• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The 266-nm ultraviolet-beam generation of all-fiberized super-large-mode-area narrow-linewidth nanosecond amplifier with tunable pulse width and repetition rate

    2022-03-12 07:48:10ShunLi李舜PingXueLi李平雪MinYang楊敏KeXinYu于可新YunChenZhu朱云晨XueYanDong董雪巖andChuanFeiYao姚傳飛
    Chinese Physics B 2022年3期
    關鍵詞:楊敏

    Shun Li(李舜), Ping-Xue Li(李平雪), Min Yang(楊敏), Ke-Xin Yu(于可新),Yun-Chen Zhu(朱云晨), Xue-Yan Dong(董雪巖), and Chuan-Fei Yao(姚傳飛)

    Institute of Ultrashort Pulsed Laser and Application,Faculty of Materials and Manufacturing,Beijing University of Technology,Beijing 100124,China

    Keywords: nanosecond,all-fiber amplifier,narrow-linewidth,ultraviolet beam generation,tunable pulse width and repetition rate

    1. Introduction

    Nowadays, there is an increasing need for narrowlinewidth, high average power ultraviolet (UV) laser sources for high-resolution spectroscopy, remote environmental sensing, laser-induced fluorescence, semiconductor inspection,and light detection and ranging (LIDAR) applications.[1,2]Especially, the deep-UV lasers with narrow-linewidth (<10 GHz) can improve the effect significantly for the abovementioned applications.[3,4]So far, using narrow-linewidth solid-state lasers as fundamental frequency sources for frequency conversion,has been the most popular method to produce UV lasers.[5-14]In addition,narrow-linewidth fiber lasers are also potential fundamental frequency sources, which can provide better-quality beams, improved compactness, higher stability and efficiency.[15]Furthermore, narrow-linewidth fiber lasers are easy to achieve tunable repetition frequency and pulse width,compared with solid-state lasers.

    Producing narrow-linewidth deep-UV lasers requires a fundamental frequency source with higher peak power.[16]However,the peak power of narrow-linewidth fiber lasers,related to the pulse duration of the order of ns,is relatively low for efficient frequency quadrupling. In addition, the limitation of the SBS effect is more obvious for narrow-linewidth fiber lasers.[17,18]In order to improve the peak power values of fundamental frequency sources of narrow-linewidth fiber lasers, Brooks and Teodoro used the spatially coupled photonic crystal fiber as a main power amplifier to generate an 8-GHz linewidth deep-UV laser.[3]The pulse duration was about 1 ns at 13.4 kHz, corresponding to the 265.5-nm deep-UV laser with the average power of 1.9 W. D′elenet al.[16]employed Yb:YAG single-crystal fibers reducing the SBS limitation to obtain a 35-MHz linewidth,257-nm-wavelength deep-UV laser, which was operated at 30 kHz with a pulse duration of 15 ns and average power of 3.2 W.Xuanet al.[19]presented a 2-GHz linewidth,258-nm-wavelength deep-UV beam generated by Yb:YAG single-crystal fiber amplifier with average power of 10.5 W at a pulse repetition rate of 10 kHz.Nonetheless, these methods break the all-fiber laser structure and require a large number of space components, which greatly weakens the advantages of all-fiber lasers. Furthermore,Heet al.[15]used an all-fiber amplifier as a fundamental frequency source to achieve a 2-W,274-nm-wavelength deep-UV laser with a pulse width of 1.8 ns and a repetition rate of 200 kHz. Kumaret al.[20]demonstrated a deep-UV laser with 1.8 W in power, 17 ps in pulse width, 266 nm in wavelength at a high repetition rate of 79.5 MHz generated by a mode-locked Yb-fiber laser. However,the spectral width values of the above-mentioned two lasers are 0.16 nm and 1.4 nm respectively,which reduces the spectral resolution of narrowlinewidth laser in practical applications. In the field of solarblind UV communication,the narrow-linewidth laser will further increase the communication speed due to its good time coherence. The application of narrow-linewidth lasers in the field of solar-blind UV communication will become the inevitable trend of the development of coherent communication technology in the future.For the narrow-linewidth fiber lasers,the spectral width of the fiber laser needs to be strictly controlled due to the fiber having wide gain spectrum. Therefore,it is valuable to utilize the inherent advantages of all-fiber laser, especially for its relatively simple and compact configuration to produce a narrow-linewidth (<10 GHz) deep-UV all-fiber laser.

    On the other hand, lasers with tunable pulse width and repetition frequency show excellent application advantages, which is particularly obvious around the wavelength of 1 μm[21-23]while rarely reported in deep-UV wavelength range. For example, characterized by tunable pulse width,deep-UV lasers can affect the geometric accuracy and surface quality of the submicron structures.[24]The deep-UV lasers with suitable repetition frequency will directly improve the cutting quality and processing efficiency.[25]Moreover, the deep-UV lasers with tunable pulse width have the great requirements of applications, especially, in wireless solar-blind UV communication,of which the parameters are significantly affected by pulse width, such as receiver elevation angle, receiver field-of view, and communication distance.[26]However, the pulse width can be easily stretched in the practical application of solar-blind UV communication due to the multiple-scattering interaction.[27]Therefore,the deep-UV lasers with tunable pulse width can improve the quality of communication.

    The aim of the present investigation is to integrate a compact deep-UV laser with tunable pulse width for wireless solarblind UV communication.Compared with the commonly used excimer lasers, the UV light-emitting-diodes (LEDs)[28]and UV lamps, our miniaturized narrow-linewidth deep-UV laser has huge potential applications in reducing bit error rate and improving sensitivity of UV communication. In this paper,we report on a compact,stable,all-fiberized narrow-linewidth pulsed laser source emitting laser beam with a wavelength of 266 nm. The system is based on an all-fiberized nanosecond amplifier architecture and nonlinear frequency conversion stages. The nanosecond amplifier generates 4.15-ns pulses atλ~1064 nm with average output power of 13.8 W, corresponding to the spectral bandwidth of 0.045 nm. The fourthharmonic generation (FHG) is achieved by using an 18-mm lithium triborate (LBO) crystal to generate 532-nm second harmonic (SH) with average power of 1.73 W, followed by a 7-mm beta-barium borate(BBO)crystal to generate 266-nm fourth harmonic(FH)with average power of 66 mW at a repetition rate of 100 kHz with a pulse width of 4 ns. The corresponding conversion efficiency of the SHG and the FHG are 12.5%and 3.8%,respectively.

    2. Experimental setup

    The fundamental frequency s ource, which is an allfiberized narrow-linewidth (0.045 nm) Yb-doped nanosecond laser amplifier system, was composed of a laser diode seed source, Yb-doped fiber preamplifiers and a commercial 50-μm-core Yb-doped-diameter fiber amplifier as shown in Fig. 1. A commercial distributed feedback laser diode was used as a seed source. Using the intracavity optical feedback method, the Bragg grating was distributed in the entire resonant cavity for mode selection to produce narrow-linewidth lasers. By adopting the method of high-doped, short-length and super-large-mode-area gain fibers for power amplifications, the SBS threshold could be increased and the nonlinear effects could be reduced. This is an effective method to generate high-power narrow-linewidth lasers. The basic narrow-linewidth fiber amplifier architecture followed our previous work.[29]When the pulse duration and the repetition frequency of the laser amplifier system were set to be 4 ns and 100 kHz,respectively,the laser amplifier delivered 13.8-W average power corresponding to the pulse energy of 138 μJ centered at 1064.1 nm as shown in Fig. 2. The typical spectrum(0.02-nm resolution) from the fundamental frequency source is shown in Fig. 2(a), which has a 0.045-nm (11.9 GHz) full width at half-maximum(FWHM)centered at 1064.1 nm. The self-phase modulation(SPM)effect in fiber is a nonlinear effect that is most likely to broaden the spectral line width. In addition,the wider gain spectrum in the fiber can easily lead to spectral broadening.In our experiment,we did not detect nonlinear effects, nor obvious spectral broadening due to the application of short length,highly doped and super-large-modearea gain fibers to power amplifications, which was precisely the advantage of this work. The result,show that the spectral line width of the seed source and the amplifier are 0.041 nm and 0.045 nm,respectively. This means that there was no obviously spectral broadening in an average power range from tens of mW to 13 W.Generally,there is a strong soliton effect in the negative dispersion region of the fiber,which is investigated in detail in Refs.[30-32]. However,there was found no soliton effect in our narrow-linewidth laser. This was because the wavelength of our laser is 1064 nm which is located in the positive dispersion region. Figure 2(b) displays the temporal profile of the fundamental frequency laser pulses, measured by a digital oscilloscope (LyCroy, sampling rate: 13 GHz),showing the pulse duration of 4.15 ns. The inset in Fig. 2(b)indicates the pulse sequence. The maximum output power of the fundamental frequency source is 13.8 W (see Fig. 2(c)).Figure 2(d) shows the beam qualityM2values of 2.56 (horizontal)and 3.17(vertical),measured by a laser beam analyzer(M2-200,Ophir-Spiricon). The whole laser system was composed of non-polarization maintaining fibers.

    Fig.1. Schematic diagram of narrow-linewidth nanosecond all-fiber amplifier system.

    Fig.2. (a)Optical spectrum;(b)single pulse shape at output power of 13.8 W,with inset showing pulse sequence;(c)1064-nm average power;and(d)M2 factor of fundamental frequency source.

    Figure 3 shows the optical layout of the SHG module and the FHG module from the narrow-linewidth all-fiber nanosecond laser amplifier system. We used an LBO crystal for SHG because of its excellent properties, such as high damage threshold, small walk-off angle and high nonlinear coefficient. Furthermore, the method of critical phase matching(CPM) of LBO working at room temperature, is conducive to the integration of deep-UV lasers. The crystal wasY-Zcut(θ=20.9°)withφ=90°for type-II phase-matched SHG kept at 24.5°C.The temperature of the LBO crystal was precisely controlled by a thermo electric cooler (TEC) controller with the controlling precision of±0.1°C. The crystal dimensions were 4 mm×4 mm×18 mm and the two crystal ends were both antireflection(AR)coated at wavelengths of 1064 nm and 532 nm. The collimated non-polarization maintaining pump beam passed through a combination of a quarter-wave plate(QWP), half-wave plate (HWP), and polarizing beam splitter(PBS)cube to obtain the linearly polarized laser with relatively high power. Subsequently, the second HWP was used to obtain the required polarization state for phase matching in the frequency conversion crystal. Then the spot diameter of the polarized laser was focused into 0.6 mm through a lens withf=75 mm.After the SHG inside the LBO crystal,the residual pump beam was split from the SH beam by a 1064-nm/532-nm dichroic mirror(DM)which reflected the laser of 532 nm and transmitted the laser of 1064 nm.

    Fig.3. Schematic diagram of Yb-fiber-amplifier-based narrow-linewidth nanosecond deep-UV laser. L:lens; QWP: quarter-wave plate; HWP: half-wave plate;PBS:polarizing beam splitter;and DM:dichroic mirror.

    The FHG from 532 nm to 266 nm was achieved by a BBO crystal(4 mm×4 mm×7 mm,θ=45.7°,φ=0°,type-I phasematching(o+o→e)),which is more commonly available and less hygroscopic than the other UV nonlinear crystals such as CsLiB6O10(CLBO) and KH2PO4(KDP). The crystal coated with ARs of 532 nm and 266 nm on both sides was mounted in a three-dimensional adjustment frame for optimizing the phase matching conditions. The 532-nm pump beam generated by SHG in LBO was coupled into the BBO crystal by a focusing lens withf=60 mm and an HWP for the optimization of the polarization state. After FHG inside the BBO crystal,the residual 532-nm pump beam was split from the FH beam by a DM which reflects the laser of 266 nm and transmits the laser of 532 nm. In the entire experimental device,each of the spherical mirrors caused about 5%of power loss because they were not coated with AR coatings.

    3. Experimental results and discussion

    The maximum fundamental frequency laser of 13.8 W(138 μJ)is achieved from the all-fiberized amplifier at a repetition rate of 100 kHz with a pulse width of 4 ns. Furthermore,the repetition frequency and pulse width can be continuously adjusted in a range of 5 kHz-100 kHz and from 4 ns to 8 ns,respectively. For the SHG setup,we initially perform focusing optimization of SH beam waist radius in the LBO crystal by using several lenses, L2, with radius of curvature of 25 mm,75 mm, 150 mm respectively. The results indicate that the 75-mm focusing lens shows a compromise between the beam waist radius and the frequency doubling distance in the LBO crystal, so it corresponds to a highest frequency conversion efficiency in the three focusing lenses. Figures 4(a) and 4(b)show the dependence of the SH power and the conversion efficiency on pump average power,respectively. By optimizing the angle of the LBO crystal, 1.73-W, 17-μJ SH pulses are obtained, with a corresponding conversion efficiency being 12.5%. The main reasons for the low frequency conversion efficiency are as follows: owing to the elliptical polarization characteristics, about half of the fundamental frequency laser power is lost before reaching the LBO crystal. As shown in Fig. 3, we have measured the polarization states of the fundamental frequency laser behind L1, QWP, HWP, and PBS respectively. It can be observed from the figure that the fundamental frequency laser is initially elliptically polarized light.The laser is then adjusted into a linearly polarized laser as much as possible by using a QWP. After that, the polarization direction of the fundamental frequency laser is adjusted to match the polarization direction of the laser passing through the PBS by using an HWP.It should be noted that the purpose of using a QWP is only to increase the laser power through the PBS as much as possible. If a polarization-maintaining(PM) laser is used as the fundamental frequency source, the conversion efficiency of the SHG will be further improved.In addition, the imperfectM2values of the fundamental frequency laser limit the improvement of frequency conversion efficiency. The spectrum of the SH wave centered at 532 nm is measured with an Ocean HR4000CG-UV-NIR spectrometer(resolution of 0.75 nm at 500 nm),and the results are shown in Fig.4(c). Figure 4(d)shows the pulse duration is 4.12 ns at an output power of 1.73 W.The pump intensity on LBO crystal is 4.7 MW/cm2far below the damage threshold of LBO crystal(15 GW/cm2).

    The maximal FH power generated in our experiments is 66 mW (0.66 μJ), which is achieved by using a collimated pump beam with a beam diameter of 0.9 mm and pump power of 1.73 W. The dependence of the deep-UV average power and conversion efficiency on green average power are shown in Figs.5(a)and 5(b),respectively. The maximum conversion efficiency is about 3.8%and occurs at pump power of 1.73 W.The narrow-linewidth lasers should have a high frequency conversion efficiency. However, after optimizing the parameters of the FHG experiment, including the angle of BBO crystal,focal length of lens at the position of the beam waist in the crystal, the frequency conversion efficiency is not further improved. Heet al.[15]also obtained a low conversion efficiency at the pump power of 1.7 W under the conditions similar to our experimental conditions. The conversion efficiencyηcan be obtained from the following equation:

    wherenωandn2ωare the refractive index of the fundamental frequency laser and the frequency-doubled laser in the crystal,respectively;ε0andcare the dielectric constant and the speed of light in vacuum,respectively;L,d,andSare crystal length,frequency doubling coefficient, and cross-sectional area, respectively;Pω(0)is fundamental frequency laser power. It can be seen from the above formula thatηis proportional toPω(0),d2,andL2,and inversely proportional toS. In our experiment,d2,L2, andSare difficult to further optimize whilePω(0) is the most effective way to further increase the conversion efficiency. In this work,the pump peak-power intensity on BBO crystal is only 518 kW/cm2,which is not sufficient for efficient conversion efficiency. We predict that when we use a PM laser and further increase the fundamental frequency laser power to 30 W,the frequency conversion efficiency can be improved by more than 16%. Figures 5(c)and 5(d)show the spectrum and the single pulse shape of deep-UV pulses with 66-mW average power.The deep-UV spectrum shows the center wavelength of the laser is 266 nm. The inset in Fig.5(d)indicates the pulse sequence. The small pulse peaks in the pulse waveforms in Figs.2(b),4(d),and 5(d)appear in the seed source of narrowlinewidth distributed feedback LD.The grating is made in the active area, it is easy to introduce defects, which leads to the spontaneous emission effect.[33]This is probably the reason for the small pulse peaks in the pulse waveform.

    Fig.4. (a) Green average power and (b)conversion efficiency versus pump average power. (c) Green spectrum and(d) single pulse shape at 1.73 W average power with inset indicating the pulse sequence at output power of 1.73 W.

    Finally, we obtain 25-mW and 5-mW 266-nm deep-UV laser output, corresponding to the 50-kHz repetition frequency, 4-ns pulse width and 100-kHz repetition frequency and 8-ns pulse width respectively. The obtained results are summarized in Table 1. In practical applications, the repetition frequency and pulse width of the laser can be conveniently tuned in a range of 50 kHz-100 kHz and 4 ns-8 ns,which can achieve an optimal application effect. Since there is no saturation of UV power nor conversion efficiency,next step we will use an all-fiber PM fundamental frequency source with higher output power and better beam quality to further optimize the conversion efficiency of the deep-UV laser.

    Fig.5. Plot of(a)deep-UV average power and(b)conversion efficiency versus green average power. Plot of(c)deep-UV spectrum and(d)single pulse shape at 66-mW average power,with the inset showing pulse sequence at output power of 66 mW.

    Table 1. Summary of harmonic generation results.

    4. Conclusions

    In this work,we report on a compact,stable,all-fiberized narrow-linewidth pulsed laser source emitting a laser with a wavelength of 266 nm,tunable pulse width and repetition rate.The system is based on an all-fiberized nanosecond amplifier architecture and nonlinear frequency conversion stages. Using LBO crystal and BBO crystal for the SHG and FHG, respectively,we achieve 17 μJ(1.73 W)and 0.66 μJ(66 mW),respectively,at wavelengths of 532 nm and 266 nm with a repetition rate of 100 kHz and pulse width of 4 ns. The corresponding conversion efficiency of the SHG and the FHG are 12.5%and 3.8%,respectively. We will use a higher power PM all-fiber narrow-linewidth laser amplifier and continue to optimize the conversion efficiency of the deep-UV laser in the future.

    Acknowledgements

    Project supported by the Key Program of Beijing Municipal Natural Science Foundation, China (Grant No. KZ201910005006), the National Nature Science Foundation of China (Grant No. 62005004), the Natural Science Foundation of Beijing Municipality, China (Grant No.4204091),and the National Science Foundation for Postdoctor Scientists of China(Grant No.212423).

    猜你喜歡
    楊敏
    壯鄉(xiāng)謠
    歌海(2023年1期)2023-05-30 02:19:14
    楊敏:學以致用,行以致遠
    華人時刊(2022年9期)2022-09-06 01:01:04
    時光靜淌征程長
    軍嫂(2022年5期)2022-04-29 00:44:03
    騎車記
    美文(2021年24期)2021-12-17 05:54:39
    映像畜牧業(yè)
    無心炫富有意攀比,富姐“拉仇恨”惹來殺身之禍
    伴侶(2015年10期)2015-09-10 07:22:44
    Cultural Background and English Word Teaching
    無心炫富有意攀比富姐“拉仇恨”惹來殺身之禍
    山海經(2015年16期)2015-06-01 12:24:50
    無心炫富有意攀比,富姐“拉仇恨”惹來殺身之禍
    Homogeneous and Heterogeneous Performances of Pyridinium Ionic Liquids in the Allylic Oxidation of Ionone-like Dienes*
    91老司机精品| 色哟哟哟哟哟哟| 亚洲国产毛片av蜜桃av| av有码第一页| 久久久久九九精品影院| 日韩欧美在线二视频| 国产伦一二天堂av在线观看| 黑人巨大精品欧美一区二区蜜桃| 一二三四社区在线视频社区8| 亚洲激情在线av| 国产不卡一卡二| 宅男免费午夜| 午夜免费激情av| 狂野欧美激情性xxxx| 亚洲午夜理论影院| 无遮挡黄片免费观看| 中文字幕人妻丝袜一区二区| 久久精品影院6| 亚洲狠狠婷婷综合久久图片| 亚洲一卡2卡3卡4卡5卡精品中文| 免费观看精品视频网站| 大型黄色视频在线免费观看| 99精品欧美一区二区三区四区| 久久天躁狠狠躁夜夜2o2o| 婷婷丁香在线五月| 老熟妇乱子伦视频在线观看| www.自偷自拍.com| 99精国产麻豆久久婷婷| 成年女人毛片免费观看观看9| netflix在线观看网站| 三上悠亚av全集在线观看| 国产成年人精品一区二区 | av天堂久久9| 国产精品国产高清国产av| 成人三级黄色视频| av网站免费在线观看视频| 自拍欧美九色日韩亚洲蝌蚪91| 成人精品一区二区免费| 欧美+亚洲+日韩+国产| 亚洲精品国产精品久久久不卡| 成人手机av| 欧美大码av| 精品福利观看| 亚洲,欧美精品.| 免费看十八禁软件| 人人澡人人妻人| 丰满饥渴人妻一区二区三| 91麻豆精品激情在线观看国产 | 每晚都被弄得嗷嗷叫到高潮| 88av欧美| 午夜老司机福利片| av电影中文网址| 国产三级在线视频| 亚洲欧美一区二区三区黑人| 午夜成年电影在线免费观看| 久热爱精品视频在线9| avwww免费| 最近最新中文字幕大全免费视频| 级片在线观看| 少妇粗大呻吟视频| 成在线人永久免费视频| 色综合欧美亚洲国产小说| 国产精品久久久久成人av| 亚洲精品一区av在线观看| 露出奶头的视频| 午夜老司机福利片| 午夜福利影视在线免费观看| 80岁老熟妇乱子伦牲交| 男人操女人黄网站| 亚洲午夜理论影院| 在线观看免费视频网站a站| 亚洲一码二码三码区别大吗| xxx96com| 亚洲精品中文字幕在线视频| 黄色视频,在线免费观看| 日韩一卡2卡3卡4卡2021年| 美女福利国产在线| 免费看a级黄色片| 黄色视频,在线免费观看| 最新在线观看一区二区三区| 免费日韩欧美在线观看| 欧美午夜高清在线| 最近最新中文字幕大全免费视频| 男人的好看免费观看在线视频 | 桃色一区二区三区在线观看| 伦理电影免费视频| 久久午夜综合久久蜜桃| 淫妇啪啪啪对白视频| av超薄肉色丝袜交足视频| 国产精品久久视频播放| 男女下面插进去视频免费观看| 黄片大片在线免费观看| 在线观看免费日韩欧美大片| 18禁黄网站禁片午夜丰满| 日本wwww免费看| 可以免费在线观看a视频的电影网站| 国产在线精品亚洲第一网站| 99精品在免费线老司机午夜| 手机成人av网站| 亚洲 国产 在线| 男女床上黄色一级片免费看| 免费看十八禁软件| xxx96com| 亚洲中文字幕日韩| 两个人免费观看高清视频| 精品国产乱码久久久久久男人| 亚洲欧美激情综合另类| 一区二区三区国产精品乱码| 999久久久精品免费观看国产| a级片在线免费高清观看视频| 国产精品久久久久久人妻精品电影| 中出人妻视频一区二区| 一本综合久久免费| 97碰自拍视频| 国产精品一区二区三区四区久久 | netflix在线观看网站| 黄色成人免费大全| 99久久久亚洲精品蜜臀av| 999久久久国产精品视频| 亚洲 国产 在线| 搡老岳熟女国产| 国产欧美日韩精品亚洲av| 亚洲中文av在线| 男女床上黄色一级片免费看| 久久人妻熟女aⅴ| 国产精品偷伦视频观看了| 日本vs欧美在线观看视频| 国产成人欧美在线观看| 高清在线国产一区| 一本综合久久免费| 久久中文看片网| 成人黄色视频免费在线看| 亚洲精品av麻豆狂野| 久久久久亚洲av毛片大全| 天堂中文最新版在线下载| 亚洲国产中文字幕在线视频| 精品一区二区三区视频在线观看免费 | 国产一区二区在线av高清观看| 精品久久久久久电影网| 757午夜福利合集在线观看| 两个人免费观看高清视频| 欧美乱妇无乱码| 久久久久久久久中文| 精品久久久久久,| 电影成人av| 久久热在线av| 日韩成人在线观看一区二区三区| 欧美成狂野欧美在线观看| 精品国内亚洲2022精品成人| 午夜福利欧美成人| 日韩有码中文字幕| 亚洲av五月六月丁香网| 五月开心婷婷网| 十分钟在线观看高清视频www| 一本大道久久a久久精品| 国产精品久久久人人做人人爽| 欧美成狂野欧美在线观看| 9191精品国产免费久久| 久久精品国产清高在天天线| 夜夜夜夜夜久久久久| 手机成人av网站| 天堂动漫精品| 婷婷丁香在线五月| 纯流量卡能插随身wifi吗| 日韩欧美免费精品| 多毛熟女@视频| 国产高清视频在线播放一区| 老鸭窝网址在线观看| 人人澡人人妻人| 天堂俺去俺来也www色官网| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲情色 制服丝袜| 又黄又爽又免费观看的视频| 日韩欧美一区视频在线观看| 亚洲aⅴ乱码一区二区在线播放 | 搡老乐熟女国产| 国产精品免费视频内射| 巨乳人妻的诱惑在线观看| 丝袜美腿诱惑在线| 极品人妻少妇av视频| 韩国av一区二区三区四区| 亚洲五月色婷婷综合| 欧美黑人精品巨大| 一夜夜www| 老司机午夜十八禁免费视频| 成人精品一区二区免费| 99国产极品粉嫩在线观看| 亚洲男人天堂网一区| 一区二区三区精品91| aaaaa片日本免费| 精品国产乱子伦一区二区三区| 国产伦一二天堂av在线观看| 亚洲 欧美 日韩 在线 免费| 亚洲成人国产一区在线观看| 国产成人影院久久av| 亚洲精品国产一区二区精华液| 无限看片的www在线观看| 精品国产亚洲在线| 男女午夜视频在线观看| 日韩精品免费视频一区二区三区| 国产欧美日韩精品亚洲av| 亚洲精品中文字幕一二三四区| 久久午夜亚洲精品久久| 婷婷丁香在线五月| 高清在线国产一区| 亚洲欧美一区二区三区久久| 丰满饥渴人妻一区二区三| av视频免费观看在线观看| 男女下面插进去视频免费观看| 最近最新中文字幕大全免费视频| www国产在线视频色| 久久热在线av| 三上悠亚av全集在线观看| 亚洲熟妇熟女久久| 国产精品偷伦视频观看了| 亚洲欧美精品综合久久99| 不卡av一区二区三区| 男女午夜视频在线观看| 国产精品av久久久久免费| 视频区图区小说| 99久久99久久久精品蜜桃| 超碰97精品在线观看| 久久国产乱子伦精品免费另类| 国产三级黄色录像| 波多野结衣一区麻豆| 亚洲色图综合在线观看| 婷婷精品国产亚洲av在线| 久久精品人人爽人人爽视色| 性少妇av在线| 亚洲av片天天在线观看| 不卡一级毛片| 亚洲成av片中文字幕在线观看| 中国美女看黄片| 欧美日韩亚洲国产一区二区在线观看| 淫妇啪啪啪对白视频| av免费在线观看网站| 国产xxxxx性猛交| 琪琪午夜伦伦电影理论片6080| 久久精品亚洲av国产电影网| svipshipincom国产片| 精品卡一卡二卡四卡免费| 国产男靠女视频免费网站| 久久久久久久午夜电影 | 美女国产高潮福利片在线看| 激情视频va一区二区三区| 国产主播在线观看一区二区| 国产精品 国内视频| 国产片内射在线| 亚洲国产精品合色在线| 一区二区日韩欧美中文字幕| 十八禁人妻一区二区| av国产精品久久久久影院| 天天躁夜夜躁狠狠躁躁| 亚洲精品美女久久久久99蜜臀| 国产有黄有色有爽视频| 久久久久久久午夜电影 | 国产精品久久久久成人av| 精品国产美女av久久久久小说| 青草久久国产| 91九色精品人成在线观看| 国产成人系列免费观看| 又大又爽又粗| 欧美久久黑人一区二区| 成人国产一区最新在线观看| 国产有黄有色有爽视频| 9色porny在线观看| 亚洲美女黄片视频| 在线观看免费日韩欧美大片| 免费在线观看视频国产中文字幕亚洲| 欧美黑人欧美精品刺激| 美女 人体艺术 gogo| 搡老熟女国产l中国老女人| 国产真人三级小视频在线观看| 欧美精品一区二区免费开放| 色播在线永久视频| 久久精品国产亚洲av香蕉五月| 午夜精品久久久久久毛片777| 99国产精品一区二区三区| a级片在线免费高清观看视频| 久久久久国内视频| 日日爽夜夜爽网站| 波多野结衣av一区二区av| 免费搜索国产男女视频| 91老司机精品| 丁香欧美五月| 黄片大片在线免费观看| 国产亚洲精品综合一区在线观看 | 欧美激情高清一区二区三区| 精品午夜福利视频在线观看一区| 精品国产亚洲在线| 成在线人永久免费视频| www国产在线视频色| 亚洲 欧美 日韩 在线 免费| 在线天堂中文资源库| 99香蕉大伊视频| 精品卡一卡二卡四卡免费| 99久久人妻综合| 亚洲精品中文字幕一二三四区| 欧美大码av| 最好的美女福利视频网| 亚洲性夜色夜夜综合| 午夜成年电影在线免费观看| 久久欧美精品欧美久久欧美| 日韩人妻精品一区2区三区| 久久久久久久久免费视频了| 亚洲国产精品999在线| 久久九九热精品免费| 中文字幕精品免费在线观看视频| 麻豆久久精品国产亚洲av | 亚洲精品久久午夜乱码| 一进一出抽搐gif免费好疼 | 中文字幕av电影在线播放| 一级a爱片免费观看的视频| 亚洲精品国产精品久久久不卡| av片东京热男人的天堂| 91精品国产国语对白视频| 色老头精品视频在线观看| 亚洲成人国产一区在线观看| 一区二区三区精品91| 9191精品国产免费久久| 日韩精品免费视频一区二区三区| 高清黄色对白视频在线免费看| 夫妻午夜视频| 欧美+亚洲+日韩+国产| 久久精品91无色码中文字幕| 日日摸夜夜添夜夜添小说| 啦啦啦免费观看视频1| 中文欧美无线码| 高潮久久久久久久久久久不卡| 日韩成人在线观看一区二区三区| 一级片免费观看大全| 天堂影院成人在线观看| 久久人人97超碰香蕉20202| 免费搜索国产男女视频| 人妻丰满熟妇av一区二区三区| 日韩精品青青久久久久久| 欧美日韩中文字幕国产精品一区二区三区 | 欧美 亚洲 国产 日韩一| 国产又色又爽无遮挡免费看| 成在线人永久免费视频| 操美女的视频在线观看| 亚洲午夜理论影院| 国产精品久久久av美女十八| 国产色视频综合| 好看av亚洲va欧美ⅴa在| 一进一出好大好爽视频| 久久影院123| 亚洲激情在线av| 国产片内射在线| 黄色女人牲交| 国产高清国产精品国产三级| av视频免费观看在线观看| 多毛熟女@视频| 亚洲国产毛片av蜜桃av| 久久久国产一区二区| 国产又爽黄色视频| 成熟少妇高潮喷水视频| 欧美黑人精品巨大| 欧美大码av| 18禁国产床啪视频网站| 我的亚洲天堂| 黄色视频不卡| 热re99久久国产66热| 亚洲av日韩精品久久久久久密| 国产成人免费无遮挡视频| 亚洲熟妇中文字幕五十中出 | 欧美日韩亚洲综合一区二区三区_| 成人精品一区二区免费| 久久中文字幕人妻熟女| 色婷婷久久久亚洲欧美| 人成视频在线观看免费观看| 亚洲精品成人av观看孕妇| 日韩高清综合在线| 不卡一级毛片| 国产国语露脸激情在线看| 国产高清视频在线播放一区| 三级毛片av免费| 乱人伦中国视频| 97超级碰碰碰精品色视频在线观看| 免费看a级黄色片| 老司机午夜十八禁免费视频| 国产精品久久久av美女十八| 日韩欧美在线二视频| 少妇被粗大的猛进出69影院| 精品久久久久久久久久免费视频 | 久久伊人香网站| 久久精品aⅴ一区二区三区四区| 国产精品 欧美亚洲| 精品一品国产午夜福利视频| 制服人妻中文乱码| 中文字幕人妻丝袜一区二区| 免费在线观看日本一区| 亚洲精品国产精品久久久不卡| 91精品国产国语对白视频| 90打野战视频偷拍视频| 高清欧美精品videossex| 51午夜福利影视在线观看| 欧美 亚洲 国产 日韩一| 国产成人精品久久二区二区91| 女性被躁到高潮视频| 亚洲一码二码三码区别大吗| 亚洲欧美日韩另类电影网站| 男人操女人黄网站| 97碰自拍视频| 久久久久国产一级毛片高清牌| 一级a爱片免费观看的视频| 成人亚洲精品av一区二区 | 国产1区2区3区精品| 亚洲av电影在线进入| 日韩免费高清中文字幕av| 欧美日韩乱码在线| 亚洲欧美精品综合一区二区三区| 中文欧美无线码| 欧美一区二区精品小视频在线| 黄色片一级片一级黄色片| 99久久人妻综合| 精品国产超薄肉色丝袜足j| 精品国产超薄肉色丝袜足j| 两性夫妻黄色片| 麻豆久久精品国产亚洲av | 在线观看66精品国产| 久久精品成人免费网站| 欧美日韩黄片免| bbb黄色大片| 国产熟女午夜一区二区三区| 大型黄色视频在线免费观看| 两人在一起打扑克的视频| 日本欧美视频一区| 高清在线国产一区| 久久中文看片网| 成人18禁高潮啪啪吃奶动态图| 91精品三级在线观看| 黄色毛片三级朝国网站| 日本免费a在线| 99国产精品一区二区三区| 免费人成视频x8x8入口观看| 亚洲欧美一区二区三区久久| 在线天堂中文资源库| 午夜精品在线福利| 免费久久久久久久精品成人欧美视频| 精品久久久久久久久久免费视频 | 国产精品1区2区在线观看.| 天堂动漫精品| 国产精品永久免费网站| 91字幕亚洲| 欧美成人性av电影在线观看| 丰满人妻熟妇乱又伦精品不卡| 国产精品综合久久久久久久免费 | 亚洲成人久久性| 日日干狠狠操夜夜爽| 50天的宝宝边吃奶边哭怎么回事| 日韩精品免费视频一区二区三区| 免费在线观看亚洲国产| 999久久久精品免费观看国产| 亚洲一区二区三区欧美精品| 精品久久久精品久久久| 国产午夜精品久久久久久| 久久久久国产一级毛片高清牌| 亚洲专区国产一区二区| 久久久水蜜桃国产精品网| 国产欧美日韩综合在线一区二区| 中文字幕精品免费在线观看视频| 一a级毛片在线观看| a在线观看视频网站| 人妻丰满熟妇av一区二区三区| 国产又爽黄色视频| 亚洲成国产人片在线观看| 亚洲国产精品sss在线观看 | 亚洲av成人一区二区三| 十八禁网站免费在线| 9色porny在线观看| 99热只有精品国产| 国产片内射在线| 男女下面进入的视频免费午夜 | 亚洲自拍偷在线| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美日韩黄片免| 欧美精品一区二区免费开放| 超碰97精品在线观看| 午夜免费激情av| 国产精品98久久久久久宅男小说| 天堂中文最新版在线下载| 91九色精品人成在线观看| 亚洲狠狠婷婷综合久久图片| 窝窝影院91人妻| 一二三四社区在线视频社区8| 成熟少妇高潮喷水视频| 在线观看一区二区三区激情| 欧美丝袜亚洲另类 | 午夜精品国产一区二区电影| av网站免费在线观看视频| 韩国av一区二区三区四区| 久久香蕉国产精品| 免费观看精品视频网站| 日本精品一区二区三区蜜桃| 国产精品永久免费网站| 日韩欧美一区视频在线观看| 一级片'在线观看视频| 国产真人三级小视频在线观看| 国产精品亚洲av一区麻豆| 老熟妇仑乱视频hdxx| 两性夫妻黄色片| 国产99白浆流出| tocl精华| 亚洲国产欧美日韩在线播放| 久久亚洲真实| 一二三四在线观看免费中文在| 啪啪无遮挡十八禁网站| 老熟妇乱子伦视频在线观看| 最近最新中文字幕大全免费视频| 欧美性长视频在线观看| а√天堂www在线а√下载| 欧美性长视频在线观看| 亚洲aⅴ乱码一区二区在线播放 | 亚洲一区高清亚洲精品| 日韩欧美三级三区| 国产亚洲精品综合一区在线观看 | 999久久久国产精品视频| 久久久国产一区二区| 天堂√8在线中文| 色婷婷久久久亚洲欧美| 亚洲一卡2卡3卡4卡5卡精品中文| 日韩 欧美 亚洲 中文字幕| 两个人看的免费小视频| 黄色视频,在线免费观看| 亚洲精品成人av观看孕妇| 精品一区二区三区四区五区乱码| 国产蜜桃级精品一区二区三区| 中文字幕高清在线视频| 啪啪无遮挡十八禁网站| 欧美+亚洲+日韩+国产| 色尼玛亚洲综合影院| 国产一区二区激情短视频| 欧美日韩av久久| 久9热在线精品视频| 美女午夜性视频免费| 脱女人内裤的视频| 交换朋友夫妻互换小说| 国产高清视频在线播放一区| 亚洲avbb在线观看| 国产一区二区在线av高清观看| 岛国在线观看网站| 国产精品美女特级片免费视频播放器 | 国产无遮挡羞羞视频在线观看| 亚洲欧美一区二区三区黑人| netflix在线观看网站| 嫩草影院精品99| 亚洲av成人一区二区三| 亚洲av日韩精品久久久久久密| 亚洲av片天天在线观看| av在线天堂中文字幕 | 伦理电影免费视频| 在线观看免费视频网站a站| 夫妻午夜视频| 午夜福利,免费看| 看免费av毛片| 亚洲成av片中文字幕在线观看| 丁香六月欧美| 视频区欧美日本亚洲| 久久久久久久久中文| 女生性感内裤真人,穿戴方法视频| 中文字幕精品免费在线观看视频| 中文欧美无线码| 国产真人三级小视频在线观看| 丁香六月欧美| 免费看十八禁软件| 精品久久久久久,| 免费在线观看日本一区| 久久久久久久久久久久大奶| 99国产极品粉嫩在线观看| 91大片在线观看| 极品教师在线免费播放| 色哟哟哟哟哟哟| 国产激情久久老熟女| 露出奶头的视频| 久久精品91蜜桃| 狂野欧美激情性xxxx| 亚洲精品粉嫩美女一区| 亚洲五月色婷婷综合| 成人黄色视频免费在线看| 国产成人系列免费观看| 久久青草综合色| 亚洲精华国产精华精| 欧美日本亚洲视频在线播放| 9色porny在线观看| 69av精品久久久久久| 伊人久久大香线蕉亚洲五| 久久影院123| 亚洲七黄色美女视频| 精品电影一区二区在线| 久久午夜综合久久蜜桃| 最近最新中文字幕大全免费视频| 成人国产一区最新在线观看| 精品第一国产精品| 满18在线观看网站| www.自偷自拍.com| 久久影院123| 亚洲av熟女| 久久人人97超碰香蕉20202| 最新美女视频免费是黄的| 亚洲国产精品一区二区三区在线| www.自偷自拍.com| 精品一区二区三区av网在线观看| 国产成人精品久久二区二区91| 神马国产精品三级电影在线观看 | 久久中文字幕一级| 国产精品综合久久久久久久免费 | 9191精品国产免费久久| 后天国语完整版免费观看| 国产av一区二区精品久久| 成人永久免费在线观看视频| 久99久视频精品免费| 久久精品aⅴ一区二区三区四区| 亚洲一区二区三区不卡视频| 69精品国产乱码久久久|