• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Electronic structure and spin-orbit coupling in ternary transition metal chalcogenides Cu2TlX2(X =Se,Te)

    2022-03-12 07:44:06NaQin秦娜XianDu杜憲YangyangLv呂洋洋LuKang康璐ZhongxuYin尹中旭JingsongZhou周景松XuGu顧旭QinqinZhang張琴琴RunzheXu許潤(rùn)哲WenxuanZhao趙文軒YidianLi李義典ShuhuaYao姚淑華YanfengChen陳延峰ZhongkaiLiu柳仲楷LexianYang楊樂(lè)仙andYulinChen陳宇林
    Chinese Physics B 2022年3期

    Na Qin(秦娜)Xian Du(杜憲)Yangyang Lv(呂洋洋)Lu Kang(康璐)Zhongxu Yin(尹中旭)Jingsong Zhou(周景松)Xu Gu(顧旭) Qinqin Zhang(張琴琴) Runzhe Xu(許潤(rùn)哲) Wenxuan Zhao(趙文軒) Yidian Li(李義典)Shuhua Yao(姚淑華) Yanfeng Chen(陳延峰) Zhongkai Liu(柳仲楷)Lexian Yang(楊樂(lè)仙) and Yulin Chen(陳宇林)

    1State Key Laboratory of Low Dimensional Quantum Physics,Department of Physics,Tsinghua University,Beijing 100084,China

    2National Laboratory of Solid State Microstructures,Department of Materials Science and Engineering,Nanjing University,Nanjing 210093,China

    3School of Physical Science and Technology,ShanghaiTech University and CAS-Shanghai Science Research Center,Shanghai 201210,China

    4ShanghaiTech Laboratory for Topological Physics,Shanghai 200031,China

    5Frontier Science Center for Quantum Information,Beijing 100084,China

    6Department of Physics,Clarendon Laboratory,University of Oxford,Parks Road,Oxford OX1 3PU,UK

    Keywords: transition metal chalcogenides, spin-orbit coupling, electronic structure, angle-resolved photoemission spectroscopy(ARPES)

    1. Introduction

    Transition metal chalcogenides with quasi-twodimensional crystal structure exhibit various fascinating properties, such as superconductivity, charge-density wave, magnetism, novel topological phase, valleytronics, etc.,[1-14]which provide not only significant scientific implications but also great application potential in the next-generation electronic and spintronic devices. Recently, ternary transition metal chalcogenides (TTMCs) have attracted great attention.Compared with their binary counterparts, TTMCs show improved tunability and complexity, thus promising a rich platform to search for and study new physics,such as the interplay between magnetism and topology, giant anomalous Hall effect,and topological quantum properties.[15-21]

    It is well-known that spin-orbit coupling (SOC) plays a pivotal role in the novel properties of quantum materials. It serves as a fundamental tuning parameter to bridge different topological phases;[22-25]it is also essentially related to the large magnetoresistance[26]and magnetocrystalline anisotropy[27]in solid materials; from application perspective, it enables electrical manipulation of spins, which is of significant importance in the newly developed spintronics and valleytronics. Therefore, it is attractive to search for and investigate materials with large SOC.

    In this work, using high-resolution angle-resolved photoemission spectroscopy (ARPES) andab initiocalculation,we study the electronic structures of Cu2TlTe2and Cu2TlSe2,newly discovered ternary transition metal chalcogenides. Our calculation shows a semiconductor and semimetal phase in Cu2TlTe2and Cu2TlSe2,respectively,suggesting a tunability of the band gap with Se/Te composition. The band dispersions near the Fermi level(EF)are mainly from p orbitals,that is, 5p orbitals of Te and 4p orbitals of Se. With the help ofab initiocalculation, we identify strong SOC effect that lifts the band degeneracy and opens large energy gaps in the band structure. Moreover, we observe a band folding near theXpoint, suggesting a surface reconstruction or surface chargedensity wave. Our study provides insights into the SOC and electronic structure of TTMC materials Cu2TlX2, which may be an interesting and useful platform to search and study novel physics,particularly in their ultrathin films.

    2. Methods

    High-quality Cu2TlX2crystals were synthesized using Bridgeman method.[28]ARPES measurements were performed at beam line I05 of the Diamond Light Source(DLS,proposal No. SI20683-1),beam line 13U of the National Synchrotron Radiation Laboratory (NSRL), and Tsinghua University. Scienta R4000 (DA30) analyzer was used at DLS(NSRL). Measurements at Tsinghua University were performed using DA30L analyzer and VUV5050 helium lamp.Samples were cleaved and measured under ultrahigh vacuum better than 1×10-10mbar. The overall energy and angular resolutions were 15 meV and 0.2°, respectively.First-principles band structure calculations of Cu2TlX2(X=Se,Te) were performed using QUANTUM ESPRESSO code package[29]with a plane wave basis. The pseudopotentials suggested by Standard Solid State Pseudopotentials (SSSP)Precision v1.1[30]were chosen for all elements. The exchange and correlation energy was considered under Perdew-Burke-Ernzerhof(PBE)type generalized gradient approximation (GGA).[31]Both lattice constants and fractional atomic coordinates were set to the experimental values. The cutoff energy for the plane-wave basis was set to 560 eV in all calculations, which was sufficient to converge the total energy for a givenk-point sampling. AΓ-centered Monkhorst-Packk-point mesh of 16×16×16 (15×15×15) with a spacing of 0.15 °A-1was adopted for Cu2TlSe2(Cu2TlTe2) to get a self-consistent charge density. Both the conditions of excluding and including spin-orbit coupling were considered in the self-consistent calculations. The electronic minimization algorithm used for self-consistent calculations was a blocked Davidson algorithm. Surface-projected band structures were calculated with the WANNIERTOOLS package,[32]based on the tight-binding type Hamiltonian constructed from maximally localized Wannier functions (MLWF) supplied by the Wannier90 code,[33]by projecting theab initioconstructed(Kohn-Sham) Bloch states into the atomic-orbital like Wannier functions starting from a 9×9×9 uniformkgrid.

    3. Results and discussion

    Copper based ternary TTMCs Cu2TlX2(X= Se,Te)crystallize into a layered tetragonal ThCr2Si2-type structure with alternatively stacking Cu2X2and Tl layers, as shown in Fig. 1(a). Figure 1(b) shows the three-dimensional Brillouin zone of Cu2TlX2and its surface projection with highsymmetry points indicated. Our resistivity measurements in Fig.1(c)show prototypical metallic behaviors that can be well understood within Fermi-liquid theory.[28]We observe sharp peaks in single crystal x-ray diffraction measurements, suggesting a lattice constant ofc= 14.03 °A and 15.21 °A for Cu2TlSe2and Cu2TlTe2,respectively.

    Although the materials are quasi-two dimensional, our photon-energy dependent Fermi surface (FS) measurements on Cu2TlTe2in Fig.2(a)show resolvable variation. Using an inner potential of 13 eV,we can determine the high symmetry points alongkz, as shown in Figs. 2(a) and 2(b). We observe a strong dispersion between-0.95 eV and-0.5 eV alongΓ Z[white dashed line in Fig.2(b)], suggesting an important role of interlayer coupling in the electronic structure of Cu2TlTe2.TheΓandZpoints can be approached by 122 eV and 102 eV photons, respectively. Figures 2(c) and 2(d) show the evolution of the constant energy contour with binding energy on theΓ ΣXandZΣ1Y1planes, respectively. The measured Fermi surface consists of a four-fold symmetric hole pocket near theˉΓpoint, an electron pocket around the ˉMpoint, and a small hole pocket around the ˉXpoint,which evolves into a complex texture at high binding energies. The FS and constant energy contours at different binding energies are perfectly reproduced by ourab initiocalculation as shown in Fig.2(e).

    Fig.1.(a)Crystal structure of Cu2TlX2(X=Se,Te).(b)Three-dimensional Brillouin zone of Cu2TlX2 and its surface projection with high-symmetry points indicated. (c) Resistivity of Cu2TlX2 as a function of temperature.(d)Single-crystal x-ray diffraction data of Cu2TlSe2 and Cu2TlTe2.

    Figure 3 shows the band structure of Cu2TlTe2along high symmetry directions. We observe anisotropic dispersions alongΓ ΣandΓ X[Figs. 3(a)-3(c)]. NearEF, there exist mainly two bands,αandβcrossingEF. Theαband is nearly flat near theΓpoint, which may contribute high density of states nearEF. Theβband,on the other hand,shows a linear dispersion in a large energy range,as shown in Figs.3(b)and 3(c).The Fermi velocity of theβband is about 4.8 eV·°A alongΣX, about 60%of that of graphene.[16]The linear dispersion of theβband may contribute to the unsaturated magnetoresistance in Cu2TlTe2at high magnetic field.[28]The band structure of Cu2TlTe2is nicely reproduced by our calculation with SOC included [Figs. 3(d) and 3(e)], in which theαandβbands are shown by the blue and red curves,respectively. We emphasize that thekzdispersion observed in Fig. 2(b) is also captured by ourab initiocalculation.

    Fig.2. (a)Fermi surface of Cu2TlTe2 in the Γ ΣZ plane obtained by photon-energy dependent measurements. (b)The kz-dispersion along Γ Z. (c),(d)Evolution of the constant-energy-contours with binding energy on(c)Γ ΣX and(d)ZΣ1Y1 planes,respectively. (e)Calculated constant-energycontours of Cu2TlTe2. Data were taken at 10 K.

    Fig. 3. (a)-(c) ARPES measured band dispersions of Cu2TlTe2 along high symmetry directions. (d), (e) Band structures obtained by ab initio calculation with(d)and without(e)spin-orbit coupling(SOC).The red arrows indicate the band gaps induced by SOC.The red and blue circles indicate the band crossings with small energy gap. Data were taken with 122 eV photons at 10 K.

    By comparing our experiment with the calculations with and without SOC,we notice that the flat band nearΓis actually induced by the strong SOC in the system. Moreover,the SOC induces a band gap as large as 399(174)meV along theΓ X(Γ Σ) direction [red arrows in Fig. 3(e)], in good agreement with our experiment[red arrows in Figs.3(a)and 3(b)],suggesting strong SOC effect modulating the band structure of Cu2TlTe2. The SOC also lifts the band degeneracy alongΓ Z,inducing a band splitting as large as 380 meV.

    Figure 4 shows the band structure of Cu2TlSe2. Overall, the band structure of Cu2TlSe2is very similar to that of Cu2TlTe2. The Fermi surface is likewise mainly contributed by theαandβbands [Fig. 4(a)]. The flat band nearEFas in Cu2TlTe2is not observed since it locates slightly aboveEF, and such difference may be due to the non-stoichiometry of Cu2TlTe2.[28]However, we observe another flat band near 500 meV belowEFusing 21.2 eV photons [Figs. 4(b) and 4(c)]. The Fermi velocity of theβband along ˉΣˉXis about 2 eV·°A, much smaller than that in Cu2TlTe2. The band gap along ˉ?![red arrows in Figs. 4(c) and 4(f)] and the band splitting alongΓ Zinduced by SOC are also much smaller than those in Cu2TlTe2, suggesting a stronger SOC effect in Cu2TlTe2. The measured band structure of Cu2TlSe2and calculations along high symmetry directions are shown in Figs. 4(b)-4(f). Although the flat band near-500 meV is not in the calculation along high symmetry points, it can be reproduced by the calculation at akzposition betweenΓandZ, since the band below theαband shows an electron (hole)like dispersion alongΓ Σ(ZΣ1) in the calculation [Fig. 4(f)].Indeed,thekzvalue corresponding to 21.2 eV photons is estimated to be near the middle ofΓandZin the Brillouin zone.

    From the calculations in Figs.3(e)and 4(f),we note that Cu2TlSe2is a semiconductor with indirect band gap of about 226 meV, in contrast to the semi-metallic band structure of Cu2TlTe2, suggesting a tunability of the band gap by Se/Te composition in the Cu2TlX2materials. We further conducted orbital-projectedab-initiocalculation as shown in Fig.5. The band dispersions nearEFare mainly contributed by the 4p/5p orbital of the Se/Te atoms. Therefore, the change of Se/Te composition can efficiently tune the band gap of Cu2TlX2. It is worth noting that both of our Cu2TlX2samples are p-doped with the valence bands crossingEF. Further electron doping or the synthesis of intrinsic samples are required to establish the tunability of the band gap.

    In both Cu2TlTe2and Cu2TlSe2, there exist band crossings that are nearly gapless alongΓ Σ[red and blue circles in Figs. 3(d), 3(e), 4(e) and 4(f)]. According to our calculation,the hybridization gaps near these band crossings are less than 10 meV in Cu2TlTe2and less than 5 meV in Cu2TlSe2,which are immune to the SOC[red and blue circles in Figs.3(d),3(e),4(e)and 4(f)]. In Cu2TlSe2,we observe a Dirac-like band dispersion nearEF, consistent with our calculation [red circles in Figs. 4(b) and 4(f)]. It is likely that, with lighter atoms in the system, for example, in Cu2TlS2, a nearly gapless Dirac fermion can exist nearEF.

    Fig.4. (a)Measured(left)and calculated(right)Fermi surface of Cu2TlSe2. (b)-(d)ARPES measured band dispersions of Cu2TlSe2 along high symmetry directions. (e),(f)Band structure obtained by ab initio calculation with(e)and without(f)SOC.The red arrows indicate the band gaps induced by SOC.The red and blue circles indicate the band crossings with small energy gap. Data were collected with 21.2 eV photons delivered by a helium lamp at 68 K.

    Fig.5.Orbital-projected band structure calculations of Cu2TlX2 without SOC,in which the point size indicates the weight of the orbital contributions to band dispersions. (a),(b)Cu d and Te p states in Cu2TlTe2. (c),(d)Cu d and Se p states in Cu2TlSe2.

    Fig.6. (a)Fermi surface of Cu2TlTe2 measured with 80 eV photon energy.(b) Band dispersion of Cu2TlTe2 along ΣX, which is indicated by red line in (a), showing band folding from the Σ point to the X point. Data were collected at 10 K.

    Noticeably, in the Fermi surface and band dispersion alongΣXof Cu2TlTe2, we observe band folding fromΣtoX(Figs. 6(a) and 6(b)) using photon energy of 80 eV that is more surface-sensitive. The band folding fromΣtoΓis also resolvable in Fig.3(a),which complicates the band dispersion nearΓin Fig.3(a).Such band folding suggests a 2-fold reconstruction of the crystal structure. Since we do not observe any anomaly in temperature dependent resistivity measurements,the observed band folding is likely due to a surface reconstruction or surface charge-density wave,which requires further experimental investigations.

    4. Summary

    To sum up, we systematically measure the electronic structure of Cu2TlX2using high-resolution ARPES.The transition from a semiconductor in Cu2TlSe2to a semimetal in Cu2TlTe2, as indicated by ourab initiocalculation, suggests a tunability of the electronic structure and physical property of the materials with Se/Te composition. With the help ofab initiocalculation, we identify strong SOC effect in the band structure of Cu2TlTe2, which opens a band gap and lifts the band degeneracy alongΓ Z. We propose that a massless Dirac fermion may exist nearEFin the sibling Cu2TlX2crystal,i.e.,Cu2TlS2if it is successfully synthesized. Our results are helpful to understand the electronic properties of Cu2TlX2, and also provide a material platform to search for SOC-related physics.

    Acknowledgments

    This study was supported by the National Natural Science Foundation of China(Grant No.11774190). We thank for access to DLS beamline I05 and NSRL beamline 13U with help from S.W.Jung,C.Cacho,S.T.Cui,and Z.Sun.

    亚洲黑人精品在线| 色尼玛亚洲综合影院| 国产亚洲精品久久久com| 51午夜福利影视在线观看| 亚洲av电影在线进入| 国产精品一区二区三区四区久久| 精华霜和精华液先用哪个| 欧美+亚洲+日韩+国产| 亚洲美女黄片视频| 久久精品国产亚洲av香蕉五月| 国产野战对白在线观看| 精品国产美女av久久久久小说| 亚洲av免费在线观看| 丰满人妻一区二区三区视频av | 亚洲精品在线美女| 天堂影院成人在线观看| 日本一二三区视频观看| 日韩欧美免费精品| 亚洲精品粉嫩美女一区| 一区福利在线观看| 97人妻精品一区二区三区麻豆| 亚洲 国产 在线| 动漫黄色视频在线观看| 搞女人的毛片| 欧美日韩国产亚洲二区| 丁香六月欧美| 国产色婷婷99| 日韩欧美国产在线观看| 欧美中文日本在线观看视频| 天天添夜夜摸| 国产黄a三级三级三级人| 国产成年人精品一区二区| 香蕉av资源在线| 亚洲激情在线av| www.色视频.com| 少妇丰满av| 国产一区在线观看成人免费| 国产野战对白在线观看| 91久久精品电影网| 1000部很黄的大片| 我的老师免费观看完整版| 亚洲 欧美 日韩 在线 免费| 一个人看的www免费观看视频| 伊人久久精品亚洲午夜| 日韩欧美在线乱码| 怎么达到女性高潮| 国产探花在线观看一区二区| 久久人妻av系列| 欧美一级a爱片免费观看看| 久久久久精品国产欧美久久久| 欧美极品一区二区三区四区| 欧美3d第一页| 国产中年淑女户外野战色| 国产麻豆成人av免费视频| 免费人成视频x8x8入口观看| 99在线人妻在线中文字幕| 日本精品一区二区三区蜜桃| 亚洲乱码一区二区免费版| 亚洲专区中文字幕在线| 老汉色∧v一级毛片| 欧美日韩黄片免| 国产一区二区三区视频了| 国产极品精品免费视频能看的| 国产一级毛片七仙女欲春2| 国产高潮美女av| 国内精品美女久久久久久| 12—13女人毛片做爰片一| 亚洲一区二区三区色噜噜| 午夜两性在线视频| 国产黄片美女视频| 国产精品99久久99久久久不卡| 国产欧美日韩精品一区二区| 脱女人内裤的视频| 夜夜躁狠狠躁天天躁| 人妻丰满熟妇av一区二区三区| 看片在线看免费视频| 欧美中文综合在线视频| 色尼玛亚洲综合影院| 国产在线精品亚洲第一网站| 国产激情欧美一区二区| 中文字幕高清在线视频| 香蕉久久夜色| 国产精品乱码一区二三区的特点| 一级黄色大片毛片| 在线a可以看的网站| 一级黄色大片毛片| 全区人妻精品视频| 中文字幕av成人在线电影| 亚洲精品一区av在线观看| 欧美av亚洲av综合av国产av| 国产精品香港三级国产av潘金莲| 18禁国产床啪视频网站| 在线免费观看的www视频| 99热只有精品国产| 亚洲性夜色夜夜综合| 一夜夜www| 久久久久久久午夜电影| 国产亚洲欧美在线一区二区| 亚洲内射少妇av| 亚洲av熟女| 成人无遮挡网站| 日韩高清综合在线| 久9热在线精品视频| 在线免费观看不下载黄p国产 | 国产亚洲精品综合一区在线观看| 国产精品99久久99久久久不卡| 久久久久久九九精品二区国产| 日韩人妻高清精品专区| 全区人妻精品视频| 黄色成人免费大全| 中文字幕av成人在线电影| 熟女电影av网| 欧美+日韩+精品| 99久久精品一区二区三区| 一区二区三区国产精品乱码| 9191精品国产免费久久| 99国产精品一区二区三区| 亚洲欧美日韩东京热| 三级男女做爰猛烈吃奶摸视频| 久久久久久人人人人人| 亚洲精品在线美女| 久久久久久九九精品二区国产| 亚洲成人精品中文字幕电影| 99久久精品热视频| 国产一区二区亚洲精品在线观看| 亚洲性夜色夜夜综合| 母亲3免费完整高清在线观看| 18禁裸乳无遮挡免费网站照片| 一本一本综合久久| 两人在一起打扑克的视频| 欧美中文综合在线视频| 久久久久精品国产欧美久久久| 国产aⅴ精品一区二区三区波| 夜夜躁狠狠躁天天躁| 两个人看的免费小视频| 国产成人a区在线观看| a级一级毛片免费在线观看| 精品久久久久久久人妻蜜臀av| 成人欧美大片| 9191精品国产免费久久| 国产亚洲精品av在线| 99久久九九国产精品国产免费| 黄色成人免费大全| 久久久久久人人人人人| av中文乱码字幕在线| 丁香欧美五月| 美女免费视频网站| 国产私拍福利视频在线观看| 亚洲18禁久久av| 国产一区二区在线av高清观看| 亚洲狠狠婷婷综合久久图片| 观看美女的网站| 男女之事视频高清在线观看| 午夜免费激情av| 99在线视频只有这里精品首页| 国产亚洲av嫩草精品影院| 国产中年淑女户外野战色| 少妇的丰满在线观看| 高清在线国产一区| 一本精品99久久精品77| 淫妇啪啪啪对白视频| 99久久99久久久精品蜜桃| 日韩国内少妇激情av| 麻豆成人av在线观看| 伊人久久大香线蕉亚洲五| 男人舔女人下体高潮全视频| 亚洲国产欧洲综合997久久,| 亚洲狠狠婷婷综合久久图片| 久久天躁狠狠躁夜夜2o2o| 亚洲人成电影免费在线| 国产69精品久久久久777片| 色尼玛亚洲综合影院| 国产精品电影一区二区三区| 亚洲中文日韩欧美视频| 黄色日韩在线| 欧美区成人在线视频| 成人国产一区最新在线观看| 日韩欧美一区二区三区在线观看| 99精品欧美一区二区三区四区| 亚洲欧美日韩无卡精品| 在线免费观看的www视频| 中文字幕熟女人妻在线| 精品久久久久久久末码| xxxwww97欧美| 精品久久久久久久久久免费视频| 真人做人爱边吃奶动态| 日本熟妇午夜| 麻豆久久精品国产亚洲av| 日韩欧美精品v在线| 亚洲18禁久久av| 18禁在线播放成人免费| 免费人成视频x8x8入口观看| 99riav亚洲国产免费| 成年人黄色毛片网站| 操出白浆在线播放| 老司机福利观看| 欧美另类亚洲清纯唯美| 国产亚洲av嫩草精品影院| 国产成人欧美在线观看| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | av天堂在线播放| 亚洲国产精品999在线| 丰满人妻一区二区三区视频av | а√天堂www在线а√下载| 欧美色视频一区免费| 精品日产1卡2卡| 麻豆一二三区av精品| 又黄又爽又免费观看的视频| 神马国产精品三级电影在线观看| 岛国视频午夜一区免费看| 精品免费久久久久久久清纯| 国产精品嫩草影院av在线观看 | 少妇的丰满在线观看| 亚洲天堂国产精品一区在线| 国产精品亚洲美女久久久| 三级国产精品欧美在线观看| 久久99热这里只有精品18| 亚洲av电影在线进入| 欧美在线一区亚洲| 日韩亚洲欧美综合| www国产在线视频色| 可以在线观看毛片的网站| 精品不卡国产一区二区三区| 久久国产乱子伦精品免费另类| 亚洲精品美女久久久久99蜜臀| 嫩草影院入口| 成人av在线播放网站| 亚洲人成网站在线播| 日韩欧美在线乱码| 国产一级毛片七仙女欲春2| 国产高清激情床上av| 精品久久久久久久毛片微露脸| 青草久久国产| 亚洲人成网站在线播| 757午夜福利合集在线观看| 女人高潮潮喷娇喘18禁视频| 国产国拍精品亚洲av在线观看 | 成年女人毛片免费观看观看9| 天堂影院成人在线观看| www日本在线高清视频| 波多野结衣高清无吗| 亚洲av成人av| 黄片大片在线免费观看| svipshipincom国产片| 国内精品一区二区在线观看| 精品人妻偷拍中文字幕| 色噜噜av男人的天堂激情| 超碰av人人做人人爽久久 | 国产97色在线日韩免费| 久久人妻av系列| 国产精品1区2区在线观看.| 久久国产乱子伦精品免费另类| 又粗又爽又猛毛片免费看| 五月伊人婷婷丁香| 国产精品精品国产色婷婷| 中文字幕熟女人妻在线| 日本免费a在线| 日韩高清综合在线| 99精品久久久久人妻精品| 日本在线视频免费播放| 在线播放无遮挡| 国产精品综合久久久久久久免费| 久久久成人免费电影| 成人午夜高清在线视频| 欧美色欧美亚洲另类二区| 久久久久久久亚洲中文字幕 | 成人欧美大片| 在线观看免费视频日本深夜| 亚洲成人中文字幕在线播放| 黄色视频,在线免费观看| 国产淫片久久久久久久久 | 日本免费a在线| 在线看三级毛片| 丁香六月欧美| 国产一级毛片七仙女欲春2| 色综合亚洲欧美另类图片| 欧美zozozo另类| 老司机福利观看| 成人永久免费在线观看视频| 91久久精品电影网| 国产精品久久久久久精品电影| or卡值多少钱| 国产麻豆成人av免费视频| 中文字幕久久专区| 欧美黄色片欧美黄色片| 18禁国产床啪视频网站| 国产精品 国内视频| 成年女人毛片免费观看观看9| 韩国av一区二区三区四区| 男人舔奶头视频| 国产av不卡久久| 国产亚洲精品久久久com| 亚洲人成网站高清观看| 国产精品一区二区三区四区免费观看 | 精华霜和精华液先用哪个| 亚洲熟妇中文字幕五十中出| 亚洲成av人片免费观看| 日本一本二区三区精品| 欧美日韩精品网址| 啦啦啦免费观看视频1| 免费看美女性在线毛片视频| 少妇人妻精品综合一区二区 | 成人三级黄色视频| 69人妻影院| xxxwww97欧美| 国产亚洲精品综合一区在线观看| 日韩免费av在线播放| 亚洲熟妇中文字幕五十中出| 免费观看的影片在线观看| 日韩欧美国产在线观看| 国产视频一区二区在线看| 美女免费视频网站| 叶爱在线成人免费视频播放| 国产69精品久久久久777片| 天堂av国产一区二区熟女人妻| 日韩欧美 国产精品| АⅤ资源中文在线天堂| 禁无遮挡网站| 国产综合懂色| 大型黄色视频在线免费观看| www.999成人在线观看| 香蕉丝袜av| 一级作爱视频免费观看| 国产色婷婷99| 日本黄大片高清| 欧美黄色片欧美黄色片| 久久久久国内视频| 国产在线精品亚洲第一网站| 熟女电影av网| 免费高清视频大片| 一本一本综合久久| 窝窝影院91人妻| 国产精品久久久久久亚洲av鲁大| 国产精品三级大全| 日本撒尿小便嘘嘘汇集6| 成人精品一区二区免费| 伊人久久大香线蕉亚洲五| 国产精品精品国产色婷婷| 又爽又黄无遮挡网站| 亚洲国产日韩欧美精品在线观看 | 美女cb高潮喷水在线观看| 免费在线观看日本一区| 国内少妇人妻偷人精品xxx网站| 亚洲无线在线观看| 女人被狂操c到高潮| 亚洲国产精品合色在线| 美女免费视频网站| 国产精品久久视频播放| 国产 一区 欧美 日韩| 麻豆久久精品国产亚洲av| 五月玫瑰六月丁香| 久99久视频精品免费| 国产亚洲精品av在线| 久久欧美精品欧美久久欧美| 丰满乱子伦码专区| 一级黄片播放器| 免费看光身美女| 国产一区在线观看成人免费| 欧美黑人巨大hd| 久久国产精品人妻蜜桃| 每晚都被弄得嗷嗷叫到高潮| 一个人免费在线观看的高清视频| 亚洲最大成人手机在线| 窝窝影院91人妻| 在线观看av片永久免费下载| 在线观看美女被高潮喷水网站 | 欧美性猛交黑人性爽| 少妇的丰满在线观看| 国产老妇女一区| 国产精品一区二区三区四区久久| 麻豆成人午夜福利视频| 中文字幕高清在线视频| 91av网一区二区| 最后的刺客免费高清国语| 精品久久久久久久久久免费视频| 12—13女人毛片做爰片一| 日韩欧美免费精品| 校园春色视频在线观看| 麻豆成人av在线观看| 99精品欧美一区二区三区四区| 国产美女午夜福利| 国产午夜精品论理片| eeuss影院久久| 欧美xxxx黑人xx丫x性爽| 免费在线观看日本一区| 搡老岳熟女国产| 亚洲精品影视一区二区三区av| 国产又黄又爽又无遮挡在线| 国产三级中文精品| 免费搜索国产男女视频| 亚洲在线自拍视频| 成人国产一区最新在线观看| 国产伦人伦偷精品视频| 尤物成人国产欧美一区二区三区| 日韩欧美 国产精品| 国产黄色小视频在线观看| 精品日产1卡2卡| 精品福利观看| 天堂动漫精品| 亚洲人成伊人成综合网2020| 欧美绝顶高潮抽搐喷水| 一区福利在线观看| 欧美乱妇无乱码| 国产精品野战在线观看| 亚洲美女黄片视频| 亚洲黑人精品在线| 麻豆一二三区av精品| 日韩成人在线观看一区二区三区| 丝袜美腿在线中文| 精品国内亚洲2022精品成人| www日本黄色视频网| 在线观看日韩欧美| 久久久久久久久中文| 久久这里只有精品中国| 欧美乱妇无乱码| 两性午夜刺激爽爽歪歪视频在线观看| 国产91精品成人一区二区三区| 一进一出抽搐动态| 国产在线精品亚洲第一网站| av天堂中文字幕网| 久久国产乱子伦精品免费另类| 哪里可以看免费的av片| 成人午夜高清在线视频| 国产视频内射| 国产精品永久免费网站| 国产伦精品一区二区三区四那| 久久香蕉精品热| 午夜a级毛片| 99国产综合亚洲精品| 欧美色视频一区免费| 蜜桃久久精品国产亚洲av| 午夜日韩欧美国产| 精品国产超薄肉色丝袜足j| 色噜噜av男人的天堂激情| 琪琪午夜伦伦电影理论片6080| 亚洲精品影视一区二区三区av| 久久久国产成人精品二区| 人人妻人人看人人澡| 每晚都被弄得嗷嗷叫到高潮| 亚洲熟妇中文字幕五十中出| 久久性视频一级片| 国产 一区 欧美 日韩| 亚洲自拍偷在线| 精品久久久久久久末码| 国产av麻豆久久久久久久| 国产伦精品一区二区三区视频9 | 怎么达到女性高潮| 啦啦啦免费观看视频1| 三级毛片av免费| 网址你懂的国产日韩在线| 尤物成人国产欧美一区二区三区| 亚洲久久久久久中文字幕| 每晚都被弄得嗷嗷叫到高潮| 一个人观看的视频www高清免费观看| 国产精品野战在线观看| 午夜免费成人在线视频| 一本久久中文字幕| 久久精品国产亚洲av涩爱 | 亚洲国产日韩欧美精品在线观看 | 成人18禁在线播放| 日本五十路高清| 日本一二三区视频观看| 中文资源天堂在线| 免费高清视频大片| 欧美日韩亚洲国产一区二区在线观看| 97碰自拍视频| 给我免费播放毛片高清在线观看| 国产免费男女视频| www.999成人在线观看| 别揉我奶头~嗯~啊~动态视频| 精品福利观看| av在线天堂中文字幕| 窝窝影院91人妻| 久久久成人免费电影| x7x7x7水蜜桃| 国产老妇女一区| 欧美zozozo另类| 精品久久久久久久人妻蜜臀av| 国产精品av视频在线免费观看| 国产中年淑女户外野战色| 久久久久国产精品人妻aⅴ院| 亚洲无线在线观看| 国产在线精品亚洲第一网站| 搡老岳熟女国产| 可以在线观看的亚洲视频| 国内精品一区二区在线观看| 床上黄色一级片| 精品久久久久久成人av| 国产精品久久久久久亚洲av鲁大| 国产精华一区二区三区| 久久久久国产精品人妻aⅴ院| 国产亚洲欧美在线一区二区| 校园春色视频在线观看| 国产精品久久久久久亚洲av鲁大| 中国美女看黄片| 丰满人妻熟妇乱又伦精品不卡| 2021天堂中文幕一二区在线观| 亚洲av免费高清在线观看| 国产伦一二天堂av在线观看| 久久久久久久久久黄片| 91麻豆av在线| 午夜福利在线在线| 在线观看日韩欧美| 国产老妇女一区| 亚洲av第一区精品v没综合| 久久久精品大字幕| 18禁黄网站禁片免费观看直播| 久久久久性生活片| av在线蜜桃| 日韩av在线大香蕉| 午夜日韩欧美国产| 亚洲精品色激情综合| 国产精品久久久久久久久免 | 精品人妻一区二区三区麻豆 | 中文资源天堂在线| 99精品欧美一区二区三区四区| 99久久综合精品五月天人人| 国产野战对白在线观看| 国产亚洲精品久久久com| 亚洲精品一卡2卡三卡4卡5卡| 女生性感内裤真人,穿戴方法视频| 色尼玛亚洲综合影院| av中文乱码字幕在线| 国产成人影院久久av| 内射极品少妇av片p| 有码 亚洲区| 亚洲av电影不卡..在线观看| 在线观看av片永久免费下载| 亚洲五月婷婷丁香| 精品福利观看| 最近最新中文字幕大全免费视频| 好看av亚洲va欧美ⅴa在| 亚洲av成人av| 高清在线国产一区| 国产真人三级小视频在线观看| 欧美色欧美亚洲另类二区| 亚洲精品在线美女| 一个人观看的视频www高清免费观看| 中文资源天堂在线| 国产91精品成人一区二区三区| 免费看日本二区| 嫩草影视91久久| 欧美成人一区二区免费高清观看| 国产精品99久久久久久久久| 亚洲精品国产精品久久久不卡| 天堂影院成人在线观看| 日本五十路高清| 麻豆成人午夜福利视频| 三级男女做爰猛烈吃奶摸视频| 51午夜福利影视在线观看| 免费av观看视频| 国产黄a三级三级三级人| 丰满人妻熟妇乱又伦精品不卡| 亚洲欧美日韩无卡精品| 狂野欧美激情性xxxx| 亚洲成人中文字幕在线播放| 最新在线观看一区二区三区| 日本五十路高清| 亚洲欧美激情综合另类| 九九在线视频观看精品| 深爱激情五月婷婷| 国产精品电影一区二区三区| 国产精品,欧美在线| 亚洲国产中文字幕在线视频| 午夜免费成人在线视频| 日本黄色片子视频| ponron亚洲| 亚洲五月天丁香| 老司机深夜福利视频在线观看| 中文字幕人妻丝袜一区二区| 成人鲁丝片一二三区免费| 日本免费一区二区三区高清不卡| 久久久久九九精品影院| 欧美最新免费一区二区三区 | 国产一级毛片七仙女欲春2| 18禁裸乳无遮挡免费网站照片| 日韩精品中文字幕看吧| 91在线精品国自产拍蜜月 | 国产精品久久久久久精品电影| 人妻久久中文字幕网| 女人高潮潮喷娇喘18禁视频| 成年人黄色毛片网站| 激情在线观看视频在线高清| 欧美日韩乱码在线| 免费看光身美女| 俄罗斯特黄特色一大片| 久久精品国产综合久久久| 波多野结衣高清作品| 日本在线视频免费播放| 亚洲美女视频黄频| 法律面前人人平等表现在哪些方面| 国产真人三级小视频在线观看| 日韩亚洲欧美综合| 99视频精品全部免费 在线| 极品教师在线免费播放| 在线国产一区二区在线| 久久久久久大精品| 国产精品亚洲美女久久久| 叶爱在线成人免费视频播放| 亚洲国产欧美网| 一a级毛片在线观看| 99久久综合精品五月天人人| 国产高清激情床上av| av黄色大香蕉| 宅男免费午夜| 精品一区二区三区av网在线观看| 国产精品免费一区二区三区在线| 国产在视频线在精品| 国产精品一及| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 国产高清激情床上av| 两人在一起打扑克的视频| 国产精品1区2区在线观看.| 亚洲无线在线观看| 亚洲在线观看片|