• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Inferring interactions of time-delayed dynamic networks by random state variable resetting

    2022-03-12 07:47:44ChangbaoDeng鄧長寶WeinuoJiang蔣未諾andShihongWang王世紅
    Chinese Physics B 2022年3期

    Changbao Deng(鄧長寶), Weinuo Jiang(蔣未諾), and Shihong Wang(王世紅)

    School of Sciences,Beijing University of Posts and Telecommunications,Beijing 100876,China

    Keywords: time delays,network reconstruction,random state variable resetting

    1. Introduction

    Complex dynamic networks are used to model interacting individuals in interdisciplinary research.[1-6]Due to the limited propagation speed of signals, time delays play a significant role and exist extensively in real systems.[7-11]Detecting the interactions in networks is helpful for understanding the collective behaviors of complex systems. However,due to systematic nonlinearity,noises,a lack of information,time delays,and so on,inferring the interactions in dynamic networks is complicated and challenging.Some methods have been proposed for inferring the interactions without time delays. Typical statistical methods,such as cross correlation,[12]Granger causality,[13]mutual information,[14]and transfer entropy,[15]are usually used to define functional connections, which provide limited information for interacting nodes.In recent years,researchers have explored approaches to inferring the interactions by solving ordinary differential equations (ODEs).Some detection methods can be used to reconstruct a linear dynamic network,[16-19]while expanding basis[20-24]and expanding variable[25,26]methods are proposed to detect a general nonlinear dynamic network. These methods not only reveal connections, but also provide information on local dynamics and coupling functions.For these methods,[20-26]solving ODEs requires the output data of the whole network. The existence of noises increases the difficulty of network reconstruction, sometimes, also leading to new approaches.[27,28]In Refs. [27,28], the injection of noise into the nodes enhances the target interaction and weakens the effect of hidden nodes and variables. In addition, there are some proactive methods, such as driving-response controlling,[3]copysynchronization,[3]and random phase resetting.[29]

    For time-delayed dynamic networks, accurately identifying delays is the prerequisite for network reconstruction. There are several existing methods for identification of time delays, such as parameter estimation,[30]adaptive synchronization,[31,32]model-fitting approaches,[30,31]perturbation methods,[32,33]the permutation-information-theory approach,[34]and cross map evaluation.[35]However,most of these methods are appropriate in a single dynamic system. In a dynamic network, a large number of time-delayed interactions make network reconstruction extremely difficult. Recently, Zhanget al.proposed a new method to detect time delays and the average coupling strengths through the correlations induced by fast-varying noises(here called FVN).[36]

    The random state variable resetting(RSVR)[37,38]method proposed by Shiet al.,as an active control method,can be used to detect the interactions in dynamical networks. By randomly resetting the state variable of a driving node, the influence of other nodes and variables on a response node can be simplified as background average and fluctuations, and then the equivalent coupling function of a driving node to a response node can be reconstructed using only the data of two related nodes.In this paper, we introduce the RSVR method to reconstruct time-delayed dynamic networks. Based on the output data after randomly resetting, we define the nearest neighbor correlation (NNC) function for a given time delay. According to the increment of the defined NNC at the actual time delay,we can identify the time delay accurately.The error of determined time delays only depends on the sampling time interval. Compared with the FVN method,[36]the NNC function defined through RSVR is effective even for a relatively low sampling frequency. After the time delay is determined, the equivalent directed time-delayed coupling function can be reconstructed from measurable data. By arbitrarily resetting the variable of a driving node, the RSVR method can infer the time delays and equivalent directed time-delayed coupling functions of the driving node to the other response nodes. In actual networks,some nodes and variables are not measurable.This reconstruction method is applicable to networks with hidden nodes and variables.

    2. Method

    To determine the time delay of nodejto nodeiin Eq.(1),we first define the nearest neighbor correlation (NNC) function with the time delayτas

    3. Simulation results

    3.1. Time-delayed coupled Lorenz networks

    First, consider a time-delayed coupled Lorenz network[39]

    We assume that variablexiis measurable and variablesyiandziare unmeasurable. We randomly reset variablex1distributed uniformly within [-20,20] and acquire the data Eq.(4).Resetting time intervalsτresetare uniformly distributed in[1,2]. Our task is to use these data to infer the time delaysτi1and coupling coefficientsWi1. Selectingi=5,τ51=0.308 is the time delay of node 1 to node 5,andW51=0.944 is the coupling coefficient of node 1 to node 5. Given a sampling interval Δt=0.006,thenτ51=51.33Δt,and thus the discrete delayn51=51. Choosingτ=nΔt, we calculate ˙xi(tm+τ)from measured data by the forward difference ˙xi(tm+τ) =[xi(tm+τ+Δt)-xi(tm+τ)]/Δt. Then we smooth these results via Eq.(9)withM=5×105andd=0.4. The smoothing curves of ˙x5(x1,τ)whenτ=0,0.300(50Δt),0.306(51Δt),0.312(52Δt)are plotted in Figs.1(a)-1(d). In Fig.1(a)(τ=0)and Fig.1(b)(τ=50Δt), the smoothed data display randomness, i.e., no dependence. In fact, whenτranges from 0 to 50Δt,node 5 has not been affected by node 1 due to the time delay; ˙x5(x1,τ)maintains such randomness. Whenτ=51Δt(Fig. 1(c))and 52Δt(Fig.1(d)), the smoothed data display a linear dependence.In Fig.1(c),the graph representsτ=51Δt,you may observe the calculated ˙x5(x1,τ)has already been affected by the reset variablex1. The reason for that is because we are using forward difference. Thus,the affection looks like happen before the real time delayτ51=51.33Δt.

    Fig.1. Simulation results of Eq.(22)with linear diffusion coupling functions hij(xi(t),x j(t-τij))=Wij(xj(t-τij)-xi(t)). Data volume M=5×105 and sampling interval Δt =0.006. The actual time delay of node 1 to node 5 τ51=0.308,τ51=51.33Δt,and the discrete time delay n51=51. Left: Smoothing curves ˙x5(x1,τ)for (a) τ =0, (b) τ =0.300 (50Δt), (c) τ =0.306 (51Δt), (d) τ =0.312 (52Δt)vs. the state variable x1. The curves have no dependence on x1 (a), (b) and a linear dependence (c), (d). Right: (e) Dependence of NNC51 on discrete time delay n. The dashed line marks the actual time delay τ51/Δt =51.33. (f) Dependence of NNC41 on n. (g) Reconstructed discrete delays ?ni1 plotted against the actual discrete delays ni1. (h) Reconstructed coupling ?Wi1 plotted against the actual Wi1. (i)Reconstructed ?nij plotted against the actual nij. (j)Reconstructed ?Wij plotted against the actual Wi j.

    We calculate NNC51(n)via Eq.(13),wheren=/Δt」,and the results (circles) are shown in Fig. 1(e). In Fig. 1(e),the dashed line marks the actual time delayτ51/Δt=51.33,which is located between the first non-zero point (n= 51)and the second non-zero point (n= 52). We can observe that NNC51(50)=0, and NNC51(51) and NNC51(52) have a significant increment. The increments originate from the effect of the delay and the forward difference calculation of ˙x5(tm+τ). Here we choose the larger of the two non-zero values,i.e., ?n51=52 as the reconstructed discrete delay. Ifτij/Δtis not an integer,the maximal error of reconstructed time delay ?τi j= ?ni jΔtis a sampling interval, where ?ni jis the numerical discrete delay of nodejto nodei. For comparison,we select node 4 and calculate NNC41(n),and the results are presented in Fig. 1(f). Due to no link of node 1 to node 4, the values of NNC41(n)are near to zero and there is no significant increment point. Comparing Fig.1(e)with Fig. 1(f), we conclude that we can determine time delays by random variable resetting via Eq.(13).

    In Fig. 1(g), we plot the curve of numerical ?ni1against the actualni1. The results show that the numerical ?ni1values are consistent with the actual values. After determining the time delays, we can select suitable basesL=[1,x1]Taccording to the linear dependence shown in Fig.1(d),and then coefficientsAi1,1of variablex1are used as estimates of the coupling coefficients ?Wi1, which also show good agreement with the actual coupling coefficientsWi1as in Fig.1(h). Then we randomly selected 20 nodes in the network to reset, and the inferred time delays ?ni jand coupling coefficients ?Wijof these 20 nodes to all nodes are shown against the actual valuesnijandWi jin Figs. 1(i) and 1(j). We can observe that the numerical ?nijvalues are consistent with the actual valuesni j,but there is some deviation in the numerical coupling coefficients ?Wij. Because of discrete time sampling,the error of detected time delays depends on the sampling interval Δt. The error of detected time delays can cause deviations of interactions and the deviations further make reconstructed coupling coefficients decrease or increase. Therefore,the deviations of determined coupling coefficients depend on specific coupling functions,state variables,and the error of time delays.

    We will discuss how the number of resetsMand the sampling interval Δtaffect the reconstruction results. We use the root-mean-square errorsEτandEWto evaluate the reconstruction results ?τijand ?Wi j,

    Figure 2 represents the errors of the calculated time delaysEτ(Fig.2(a))and the calculated coupling coefficientsEW(Fig.2(b)).In Fig.2(a),due to the influence of fluctuationsrij,the errors of time delaysEτare greater for a relatively small number of resetsM. AsMincreases,the reconstruction errorEτreduces until it reaches saturation,which depends on sampling interval Δt. This is because when the amount of data is large enough,the errors of time delays are determined by sampling interval Δtand the maximum deviation of a time delay is less than Δt.In Fig.2(b),we can observe that,as the amount of data increases, the errors of the coupling coefficient decrease until a saturation state is reached. The errors of coupling coefficients mainly originate from sampling interval Δt,thus,to reduce the errors of coupling coefficients,decreasing sampling interval Δtis more effective than increasing the amount of dataM.

    In Eq.(22),nonlinear interactions,hi j(xi(t),xj(t-τij))=Wijx2j(t-τij),are considered and the numerical results are represented in Fig. 3. To avoid system divergence, we decrease the coupling coefficientsWi jand they are reduced to one tenth of the original values. We plot the curve of ˙x5(x1,τ) againstx1shown in Fig. 3(a), whileτ=52Δt. NNC51(n) are calculated by using Eq.(13)and the results are shown in Fig.3(b).Figure 3(b)is similar to Fig.1(e),and we can observe that the actual time delayτ51/Δt=51.33 is smaller than the second non-zero point and greater than the first non-zero point. We select the second non-zero point as the numerical discrete delay,i.e., ?n51=52. Similarly,after determining the time delayτij,we select basisL=[1,x2j]Tand solve the coupling coefficient ?Wij.The curves of Figs.3(c)and 3(d)are similar to those of Figs.1(i)and 1(j).

    Fig.2. The root-mean-square error Eτ of reconstruction time delays and the root-mean-square error EW of coupling coefficients are shown in(a)and(b),respectively. (a) Dependence of Eτ on M for Δt =0.002,0.006,0.010, and 0.020. (b)Dependence of EW on M.

    Fig. 3. Simulation results of Eq. (22) with nonlinear coupling functions hij(xj(t-τij),xi(t))=Wijx2j(t-τij). M =5×105 and Δt =0.006,τ51 =0.308. (a) Smoothing curves of ˙x5(x1,τ) plotted against x1 at τ =0.312 (52Δt). (b) Dependence of NNC51 on n. The dashed line marks the actual time delay τ51/Δt=51.33.(c)Numerical ?ni j plotted against the actual nij. (d)Numerical ?Wij plotted against the actual Wij.

    3.2. Time-delayed Hodgkin-Huxley neural network

    We consider time-delayed Hodgkin-Huxley[40]neural network dynamics,

    where the coupling coefficientsWijare uniformly distributed in [0.04,0.2] and [-0.2,-0.04] for excitatory and inhibitory synapses, respectively, andWij=0 for no links. The ratio of excitatory synapses to inhibitory synapses is 4:1. The time delaysτijare uniformly distributed in [0,1.0]. The structure of this network is exactly the same as that of Eq. (22). The parametersVrev=110 mV,Vth=100 mV,andσ=0.01. Gate variablesmi,hi,niare expressed by

    Without loss of generality, we arbitrarily reinitialize the membrane potential of node 1,V1∈[-30,110] withτreset∈[30,40].We set the sampling interval Δt=0.008 and the number of resetsM=105. In Fig.4(a), we plot the curves of the smoothed ˙V5(V1,τ) withτ=0.616 (77Δt). The actual time delay of node 1 to node 5τ51=0.6161 (77.0125Δt). When and only when variableV1exceedsVth=100 mV,neuron 1 has a significant effect on the postsynaptic neuron 5. Similar to as in Fig.3(b),we plot the curves of NNC51(n). The dashed line marks the actual time delayτ51/Δt=77.0125, which is near to the first non-zero point(?n51=77). By resetting every node,we infer all discrete delays ?ni jand the results are shown in Fig.4(c).We can see that the reconstructed time delays display satisfactory results. Selecting[1,1/(1+e-(Vj-Vth)/σ)]Tas the basis, estimated coupling coefficients of 1/(1+e-(Vj-Vth)/σ)are ?W′ij=WijCm,i〈Vrev-Vi〉, with ?Wi j= ?W′i j/(Cm,i〈Vrev-Vi〉)as the estimates of actualWi j. The results are represented in Fig.4(d). Similar to as in Fig.3(d),the numerical coefficients also have deviation.

    Fig. 4. Simulation results of a time-delayed Hodgkin-Huxley neural network. Set sampling interval Δt =0.008 and the reset number M =105.The actual time delay of node 1 to node 5 τ51 =0.6161 (77.0125Δt). (a)˙V5(V1,τ)plotted against V1 at τ=0.616(77Δt).(b)NNC51 plotted against n. The dashed line marks the actual time delay τ51/Δt =77.0125. (c)Numerical ?nij plotted against the actual nij. (d)Numerical ?Wij plotted against the actual Wij.

    4. Discussion

    We can detect the equivalent coupling functions of timedelayed dynamic networks by the random state variable resetting method. To determine the time delayτijof nodejto nodei, we define the nearest neighbor correlation function NNCij(τ),and calculate NNCij(τ)from measurable data,

    whereτ=nΔt,n=0,1,2,...,nmax.Based on the increment of NNCij(τ)at the actual time delay,we can well determine the time delayτij.The error of the reconstructed time delay is less than a sampling interval. After the time delay is determined,the equivalent coupling function can further be reconstructed from measurable data. This method can acquire all the time delays and all the equivalent coupling functions of the entire network by arbitrarily resetting the state variables of all the nodes in the network. Because the reconstruction of any timedelayed interaction in the network can be achieved only with the data of two related nodes,this method is applicable to networks with hidden variables and nodes.

    In Ref. [36], Zhanget al.proposed a method to detect time delays through fast-varying noises (FVN). Ideal fastvarying noises are white noises. Under the condition of discrete sampling,to infer the time delayτijof nodejto nodei,we define a correlation function[36]

    represents the average coupling strength of nodejto nodeiandQjis the intensity of the white noise injected to nodej. In Eq.(27),the contribution of other factors can be simplified as the second termHij(n)Δt.

    In Eq.(27), we can observe, if Δt →0,Rij(n)is discontinuous atn=nijandn=nij-1. Based on this discontinuity,we can determine the time delayτij=nijΔt. Furthermore,Jijcan be estimated via ?Jij=[Δij(nij)+Δij(nij+1)]/Qj,whereQjis calculated through ?Qj=〈˙xj(t)xj(t+Δt)〉-〈˙xj(t)xj(t)〉.

    We utilize the FVN method to analyze Eq. (22) with a linearly coupled Lorenz network. The results are illustrated in Figs. 5(a)-5(c), where the actual time delayτ51=0.308.We calculateR51(n) for Δt=0.002 (Fig. 5(a)), Δt=0.010(Fig. 5(b)) and Δt=0.020 (Fig. 5(c)). We can observe that in Fig.5(a), there exist significant increments atn=153 andn=154. However,as we increase Δtto 0.010 and 0.020,this method fails. The reconstructed results using our method are represented in Figs.5(d)(Δt=0.002),5(e)(Δt=0.010),and 5(f) (Δt=0.020). It can be seen that our method can accurately identify the time delay even when the sampling interval is relatively large.

    We further calculate the time delays and coupling strengths by using the FVN method and our method (RSVR). The numerical discrete delays ?ni1and coupling strengths ?Wi1for sampling interval Δt=0.002 are illustrated in Figs.6(a)and 6(b).We can see the numerical time delays for the two reconstruction methods display satisfactory results and the numerical coupling strengths have some deviations. Comparing with Fig.1(j)(Δt=0.006),since sampling interval Δt=0.002 has decreased,the deviations clearly decrease.

    Fig.5. Comparison of our method and the FVN method[36] for the example of a linearly coupled Lorenz network as in Eq.(22). All the dashed lines represent the actual time delay nij,τij =nijΔt. (a)Δt=0.002 and the amount of data Ndata=109. (b)Δt=0.010 and Ndata=2×108. (c)Δt=0.010 and Ndata=108. (d)Δt=0.002. (e)Δt=0.010. (f)Δt=0.020. The number of resets M=5×104 in(d)-(f).

    Fig.6. The numerical discrete delays ?ni1 and coupling coefficients ?Wi1 for the FVN method and our method(RSVR).Δt =0.002. (a)The numerical ?ni1 plotted against the actual ni1. (b)The numerical ?Wi1 plotted against the actual Wi1.

    Both our method and the FVN[36]method can reconstruct time-delayed interactions of dynamic networks with noises,hidden variables and nodes. For these two methods,detection of the interaction between two nodes only needs the output of these two nodes, so network sizes and structures do not affect the calculated results significantly. Only average coupling strength can be inferred through the FVN method,[36]while our method can reconstruct the equivalent coupling function no matter whether it is linear as in Fig.1(d)or nonlinear as in Figs. 3(a) and 4(a). Moreover, our method has better robustness for sampling intervals.

    Finally, we consider weak couplings. For a very weak coupling, ifWij →0, the equivalent coupling functionh′ij(xj,τij)→0 and ~hi j(xj,τ)→0 (Eq. (16)). According to Eq.(17),NNCij(τij)→0,and we cannot observe a significant increment for NNCij(τij).Thus we cannot identify actual time delayτij,and thenWijis also not available.

    5. Conclusion

    In this paper,we introduced a random state variable resetting method to detect the coupling functions of time-delayed dynamic networks. The nearest neighbor correlation function has been defined and calculated for measurable data by arbitrarily resetting the variable ofj. The time delay of nodejto nodeican be determined by utilizing the increment of the nearest neighbor correlation at the actual time delay. The error of a reconstructed time delay only depends on the sampling interval. Our proposed method has satisfactory reconstruction results for time delays even if the sampling interval is relatively large. Based on the determined time delays, the equivalent coupling functions can be estimated. Simulation results demonstrated that the random state variable resetting method and the nearest neighbor correlation function proposed can be used to detect the interactions of time-delayed dynamic networks.

    国产乱人偷精品视频| 麻豆国产av国片精品| 99热网站在线观看| 又粗又硬又长又爽又黄的视频 | 亚州av有码| 一夜夜www| 国产精品女同一区二区软件| 一区二区三区免费毛片| 免费看日本二区| 美女被艹到高潮喷水动态| 国产av麻豆久久久久久久| 国产色婷婷99| 久久久久久久久久成人| 久久热精品热| 精品久久久久久久久av| 99在线视频只有这里精品首页| 亚洲国产精品久久男人天堂| 久久久久久久久久久免费av| 天天躁夜夜躁狠狠久久av| 国产精品,欧美在线| 一个人免费在线观看电影| 国产黄色视频一区二区在线观看 | 国语自产精品视频在线第100页| 欧美日本亚洲视频在线播放| 欧美一区二区亚洲| 麻豆av噜噜一区二区三区| 国产精品电影一区二区三区| 12—13女人毛片做爰片一| 男人舔女人下体高潮全视频| 日韩成人av中文字幕在线观看| 人妻少妇偷人精品九色| a级一级毛片免费在线观看| 欧美变态另类bdsm刘玥| 此物有八面人人有两片| 我要看日韩黄色一级片| av黄色大香蕉| 久久久久免费精品人妻一区二区| 国产三级在线视频| 超碰av人人做人人爽久久| 日韩 亚洲 欧美在线| 亚洲在线自拍视频| 国产精品一区二区性色av| 99热网站在线观看| 毛片女人毛片| 日韩视频在线欧美| 欧美精品一区二区大全| 欧美一区二区国产精品久久精品| 热99re8久久精品国产| 国产视频首页在线观看| 国产黄色视频一区二区在线观看 | 亚洲电影在线观看av| 亚洲美女视频黄频| 一级毛片我不卡| 亚洲精品乱码久久久v下载方式| 国产探花极品一区二区| 少妇被粗大猛烈的视频| 99久久无色码亚洲精品果冻| 亚洲第一电影网av| 中文亚洲av片在线观看爽| 国产蜜桃级精品一区二区三区| 欧美zozozo另类| 久久久国产成人精品二区| 国产亚洲精品av在线| 又粗又爽又猛毛片免费看| 国产精品人妻久久久影院| 最后的刺客免费高清国语| 99久久成人亚洲精品观看| 国产精品一区二区在线观看99 | 国产高清不卡午夜福利| 国产亚洲91精品色在线| 麻豆精品久久久久久蜜桃| 久久久欧美国产精品| 亚洲激情五月婷婷啪啪| 在线观看美女被高潮喷水网站| 国产精品一二三区在线看| 国产精品不卡视频一区二区| 欧美bdsm另类| 男插女下体视频免费在线播放| 国产 一区 欧美 日韩| 国产亚洲精品久久久久久毛片| 丰满的人妻完整版| 久久久国产成人免费| 免费观看精品视频网站| 免费看a级黄色片| 欧美一区二区亚洲| 久久久久久久久久久丰满| 成人亚洲欧美一区二区av| 精品一区二区免费观看| 好男人在线观看高清免费视频| av在线老鸭窝| 亚洲精品亚洲一区二区| 狠狠狠狠99中文字幕| 一卡2卡三卡四卡精品乱码亚洲| 久久久久国产网址| 在线免费观看的www视频| 久久久久网色| 国产伦一二天堂av在线观看| 久久精品国产亚洲av香蕉五月| 18禁在线无遮挡免费观看视频| 99热这里只有精品一区| 亚洲一区二区三区色噜噜| 精品久久久久久久久av| 国产精品蜜桃在线观看 | 成年女人永久免费观看视频| 日韩欧美精品免费久久| 国产精品野战在线观看| 中文欧美无线码| 黄色视频,在线免费观看| 国产视频内射| 亚洲欧美日韩东京热| 26uuu在线亚洲综合色| 性插视频无遮挡在线免费观看| 99久久人妻综合| 成人亚洲欧美一区二区av| 免费不卡的大黄色大毛片视频在线观看 | 两性午夜刺激爽爽歪歪视频在线观看| 久久这里只有精品中国| 午夜精品在线福利| 国产午夜精品论理片| av免费观看日本| 亚洲aⅴ乱码一区二区在线播放| 别揉我奶头 嗯啊视频| 日本成人三级电影网站| 成年女人永久免费观看视频| 一卡2卡三卡四卡精品乱码亚洲| 亚洲成人av在线免费| 久久久久久久久久黄片| 免费在线观看成人毛片| 免费无遮挡裸体视频| 99热网站在线观看| 韩国av在线不卡| 久久精品国产亚洲av涩爱 | 免费观看精品视频网站| 日本色播在线视频| 国产亚洲精品久久久com| 亚洲av中文字字幕乱码综合| 国产一区二区在线观看日韩| 午夜精品在线福利| 一个人看视频在线观看www免费| 成人国产麻豆网| 毛片女人毛片| 国产伦一二天堂av在线观看| 久久中文看片网| 国产淫片久久久久久久久| 久久久久久久久中文| 久久国产乱子免费精品| 国产亚洲精品久久久com| 看黄色毛片网站| 国产真实伦视频高清在线观看| 狠狠狠狠99中文字幕| 国产在视频线在精品| 国产免费一级a男人的天堂| 久久久精品欧美日韩精品| 国产精品蜜桃在线观看 | 久久亚洲精品不卡| 久久精品夜色国产| 国产精品一区二区在线观看99 | 久久热精品热| 六月丁香七月| 在线国产一区二区在线| 国产精品av视频在线免费观看| 春色校园在线视频观看| 两性午夜刺激爽爽歪歪视频在线观看| 国产亚洲91精品色在线| 校园春色视频在线观看| ponron亚洲| 免费大片18禁| 亚洲av成人精品一区久久| 亚洲精品久久久久久婷婷小说 | 在线免费十八禁| 久久久久免费精品人妻一区二区| 色吧在线观看| 国产亚洲欧美98| 国产黄片美女视频| 最近视频中文字幕2019在线8| 精品日产1卡2卡| 中文亚洲av片在线观看爽| 国国产精品蜜臀av免费| 国产av一区在线观看免费| 一进一出抽搐gif免费好疼| 一级毛片久久久久久久久女| 啦啦啦观看免费观看视频高清| 国产亚洲5aaaaa淫片| 毛片一级片免费看久久久久| 中文字幕av在线有码专区| 亚洲欧美日韩无卡精品| 99久久无色码亚洲精品果冻| 国产精品久久电影中文字幕| 国产精品久久久久久亚洲av鲁大| a级毛片a级免费在线| 麻豆国产av国片精品| 国产免费男女视频| 精品久久久久久久久av| 又爽又黄a免费视频| 男人舔奶头视频| 色播亚洲综合网| 天堂网av新在线| 黄片无遮挡物在线观看| 久99久视频精品免费| 看免费成人av毛片| 国产视频首页在线观看| 真实男女啪啪啪动态图| 国产不卡一卡二| 麻豆国产av国片精品| 成人高潮视频无遮挡免费网站| 亚洲一级一片aⅴ在线观看| 一级黄片播放器| 在线a可以看的网站| 亚洲最大成人av| 国内久久婷婷六月综合欲色啪| 亚洲精品自拍成人| 国内精品宾馆在线| 黄色日韩在线| 日日干狠狠操夜夜爽| 成人综合一区亚洲| 26uuu在线亚洲综合色| 成人性生交大片免费视频hd| 国产高清不卡午夜福利| 狠狠狠狠99中文字幕| 欧美潮喷喷水| 午夜a级毛片| 美女 人体艺术 gogo| 国产黄片美女视频| 日本爱情动作片www.在线观看| 黄色欧美视频在线观看| 久久精品夜夜夜夜夜久久蜜豆| 熟女人妻精品中文字幕| av.在线天堂| 超碰av人人做人人爽久久| 国产成人精品一,二区 | 午夜免费男女啪啪视频观看| av又黄又爽大尺度在线免费看 | 成人美女网站在线观看视频| 日本色播在线视频| 青春草国产在线视频 | 99久久无色码亚洲精品果冻| 欧美人与善性xxx| 国产成人精品婷婷| 中文字幕制服av| 久久热精品热| 欧美色视频一区免费| 亚洲国产精品合色在线| 国产精品精品国产色婷婷| 最近最新中文字幕大全电影3| 久久国产乱子免费精品| 日本撒尿小便嘘嘘汇集6| 亚洲第一区二区三区不卡| 亚洲av第一区精品v没综合| 免费人成在线观看视频色| 精品国产三级普通话版| 91精品国产九色| 久久久久久九九精品二区国产| 亚洲国产精品成人综合色| 国产在线男女| 久久人人爽人人爽人人片va| 十八禁国产超污无遮挡网站| 黄片无遮挡物在线观看| 国产淫片久久久久久久久| 看十八女毛片水多多多| 一夜夜www| 麻豆一二三区av精品| 免费av毛片视频| 欧美丝袜亚洲另类| 一进一出抽搐gif免费好疼| 精品久久久久久久末码| 国产免费男女视频| 深爱激情五月婷婷| 国产午夜精品一二区理论片| 亚洲熟妇中文字幕五十中出| 亚洲天堂国产精品一区在线| 国产蜜桃级精品一区二区三区| 婷婷色av中文字幕| 日本五十路高清| 国内精品宾馆在线| 亚洲国产高清在线一区二区三| 亚洲av第一区精品v没综合| 精品久久久久久久人妻蜜臀av| 丰满人妻一区二区三区视频av| 一级av片app| 不卡一级毛片| 99久久精品国产国产毛片| 婷婷亚洲欧美| 一区二区三区四区激情视频 | 夜夜爽天天搞| 99久久九九国产精品国产免费| 中国国产av一级| 欧美最黄视频在线播放免费| 欧美精品国产亚洲| av在线老鸭窝| 精品国产三级普通话版| 中文字幕免费在线视频6| 亚洲精品日韩在线中文字幕 | 人人妻人人澡欧美一区二区| 99热6这里只有精品| 天堂中文最新版在线下载 | 内射极品少妇av片p| 精品久久国产蜜桃| 可以在线观看毛片的网站| 我的女老师完整版在线观看| 国产在视频线在精品| 看非洲黑人一级黄片| 麻豆精品久久久久久蜜桃| 成人毛片a级毛片在线播放| 日韩高清综合在线| 99视频精品全部免费 在线| 欧美在线一区亚洲| 欧美激情久久久久久爽电影| 嫩草影院新地址| 日韩欧美在线乱码| 欧美性猛交黑人性爽| 欧美一级a爱片免费观看看| 菩萨蛮人人尽说江南好唐韦庄 | 精品久久久久久久久久免费视频| 国产精品免费一区二区三区在线| 国产乱人偷精品视频| 欧美日韩精品成人综合77777| 久久久久性生活片| 此物有八面人人有两片| 秋霞在线观看毛片| 欧美又色又爽又黄视频| 99在线视频只有这里精品首页| 国产熟女欧美一区二区| 亚洲精品久久国产高清桃花| 欧美最新免费一区二区三区| 97热精品久久久久久| 亚洲,欧美,日韩| 丰满人妻一区二区三区视频av| 人妻系列 视频| 如何舔出高潮| 最近手机中文字幕大全| 特级一级黄色大片| 久久中文看片网| 少妇人妻精品综合一区二区 | 久久99蜜桃精品久久| 午夜精品在线福利| 一个人看视频在线观看www免费| 在线免费观看的www视频| 午夜激情福利司机影院| 久久久久久久久久久免费av| 一级毛片电影观看 | 国产真实乱freesex| 国产精品不卡视频一区二区| 亚洲欧美成人综合另类久久久 | 非洲黑人性xxxx精品又粗又长| 日韩国内少妇激情av| 亚洲国产欧洲综合997久久,| 成年免费大片在线观看| 亚洲人成网站在线播放欧美日韩| 97在线视频观看| 国内久久婷婷六月综合欲色啪| 久久精品人妻少妇| 午夜亚洲福利在线播放| 十八禁国产超污无遮挡网站| 国产精品福利在线免费观看| 国产精华一区二区三区| 欧美日韩国产亚洲二区| 国产精品免费一区二区三区在线| a级毛色黄片| 夜夜看夜夜爽夜夜摸| 免费看美女性在线毛片视频| 日本一本二区三区精品| 2022亚洲国产成人精品| 禁无遮挡网站| 国产极品精品免费视频能看的| 美女cb高潮喷水在线观看| 在线天堂最新版资源| 最近手机中文字幕大全| 两个人的视频大全免费| 热99re8久久精品国产| 男人舔奶头视频| 在线免费观看不下载黄p国产| 久久热精品热| 99热这里只有是精品在线观看| 99国产极品粉嫩在线观看| 一级黄片播放器| 久久99精品国语久久久| 极品教师在线视频| 国产高清激情床上av| 色尼玛亚洲综合影院| 色综合亚洲欧美另类图片| 天堂影院成人在线观看| 欧美精品国产亚洲| 波多野结衣巨乳人妻| 成人特级av手机在线观看| 看黄色毛片网站| 嫩草影院精品99| 亚洲性久久影院| 天美传媒精品一区二区| 三级经典国产精品| 美女cb高潮喷水在线观看| 国产成人精品久久久久久| 麻豆国产av国片精品| ponron亚洲| 在线免费观看不下载黄p国产| 99国产极品粉嫩在线观看| 色视频www国产| 国产精品福利在线免费观看| 一卡2卡三卡四卡精品乱码亚洲| 亚洲欧洲国产日韩| 国内久久婷婷六月综合欲色啪| 国产精品一及| 国产欧美日韩精品一区二区| 黄色视频,在线免费观看| 久久久久久久久久成人| 天天躁日日操中文字幕| 国产一级毛片七仙女欲春2| 久久久久网色| 国产av在哪里看| 亚洲一区高清亚洲精品| 亚洲欧美成人综合另类久久久 | 亚洲国产高清在线一区二区三| 日韩亚洲欧美综合| 91午夜精品亚洲一区二区三区| 少妇人妻精品综合一区二区 | 最近2019中文字幕mv第一页| 国产av在哪里看| 亚洲精品456在线播放app| 欧美bdsm另类| 最近最新中文字幕大全电影3| 国产成人精品婷婷| 中文资源天堂在线| 少妇猛男粗大的猛烈进出视频 | 久久久久久国产a免费观看| 人人妻人人看人人澡| 一级毛片久久久久久久久女| h日本视频在线播放| 高清毛片免费观看视频网站| 久久久久久九九精品二区国产| 少妇熟女欧美另类| 精品久久久久久久久亚洲| 国内久久婷婷六月综合欲色啪| 亚州av有码| 国产av麻豆久久久久久久| 变态另类丝袜制服| 亚洲国产日韩欧美精品在线观看| 日韩av在线大香蕉| 欧美日韩一区二区视频在线观看视频在线 | .国产精品久久| 亚洲va在线va天堂va国产| 麻豆久久精品国产亚洲av| 51国产日韩欧美| 村上凉子中文字幕在线| 99久久人妻综合| 五月玫瑰六月丁香| 亚洲国产日韩欧美精品在线观看| 卡戴珊不雅视频在线播放| 亚洲国产高清在线一区二区三| 久99久视频精品免费| 黄片无遮挡物在线观看| 久久精品国产鲁丝片午夜精品| 国产精品人妻久久久影院| 少妇的逼水好多| 免费大片18禁| 日本成人三级电影网站| 国产成人aa在线观看| 村上凉子中文字幕在线| 最近视频中文字幕2019在线8| 大又大粗又爽又黄少妇毛片口| 国产精品日韩av在线免费观看| 尾随美女入室| 嫩草影院新地址| 亚洲成人av在线免费| 国产精品久久久久久精品电影小说 | eeuss影院久久| 免费黄网站久久成人精品| 亚洲精品色激情综合| 久久久欧美国产精品| 岛国在线免费视频观看| 亚洲中文字幕一区二区三区有码在线看| 狂野欧美白嫩少妇大欣赏| 免费观看a级毛片全部| 久久精品国产鲁丝片午夜精品| 哪里可以看免费的av片| 久久精品国产亚洲av涩爱 | 此物有八面人人有两片| 国产91av在线免费观看| 亚洲av成人av| 亚洲在久久综合| 欧美成人a在线观看| av在线蜜桃| 啦啦啦啦在线视频资源| 我的女老师完整版在线观看| 18+在线观看网站| 亚洲欧美日韩卡通动漫| 国产成人精品久久久久久| 人妻系列 视频| 国产高清激情床上av| 欧美最黄视频在线播放免费| 嫩草影院新地址| 欧美日韩一区二区视频在线观看视频在线 | 联通29元200g的流量卡| 在线观看美女被高潮喷水网站| 日本成人三级电影网站| 午夜激情欧美在线| 男女做爰动态图高潮gif福利片| 免费观看精品视频网站| 国产黄片视频在线免费观看| 亚洲欧美精品自产自拍| 男人狂女人下面高潮的视频| 免费不卡的大黄色大毛片视频在线观看 | 亚洲欧美中文字幕日韩二区| 欧美日韩在线观看h| 级片在线观看| 日韩强制内射视频| 一级黄色大片毛片| 久久人人爽人人片av| 久久久午夜欧美精品| 免费在线观看成人毛片| 久久精品国产自在天天线| 黄色欧美视频在线观看| 九九热线精品视视频播放| 在线国产一区二区在线| 亚洲av一区综合| 白带黄色成豆腐渣| 国产片特级美女逼逼视频| 免费观看a级毛片全部| 精品久久久久久久久久免费视频| 青青草视频在线视频观看| 高清午夜精品一区二区三区 | 色综合亚洲欧美另类图片| 午夜视频国产福利| av卡一久久| 久久久久久九九精品二区国产| 午夜福利成人在线免费观看| 少妇的逼好多水| 九草在线视频观看| 在线免费十八禁| 黄片wwwwww| 一级毛片aaaaaa免费看小| 女人十人毛片免费观看3o分钟| 人妻夜夜爽99麻豆av| 蜜桃亚洲精品一区二区三区| 亚洲国产欧美在线一区| 国产精品乱码一区二三区的特点| 久久久色成人| 亚洲精品日韩av片在线观看| 欧美一级a爱片免费观看看| 国产黄片视频在线免费观看| 我的老师免费观看完整版| 女的被弄到高潮叫床怎么办| 国产成人福利小说| 国语自产精品视频在线第100页| 亚洲人与动物交配视频| 九九久久精品国产亚洲av麻豆| 久久久欧美国产精品| 在线观看午夜福利视频| 国产极品天堂在线| 国产又黄又爽又无遮挡在线| 日本免费a在线| 不卡一级毛片| 中文字幕制服av| 国产一区二区激情短视频| 看十八女毛片水多多多| 中文字幕精品亚洲无线码一区| 国产精品久久久久久精品电影| 国产精品不卡视频一区二区| 午夜福利视频1000在线观看| av免费观看日本| 亚洲丝袜综合中文字幕| 18禁在线无遮挡免费观看视频| 午夜福利在线在线| av在线老鸭窝| av视频在线观看入口| 精品人妻偷拍中文字幕| 尤物成人国产欧美一区二区三区| 黄色视频,在线免费观看| 亚洲电影在线观看av| 国产v大片淫在线免费观看| 哪里可以看免费的av片| 三级经典国产精品| 人妻系列 视频| 黑人高潮一二区| 亚洲最大成人中文| 国产美女午夜福利| 日韩制服骚丝袜av| 91狼人影院| 国产老妇伦熟女老妇高清| 一区福利在线观看| 国产亚洲精品av在线| 99久国产av精品国产电影| 少妇丰满av| 国产精品人妻久久久久久| 免费观看的影片在线观看| eeuss影院久久| 中文字幕av在线有码专区| 亚洲精品国产av成人精品| 成人三级黄色视频| 免费人成在线观看视频色| 亚洲婷婷狠狠爱综合网| 亚洲自拍偷在线| 大又大粗又爽又黄少妇毛片口| 国产精品久久久久久av不卡| 久久欧美精品欧美久久欧美| 亚洲人成网站高清观看| 丝袜美腿在线中文| 神马国产精品三级电影在线观看| 日本一本二区三区精品| 免费人成视频x8x8入口观看| 只有这里有精品99| 啦啦啦观看免费观看视频高清| 欧美成人a在线观看| 亚洲欧美精品专区久久| 99精品在免费线老司机午夜| 好男人视频免费观看在线| 2021天堂中文幕一二区在线观| 精品国内亚洲2022精品成人| videossex国产| 少妇人妻一区二区三区视频| 国产精品电影一区二区三区| 国模一区二区三区四区视频| 97人妻精品一区二区三区麻豆| 麻豆一二三区av精品| 禁无遮挡网站| 亚洲美女视频黄频| 国产免费男女视频|