,respectively,as shown in Fig. 7(a). It is noted that VCSELs with a larger oxide aperture have higher rollover currents. As the ambient temperature increases,the rollover current of the VCSELs with large oxide aperture decreases more quickly than that of the VCSELs with small oxide aperture. Figure 7(b) shows that the plots of rollover current density of VCSELsversuscurrent density for different oxide apertures. The rollover current density of 2-μm and 25-μm VCSELs at 30°C are 299.21 kA/cm2and 14.06 kA/cm2, respectively. As the temperature increases to 110°C, the rollover current density decreases to 159.15 kA/cm2and 5.60 kA/cm2,respectively.It indicates that the rollover current density of VCSELs with larger oxide aperture is smaller.With the increase of ambient temperature, the rollover current density of the VCSELs with small oxide aperture decreases faster than that of the VCSELs with large oxide aperture.

    The plots of the output power of the In0.13Ga0.75Al0.12As quantum wells VCSELsversusinjection current are shown in Fig.8(a). The changes of output power of VCSELs with different oxide apertures are basically the same under small injection currents. As the injection current increases, the output power of the VCSELs with small oxide aperture decreases faster because the VCSELs with small oxide aperture has a small rollover current. Figure 8(b) shows the change of the output power of the In0.13Ga0.75Al0.12As quantum wells VCSELs with injection current density as the ambient temperature increases from 30°C to 90°C. Under the same current density, the change of output power increases with the augment of the oxide aperture diameter. This is because the rollover current density of VCSELs with large oxide aperture is lower than that of VCSELs with small oxide aperture. Obviously,the VCSELs with small oxide aperture have more excellent high-temperature stability than large oxide aperture VCSELs.

    To investigate the thermal characteristics of In0.13Ga0.75Al0.12As quantum wells VCSELs,the thermal resistance is also calculated according to the emission spectra and the dissipated power. Thermal resistance can be determined experimentally from the following equation:[25]

    where Δλ/ΔPdissis calculated by the variation of the wavelength shift with the dissipated power. The dissipation power is calculated by the input power subtracting the output power. Figure 9(a) shows that the value of Δλ/ΔPdissof In0.13Ga0.75Al0.12As quantum wells VCSELs with 10-μm oxide aperture at 30°C, 50°C, 70°C, 90°C, and 110°C are 0.1325 nm/mW,0.1366 nm/mW,0.1434 nm/mW,0.1525 nm/mW, and 0.1615 nm/mW, respectively. Δλ/ΔThsis calculated by the peak wavelength shift rateversusambient temperature,and its value is 0.0602 nm/°. At the ambient temperatures of 30°C,50°C,70°C,90°C,and 110°C,the thermal resistances are 2.201 K/mW,2.269 K/mW,2.382 K/mW,2.533 K/mW, and 2.683 K/mW, respectively, as shown in Fig.9(b).

    Fig.8. Plots of output power of In0.13Ga0.75Al0.12As quantum wells VCSELs versus(a)injection current and(b)injection current density as ambient temperature increases from 30 °C to 90 °C.

    Fig. 9. (a) The Δλ/ΔPdiss of In0.13Ga0.75Al0.12As quantum wells VCSELs with 10-μm oxide aperture versus dissipated power at different ambient temperatures,and(b)Δλ/ΔThs and thermal resistance versus ambient temperature.

    4. Conclusions

    In conclusion, the theoretical calculations show that the strained In0.13Ga0.75Al0.12As/Al0.3Ga0.7As quantum wells possess higher material gain and lower temperature sensitivity than the Al0.05Ga0.95As/Al0.3Ga0.7As quantum wells. The 808-nm vertical cavity surface emitting lasers with various oxide apertures are fabricated and characterized in this paper. It is demonstrated that the vertical cavity surface emitting lasers with strained In0.13Ga0.75Al0.12As/Al0.3Ga0.7As quantum wells exhibit higher power conversion efficiency (PCE) and better temperature stability. Such the vertical cavity surface emitting laser of 808-nm In0.13Ga0.75Al0.12As/Al0.3Ga0.7As quantum wells will be preferred for high power applications.The maximum PCE of 43.8%for 10-μm VCSELs is achieved at the ambient temperature of 30°C. The output power and spectra of the VCSELs under different ambient temperatures are tested. We find that the smaller oxide aperture VCSELs exhibit more stable temperature performance. The thermal resistances at different temperatures are also presented.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant No. 61804175), the Key Research Program of Frontier Sciences, Chinese Academy of Sciences(Grant No. ZDBS-LY-JSC031), and the China Postdoctoral Science Foundation(Grant No.BX20200358).

    男女床上黄色一级片免费看| 欧美国产精品va在线观看不卡| 午夜91福利影院| 欧美国产精品va在线观看不卡| 亚洲av成人不卡在线观看播放网 | 亚洲综合色网址| 精品人妻在线不人妻| 免费在线观看黄色视频的| 国产深夜福利视频在线观看| 日韩,欧美,国产一区二区三区| 狂野欧美激情性bbbbbb| 亚洲三区欧美一区| 在线 av 中文字幕| 久久久久网色| 亚洲欧洲国产日韩| 菩萨蛮人人尽说江南好唐韦庄| 黑人猛操日本美女一级片| 久久ye,这里只有精品| 一级毛片我不卡| 黄网站色视频无遮挡免费观看| 久久久国产欧美日韩av| 亚洲久久久国产精品| 欧美最新免费一区二区三区| 伊人亚洲综合成人网| 国产精品偷伦视频观看了| 街头女战士在线观看网站| 十八禁人妻一区二区| 黄频高清免费视频| 久久久久精品人妻al黑| 中文字幕制服av| 日韩制服丝袜自拍偷拍| a级片在线免费高清观看视频| 欧美激情 高清一区二区三区| 午夜福利一区二区在线看| av在线老鸭窝| 亚洲精品第二区| 欧美日韩成人在线一区二区| 国产黄色免费在线视频| 交换朋友夫妻互换小说| 在线亚洲精品国产二区图片欧美| 最近2019中文字幕mv第一页| 日韩 亚洲 欧美在线| 国产在视频线精品| 国产老妇伦熟女老妇高清| 高清av免费在线| 久久精品久久久久久噜噜老黄| 大话2 男鬼变身卡| videosex国产| 91精品三级在线观看| 国产日韩欧美亚洲二区| 国产精品99久久99久久久不卡 | 久久影院123| 亚洲熟女精品中文字幕| 国产男女超爽视频在线观看| 欧美黑人精品巨大| 日日爽夜夜爽网站| 两性夫妻黄色片| videosex国产| 一区福利在线观看| 丰满饥渴人妻一区二区三| 99热全是精品| 亚洲欧美清纯卡通| 久久97久久精品| 黄色毛片三级朝国网站| 欧美国产精品一级二级三级| 成人影院久久| 国产精品欧美亚洲77777| 69精品国产乱码久久久| 超色免费av| 丝袜人妻中文字幕| 交换朋友夫妻互换小说| 亚洲成人av在线免费| 黄片小视频在线播放| 成年av动漫网址| 热re99久久精品国产66热6| 亚洲自偷自拍图片 自拍| xxxhd国产人妻xxx| 亚洲av福利一区| 国产精品一国产av| 欧美在线一区亚洲| 欧美97在线视频| 天堂俺去俺来也www色官网| 视频在线观看一区二区三区| 日韩欧美一区视频在线观看| 80岁老熟妇乱子伦牲交| 国产精品久久久久久精品电影小说| 国产免费一区二区三区四区乱码| 伦理电影免费视频| 久久久久人妻精品一区果冻| 亚洲国产av新网站| 一级,二级,三级黄色视频| 亚洲在久久综合| 搡老岳熟女国产| 悠悠久久av| a 毛片基地| 国产男女内射视频| 男女午夜视频在线观看| 亚洲一区中文字幕在线| 亚洲欧美精品综合一区二区三区| 国产日韩欧美视频二区| a级毛片黄视频| 不卡av一区二区三区| 国产成人a∨麻豆精品| xxx大片免费视频| 男女之事视频高清在线观看 | 亚洲精品美女久久av网站| 女人被躁到高潮嗷嗷叫费观| 国产亚洲一区二区精品| 日韩一区二区三区影片| 欧美成人午夜精品| 老汉色∧v一级毛片| 亚洲成人免费av在线播放| 国产有黄有色有爽视频| 看非洲黑人一级黄片| 久久ye,这里只有精品| 日本欧美国产在线视频| 亚洲国产毛片av蜜桃av| 人成视频在线观看免费观看| 日韩中文字幕视频在线看片| 日日摸夜夜添夜夜爱| 精品少妇内射三级| 一区二区三区四区激情视频| av卡一久久| 久久99热这里只频精品6学生| 成人漫画全彩无遮挡| 黄片播放在线免费| 亚洲国产精品一区三区| 一级毛片电影观看| 亚洲情色 制服丝袜| 天美传媒精品一区二区| 亚洲精品久久午夜乱码| 观看美女的网站| 国产av国产精品国产| 午夜免费鲁丝| 丝袜脚勾引网站| 亚洲图色成人| 男女午夜视频在线观看| 一区福利在线观看| 少妇人妻精品综合一区二区| 国产精品久久久久久精品电影小说| 丝袜脚勾引网站| 丝袜脚勾引网站| 免费黄色在线免费观看| 在线观看www视频免费| 国产精品久久久久久久久免| 丝袜在线中文字幕| 中文字幕亚洲精品专区| 成年av动漫网址| 女的被弄到高潮叫床怎么办| 亚洲欧美色中文字幕在线| 久久女婷五月综合色啪小说| 国产麻豆69| 曰老女人黄片| 国产免费又黄又爽又色| 制服丝袜香蕉在线| 久久久久精品久久久久真实原创| 久久ye,这里只有精品| 777久久人妻少妇嫩草av网站| 在线观看人妻少妇| 一级毛片黄色毛片免费观看视频| 一级毛片 在线播放| 午夜日韩欧美国产| 午夜精品国产一区二区电影| 女性生殖器流出的白浆| 极品人妻少妇av视频| www日本在线高清视频| 久久久久久免费高清国产稀缺| 十八禁高潮呻吟视频| 夫妻性生交免费视频一级片| 制服丝袜香蕉在线| 最近最新中文字幕免费大全7| 午夜福利视频精品| 水蜜桃什么品种好| 亚洲第一av免费看| 看免费成人av毛片| 亚洲成色77777| 国产黄频视频在线观看| 在线观看国产h片| 国产精品一区二区精品视频观看| 国产av一区二区精品久久| 久久性视频一级片| 久久 成人 亚洲| 黄色视频在线播放观看不卡| 在线天堂中文资源库| 成人手机av| 9色porny在线观看| 一级a爱视频在线免费观看| 80岁老熟妇乱子伦牲交| 免费人妻精品一区二区三区视频| 午夜日韩欧美国产| 巨乳人妻的诱惑在线观看| 视频在线观看一区二区三区| 精品一区在线观看国产| av电影中文网址| 国产一卡二卡三卡精品 | 2018国产大陆天天弄谢| 国产老妇伦熟女老妇高清| 在线精品无人区一区二区三| 久久久精品国产亚洲av高清涩受| 亚洲四区av| 少妇精品久久久久久久| 99热国产这里只有精品6| 校园人妻丝袜中文字幕| 亚洲专区中文字幕在线 | 人人澡人人妻人| 亚洲成人一二三区av| 亚洲久久久国产精品| 欧美日韩视频精品一区| 久久人人爽av亚洲精品天堂| 免费黄网站久久成人精品| 国产成人一区二区在线| 国产国语露脸激情在线看| 观看美女的网站| 免费黄频网站在线观看国产| 一级,二级,三级黄色视频| 亚洲欧洲精品一区二区精品久久久 | 街头女战士在线观看网站| 丰满迷人的少妇在线观看| 欧美亚洲日本最大视频资源| 亚洲av电影在线进入| 国产精品久久久久久人妻精品电影 | 欧美人与性动交α欧美精品济南到| 国产成人av激情在线播放| 啦啦啦啦在线视频资源| 男女之事视频高清在线观看 | 国产黄色免费在线视频| 色吧在线观看| 国产成人免费无遮挡视频| 国产精品免费视频内射| 精品亚洲成a人片在线观看| 久久鲁丝午夜福利片| 午夜日本视频在线| 高清av免费在线| 国产成人免费无遮挡视频| 老司机影院成人| 在线观看人妻少妇| av在线老鸭窝| 精品国产一区二区三区久久久樱花| 汤姆久久久久久久影院中文字幕| 亚洲精品,欧美精品| av网站在线播放免费| 久久午夜综合久久蜜桃| 精品久久久精品久久久| 一区二区三区激情视频| 久久亚洲国产成人精品v| 欧美日韩综合久久久久久| 亚洲一区二区三区欧美精品| 日韩一卡2卡3卡4卡2021年| 91老司机精品| 欧美人与性动交α欧美软件| 一二三四在线观看免费中文在| 狂野欧美激情性bbbbbb| 自线自在国产av| 国产av一区二区精品久久| 久热这里只有精品99| 精品酒店卫生间| 中文天堂在线官网| bbb黄色大片| 亚洲精品成人av观看孕妇| kizo精华| 欧美精品一区二区大全| 亚洲av电影在线观看一区二区三区| 一级爰片在线观看| 在线观看免费日韩欧美大片| 亚洲成人手机| 国产在线视频一区二区| 一本色道久久久久久精品综合| 丝袜美足系列| 久久久国产欧美日韩av| 国产精品国产三级专区第一集| 最近手机中文字幕大全| 考比视频在线观看| 爱豆传媒免费全集在线观看| 久久人人爽人人片av| 国产免费福利视频在线观看| 亚洲国产精品一区三区| 国产成人午夜福利电影在线观看| 精品国产一区二区久久| 国产精品国产三级国产专区5o| 国产精品二区激情视频| 伦理电影免费视频| 国产 精品1| 日本爱情动作片www.在线观看| 女人精品久久久久毛片| 最近最新中文字幕免费大全7| 99久久综合免费| 国产成人免费无遮挡视频| 亚洲精品成人av观看孕妇| 欧美97在线视频| 欧美日韩亚洲综合一区二区三区_| 国产极品天堂在线| 国产成人精品久久久久久| 18禁裸乳无遮挡动漫免费视频| 久久青草综合色| 亚洲五月色婷婷综合| 九草在线视频观看| 一区在线观看完整版| 国产黄色视频一区二区在线观看| 亚洲av日韩精品久久久久久密 | 国产一区二区三区av在线| 日韩免费高清中文字幕av| 三上悠亚av全集在线观看| 精品少妇久久久久久888优播| 色综合欧美亚洲国产小说| 欧美人与性动交α欧美软件| 中文字幕亚洲精品专区| 国产精品一区二区在线观看99| 国产精品 欧美亚洲| 成人亚洲精品一区在线观看| 啦啦啦 在线观看视频| 天天躁夜夜躁狠狠久久av| 香蕉国产在线看| 国产免费视频播放在线视频| 国产精品99久久99久久久不卡 | a级毛片在线看网站| 亚洲伊人久久精品综合| 91老司机精品| 老司机在亚洲福利影院| 一级爰片在线观看| 国产精品av久久久久免费| 一本色道久久久久久精品综合| 91精品伊人久久大香线蕉| 日日啪夜夜爽| 老鸭窝网址在线观看| 国产精品亚洲av一区麻豆 | 美女脱内裤让男人舔精品视频| 亚洲国产av影院在线观看| 国产精品久久久久成人av| 十八禁高潮呻吟视频| 欧美最新免费一区二区三区| 各种免费的搞黄视频| 国精品久久久久久国模美| 国产精品蜜桃在线观看| 国产熟女欧美一区二区| 性少妇av在线| 无限看片的www在线观看| 久久亚洲国产成人精品v| 久久精品亚洲av国产电影网| 好男人视频免费观看在线| 中文字幕制服av| a 毛片基地| 午夜福利乱码中文字幕| 美女主播在线视频| 国产片特级美女逼逼视频| 男女床上黄色一级片免费看| 制服诱惑二区| 久久精品国产亚洲av高清一级| 大码成人一级视频| 国语对白做爰xxxⅹ性视频网站| 青春草视频在线免费观看| 丝袜美腿诱惑在线| 大陆偷拍与自拍| 国产精品一区二区在线不卡| 国产老妇伦熟女老妇高清| 亚洲成人免费av在线播放| 中文字幕人妻丝袜制服| 国产av码专区亚洲av| 精品酒店卫生间| 天天添夜夜摸| 国产免费福利视频在线观看| 久久久久视频综合| 少妇猛男粗大的猛烈进出视频| 99久国产av精品国产电影| 高清在线视频一区二区三区| 精品酒店卫生间| 人成视频在线观看免费观看| 国产高清国产精品国产三级| 久久精品国产a三级三级三级| 青春草视频在线免费观看| 午夜福利网站1000一区二区三区| 午夜激情久久久久久久| 9191精品国产免费久久| 午夜精品国产一区二区电影| 宅男免费午夜| 亚洲av福利一区| 男人爽女人下面视频在线观看| 久久国产精品男人的天堂亚洲| 午夜福利免费观看在线| 亚洲美女黄色视频免费看| 国产成人免费观看mmmm| 久久久精品94久久精品| 女的被弄到高潮叫床怎么办| 国产午夜精品一二区理论片| 亚洲激情五月婷婷啪啪| 少妇人妻精品综合一区二区| 亚洲第一区二区三区不卡| 无限看片的www在线观看| 亚洲精品美女久久av网站| 亚洲精品av麻豆狂野| 日韩精品免费视频一区二区三区| av又黄又爽大尺度在线免费看| 18禁观看日本| 1024视频免费在线观看| 国产 精品1| 在线天堂最新版资源| 成人国语在线视频| 欧美97在线视频| 视频区图区小说| 啦啦啦啦在线视频资源| 亚洲精品日韩在线中文字幕| 国产老妇伦熟女老妇高清| 伊人亚洲综合成人网| netflix在线观看网站| 天天添夜夜摸| 男男h啪啪无遮挡| 大陆偷拍与自拍| 精品一区二区三区av网在线观看 | 亚洲国产欧美网| 国产成人午夜福利电影在线观看| 午夜免费鲁丝| 国产成人午夜福利电影在线观看| xxxhd国产人妻xxx| 美女中出高潮动态图| 夫妻性生交免费视频一级片| 七月丁香在线播放| av电影中文网址| 国产色婷婷99| 色精品久久人妻99蜜桃| 欧美精品av麻豆av| 亚洲av综合色区一区| 国产免费福利视频在线观看| 国产高清国产精品国产三级| 男女无遮挡免费网站观看| 日韩精品有码人妻一区| 精品人妻一区二区三区麻豆| 精品国产乱码久久久久久小说| 熟妇人妻不卡中文字幕| av福利片在线| 99热全是精品| 国产欧美日韩综合在线一区二区| 日韩中文字幕欧美一区二区 | 天天躁日日躁夜夜躁夜夜| 欧美变态另类bdsm刘玥| 久久午夜综合久久蜜桃| 午夜福利一区二区在线看| 黄片播放在线免费| 亚洲第一av免费看| 搡老乐熟女国产| 亚洲熟女毛片儿| 观看av在线不卡| 亚洲自偷自拍图片 自拍| 欧美精品人与动牲交sv欧美| 中文乱码字字幕精品一区二区三区| 夫妻性生交免费视频一级片| 免费日韩欧美在线观看| 久久人妻熟女aⅴ| 一二三四在线观看免费中文在| 午夜福利在线免费观看网站| 亚洲四区av| 久久国产精品大桥未久av| 热99国产精品久久久久久7| 亚洲中文av在线| 十八禁网站网址无遮挡| 久久久久国产一级毛片高清牌| 日韩欧美一区视频在线观看| 99热网站在线观看| h视频一区二区三区| 日韩一卡2卡3卡4卡2021年| 日本欧美视频一区| 少妇被粗大猛烈的视频| 18禁动态无遮挡网站| 国产成人精品在线电影| 亚洲欧美中文字幕日韩二区| 大陆偷拍与自拍| 亚洲欧美中文字幕日韩二区| 亚洲国产日韩一区二区| 欧美乱码精品一区二区三区| 黄色一级大片看看| 9191精品国产免费久久| 18禁国产床啪视频网站| 国产片内射在线| 精品少妇黑人巨大在线播放| 综合色丁香网| 久久女婷五月综合色啪小说| 亚洲成人手机| 国产成人精品久久二区二区91 | av线在线观看网站| 桃花免费在线播放| 考比视频在线观看| 中文字幕av电影在线播放| 国产成人一区二区在线| 久久人人爽av亚洲精品天堂| 久久久国产精品麻豆| 老司机深夜福利视频在线观看 | 老司机靠b影院| 日韩一卡2卡3卡4卡2021年| 黄色 视频免费看| 最近最新中文字幕免费大全7| videos熟女内射| www.熟女人妻精品国产| 午夜影院在线不卡| 黄片播放在线免费| 午夜免费观看性视频| 日本av手机在线免费观看| av在线老鸭窝| 中文精品一卡2卡3卡4更新| 宅男免费午夜| 天堂8中文在线网| 人体艺术视频欧美日本| 99久久综合免费| 伊人亚洲综合成人网| 水蜜桃什么品种好| 国产欧美日韩综合在线一区二区| 丝袜脚勾引网站| 日本午夜av视频| 亚洲美女搞黄在线观看| 欧美日韩一级在线毛片| 日韩精品免费视频一区二区三区| 免费久久久久久久精品成人欧美视频| 高清视频免费观看一区二区| 综合色丁香网| 一级毛片黄色毛片免费观看视频| 9191精品国产免费久久| 婷婷色麻豆天堂久久| 嫩草影视91久久| 亚洲欧洲日产国产| 成人免费观看视频高清| 亚洲欧美一区二区三区国产| 视频区图区小说| 成年av动漫网址| 国产男女内射视频| 欧美 日韩 精品 国产| 爱豆传媒免费全集在线观看| 国产野战对白在线观看| 丰满迷人的少妇在线观看| 精品人妻一区二区三区麻豆| 国产人伦9x9x在线观看| 搡老岳熟女国产| 777米奇影视久久| 欧美人与善性xxx| 天美传媒精品一区二区| 久久99一区二区三区| 中文乱码字字幕精品一区二区三区| 男人操女人黄网站| 亚洲熟女毛片儿| 亚洲免费av在线视频| 国产淫语在线视频| 伦理电影免费视频| 天天添夜夜摸| 亚洲欧美清纯卡通| 19禁男女啪啪无遮挡网站| 亚洲情色 制服丝袜| 亚洲精品久久成人aⅴ小说| 国产成人免费无遮挡视频| 久久久久久久久久久久大奶| www.自偷自拍.com| svipshipincom国产片| 人人妻人人澡人人爽人人夜夜| 一级a爱视频在线免费观看| 精品国产一区二区久久| 久久天堂一区二区三区四区| 国产免费一区二区三区四区乱码| 十八禁人妻一区二区| 日本91视频免费播放| 人人澡人人妻人| 男女免费视频国产| 黄色 视频免费看| 高清av免费在线| 亚洲中文av在线| 一二三四在线观看免费中文在| 精品久久久久久电影网| 久久亚洲国产成人精品v| 又黄又粗又硬又大视频| 欧美精品一区二区免费开放| 少妇精品久久久久久久| 啦啦啦中文免费视频观看日本| 天天操日日干夜夜撸| 九九爱精品视频在线观看| 免费av中文字幕在线| 欧美日韩综合久久久久久| 在线观看www视频免费| xxx大片免费视频| 日韩,欧美,国产一区二区三区| 老司机影院成人| 久久久久精品久久久久真实原创| 日韩欧美一区视频在线观看| 99久久99久久久精品蜜桃| 亚洲精品,欧美精品| 亚洲第一av免费看| 久久 成人 亚洲| 久久天躁狠狠躁夜夜2o2o | 久久久久久人妻| 国产视频首页在线观看| 欧美日韩亚洲综合一区二区三区_| 亚洲精品国产区一区二| 欧美中文综合在线视频| 精品国产一区二区三区久久久樱花| 亚洲精品在线美女| 一边亲一边摸免费视频| 狠狠精品人妻久久久久久综合| 亚洲欧洲日产国产| 久久毛片免费看一区二区三区| 亚洲欧美一区二区三区久久| 欧美精品人与动牲交sv欧美| 在线观看www视频免费| 国产成人91sexporn| 丰满饥渴人妻一区二区三| 日韩精品有码人妻一区| 国产精品国产av在线观看| 久久精品久久精品一区二区三区| 交换朋友夫妻互换小说| 国产 精品1| 七月丁香在线播放| 免费看不卡的av| 中文字幕av电影在线播放| 精品福利永久在线观看| 免费黄色在线免费观看| 久久久久视频综合| 国产亚洲精品第一综合不卡| 色视频在线一区二区三区| 狠狠婷婷综合久久久久久88av| 一级a爱视频在线免费观看| 爱豆传媒免费全集在线观看| 精品酒店卫生间| 99热全是精品|