• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Reveal the large open-circuit voltage deficit of all-inorganic CsPbIBr2 perovskite solar cells

    2022-03-12 07:44:54YingHu胡穎JiapingWang王家平PengZhao趙鵬ZhenhuaLin林珍華SiyuZhang張思玉JieSu蘇杰MiaoZhang張苗JinchengZhang張進(jìn)成JingjingChang常晶晶andYueHao郝躍
    Chinese Physics B 2022年3期
    關(guān)鍵詞:趙鵬晶晶王家

    Ying Hu(胡穎) Jiaping Wang(王家平) Peng Zhao(趙鵬) Zhenhua Lin(林珍華) Siyu Zhang(張思玉)Jie Su(蘇杰) Miao Zhang(張苗) Jincheng Zhang(張進(jìn)成) Jingjing Chang(常晶晶) and Yue Hao(郝躍)

    1State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology,School of Microelectronics,Xidian University,Xi’an 710071,China

    2Advanced Interdisciplinary Research Center for Flexible Electronics,Xidian University,Xi’an 710071,China

    Keywords: all-inorganic perovskites,CsPbIBr2 solar cells,device simulation,voltage loss,Silvaco TCAD

    1. Introduction

    Since Miyasakaet al.first employed perovskites as the photovoltaic absorber in 2009,[1]organic-inorganic lead halide perovskites have attracted great attention in photovoltaic applications. In recent years, the power conversion efficiency (PCE) of single-junction cells has been elevated to 25.5% closing to the Shockley-Queisser (S-Q) limit,[2,3]which is attributed to lots of researchers devoting to the exploration of perovskite solar cells(PSCs).[4-8]More importantly,the main reason for the success is that lead halide perovskites possess excellent optical and electrical properties, including tunable bandgap, high light absorption coefficient, low exciton binding energy,long carrier diffusion length,and long carrier lifetime.[5,8-15]However, conventional organic-inorganic hybrid PSCs contain organic cations,such as MA+and FA+,which tend to evaporate and react with water molecules in the air and be easily decomposed by heat.[16-18]Considering superior thermal stability of perovskite material, the all-inorganic perovskites, such as CsPbI3, CsPbI2Br, CsPbIBr2, CsPbBr3,eliminate the organic components, which are the promising wide-bandgap candidates.[19-28]As the all-inorganic CsPbI3PSC was first reported by Snaithet al.with the PCE of 2.9%,[29]researchers have continuously improved the fabrication process of PSCs. In 2020, Sang Il Seok team reported a PCE of 20.37 % for all-inorganic PSCs, through adding a methylammonium chloride solution to accelerate the crystallization process of the all-inorganic perovskite, therefore the highly uniform and pinhole-minimized thin films were obtained,followed by surface passivation using octyl ammonium iodides in ambient air.[30]The highest PCE up to now for allinorganic PSCs is 20.8%,since an environmentally benign material,histamine(HA),is designed to passivate the iodine vacancies in the perovskite thin film.[31]Yanget al.reported dye molecule-assisted engineering as interface passivation, thus reducing the interfacial charge recombination to obtain recordhigh open circuit voltage (Voc) of 1.37 V and minimum voltage loss (Vloss=Eg/q-Voc) of 0.68 V for CsPbIBr2(with a bandgap of 2.05 eV) PSCs, thisVlossis even higher than that of CsPbBr3(with a wider bandgap of 2.3 eV) PSCs.[19]At present, the highest reportedVocof CsPbBr3PSCs is 1.70 V,corresponding to a minimumVlossof 0.60 V.[32]Limited by severeVloss,the current record-high PCE of CsPbIBr2PSCs is 11.04%, which is well below theoretical values of 21%.[33]Therefore, to further optimize the performance, theoretical analysis and research of CsPbIBr2PSCsVlossshould be carried out.

    Generally speaking,minimizing the non-radiative recombination loss is vital to improveVocand reduceVloss. Defects passivation of perovskite grain boundaries or film surface has been proved to be an effective measure to suppress the non-radiative recombination.[19,34-38]In addition, the modification of the energy level alignment between perovskite layer and adjacent charge transport layer (CTL) can reduce charge recombination loss and facilitate charge extraction at perovskite/CTL interface.[39]In the following parts,CsPbIBr2PSC is employed to investigate the reasons for the highVloss,and is expected to provide a guideline for designing high performance CsPbIBr2PSC with lowVloss. Firstly, the effect of the absorption layer thickness is studied comprehensively,and the optimal thickness is 200 nm.To achieve better energy level alignment, the influence of conduction and valence band offset is studied, and theVocof CsPbIBr2PSC with ZnO ETL is improved from 1.37 V to 1.52 V compared with SnO2. In addition, the optimum doping concentrations of SnO2electron transport layer(ETL)and Spiro-OMeTAD hole transport layer (HTL) are 1019cm-3and 1021cm-3, respectively. Finally,the minimalVlossand optimal performance are achieved when the cathode electrode work function is between-4.8 eV and-4.6 eV and the anode electrode work function is between-5.4 eV and-5.2 eV.

    2. Method

    In this study, optoelectronic simulator Silvaco TCAD is employed to optimize PSC. All-inorganic perovskite CsPbIBr2is used as the absorption layer.According to the existing reports, SnO2ETL and Spiro-OMeTAD(2,2′,7,7′-Tetrakis[N,N-di(4-methoxyphenyl)aMino]-9,9′-

    spirobifluorene) HTL in the CsPbIBr2PSC have the lowestVloss,[19]therefore, the planar device structure ITO/SnO2/CsPbIBr2/Spiro-OMeTAD/Ag is adopted in this study and shown in Fig. S1. Electrical parameters of the PSC are obtained from the literature and summarized in Table S1.[19,39-42]The theoretical analysis and simulation of PSCs are mainly based on the Poisson equation (Eq. (1)),carrier continuity(Eq.(2)),and drift-diffusion(Eq.(3));[43]

    whereε0is the vacuum permittivity,cis the speed of light,nandkare the real and imaginary parts of the refractive index,respectively,|E(x)|2is the optical electric field,his the Planck constant,λis the wavelength,andG(x)is the carrier generation rate. The refractive indexnand extinction coefficientkof all-inorganic perovskites are obtained from the literature.[42,45]This work is simulated under the standard AM1.5G solar spectrum.

    3. Results and discussion

    3.1. Optimization of perovskite layer thickness

    The perovskite absorption layer acts as the most important layer in PSC by absorbing light and converting into excitons or free carriers. Therefore, we first explored the influence of CsPbIBr2absorption layer thickness in this section. Figure 1(a)shows that short-circuit current density(Jsc)sharply increases when CsPbIBr2layer thickness is smaller than 100 nm, after that, the increase slows down and reaches saturation at 200 nm, and the saturation current is around 11.84 mA/cm2. TheVocdecreases with the increase of the CsPbIBr2layer thickness. In addition, figures 1(c) and 1(d)show that the filling factor(FF)of the device almost remains unchanged, and PCE reaches saturation when the absorption layer thickness is 200 nm(Jscis 11.83 mA/cm2;Vocis 1.53 V;FF is 85.19%; PCE is 15.53%). Therefore, in the following section, the solar cell with 200 nm CsPbIBr2layer is used as the standard device.

    Fig. 1. Performance parameters of PSC device with different thickness of perovskite: (a)Jsc,(b)Voc,(c)FF,and(d)PCE.

    To further investigate the reasons for the trend ofJsc,the net carrier generation rate (the difference between the carrier generation rate and the carrier recombination rate) and external quantum efficiency (EQE) of different absorption layer thicknesses are simulated, as shown in Figs. 2(a) and 2(b),respectively. The net charge carrier generation rate increases with the increasing absorption layer thickness and tends to saturate at 200 nm, which is consistent withJsc. According to the EQE simulation results, with the perovskite layer thickness increasing from 50 nm to 300 nm, the EQE in shortwavelength region (<400 nm) is almost unchanged, on the contrary, the EQE in long-wavelength region (>400 nm) is significantly improved, which indicates that photons in the short-wavelength region(<400 nm)can be almost completely absorbed by the thin perovskite film and the thickness increase mainly induces the improvement of photon absorption in the long-wavelength region (>400 nm). Moreover, the situation of EQE is similar with that ofJsc.

    Fig.2. (a)Net carrier generation rate and(b)EQE of PSCs with different thickness of perovskite layer. (c)Carrier generation rate and(d)energy band diagrams of the device with different perovskite layer thickness.

    In order to further explore theVocvariation, the carrier generation rate per unit thickness of the absorption layer is shown in Fig. 2(c) and exhibits an obvious declining trend,which indicates that the non-equilibrium carrier concentration reduces with the increase of the CsPbIBr2thickness.As we all know, electron quasi-Fermi level (Efn) and hole quasi-Fermi level (Efp) tend to close to each other due to the reduction of the non-equilibrium carrier concentration, in addition,Vocis proportional to the difference betweenEfnandEfp. Therefore,the difference betweenEfnandEfp(Fig.2(d))decreases with the increase of the perovskite absorption layer thickness,which is the reason thatVockeeps decreasing.

    According to Eqs. (4) and (5), the photoelectric field of perovskite layers with different thickness is studied under the condition of 400 nm,480 nm,550 nm and 600 nm wavelengths respectively. Overall,the peak value of the photoelectric field increases with the wavelength from 400 nm to 550 nm, and then decreases at the wavelength of 600 nm.In Fig.3(a),when the wavelength is 400 nm,the curves are almost overlapping,and the smooth descent of these curves indicates that there is no interference in the photoelectric field. Compared with the 400 nm wavelength, an obvious optical interference occurs when the wavelengths are 550 nm and 600 nm, as shown in Figs.3(c)and 3(d).At the same wavelength,although the peak value of the photoelectric field decreases with the increase of the absorption layer thickness, the thicker absorber layer can continuously generate more carriers. These conclusions about the photoelectric field of various wavelengths are consistent with the EQE results in Fig.2(b).

    Fig.3. Optical electric field(|E(x)|2)of(a)400 nm wavelength,(b)480 nm wavelength,(c)550 nm wavelength and(d)600 nm wavelength.

    3.2. Influence of conduction and valence band offset on device performance with interface defect layer

    According to the previous research, the highestVocof the all-inorganic CsPbIBr2PSC is only 1.37 V,[19]which is far lower than the 1.53 V obtained by the standard device in this study. The highVlossof the wide bandgap perovskite attributes to interface defects and band offset. Therefore, in this section, the influences of conduction band offset (CBO)and valence band offset(VBO)are studied. According to the literature,[46]we define 10 nm interface defect layer 1(IDL1)and 2(IDL2)at each of the interfaces of perovskite/ETL and perovskite/HTL,respectively.

    3.2.1. Conduction band offset of perovskite/ETL layer

    In Fig.4(a),theJ-Vcurves are almost overlapping when CBO increases from 0 to 0.5 eV, after that, when CBO exceeds 0.6 eV,Jscand FF drop sharply.Vocincreases significantly when CBO increases from-0.6 eV to 0 eV.As shown in Fig. 4(b), there is a spike at the IDL1/ETL interface, and the barrier increases significantly when CBO exceeds 0.5 eV.Carrier transport from absorption layer to ETL is obviously impeded, resulting in the decline ofJscand FF. As forVoc,when CBO is-0.5 eV (Fig. 4(c)), the energy band diagram of PSCs shows that there is a cliff at the IDL1/perovskite interface. The cliff does not impede the electron transfer from perovskite to IDL1,however it leads to the increase of the carrier recombination rate in IDL1. In Fig.4(d), the recombination rate reduces with the decrease of|CBO|. In addition,the spike impedes both photogeneration current (IL) and the forward current(IS),which leads to the decline of bothILandIS(Eq. (6)), therefore theVocremains constant at a fixed value when CBO is positive. In summary, when CBO is 0-0.5 eV,the optimal PCE(16.78%)of the device could be obtained.

    Fig. 4. (a) The J-V curves of the PSCs with different CBOs. (b) Energy band diagrams with the positive value of CBOs, and (c) energy band diagram with the negative value(-0.5 eV)of CBO.(d)Recombination rate in IDL1 of the device with different CBO.

    Fig.5. (a)Energy band positions of the device. (b)The J-V curves,(c)energy band diagrams,(d)internal longitudinal electric field of the device with different CBO of PSCs with SnO2 and ZnO as ETL,respectively.

    Fig.6. (a)The J-V curves of the PSCs with different VBOs.(b)Energy band diagrams,and(c)recombination rate in IDL2 with the negative valuesof VBOs. (d)Energy band diagrams with the positive values of VBOs.

    TheVocof the PSCs with SnO2ETL is only 1.37 V. The Csbased PSCs with ZnO ETLs have been widely studied, and have achieved competitive efficiency and stability over those with other metal oxides in our previous study.[47]In order to obtain better device performance, ZnO ETL is investigated to suppressVlossin PSCs. The material parameters of ZnO are obtained from the literature,[48]and the band diagram is shown in Fig. 5(a), it can be found that the conduction band of ZnO(CBO is-0.05 eV)is more suitable than that of SnO2(CBO is-0.3 eV).According to the result of theJ-Vcurves in Fig.5(b),the device performance with ZnO ETL is superior to that with SnO2ETL.Jscincreases from 11.58 mA/cm2to 11.97 mA/cm2, which attributes to the smaller parasitic absorption induced by the wider bandgap of ZnO. In addition,Voc(FF) increases from 1.37 V (84.92%) to 1.52 V (87.91%). This is because there is no cliff based on ZnO ETL compared with SnO2ETL, as shown in Fig. 5(c), resulting in lower carrier recombination rate.Moreover,as shown in Fig.5(d),the internal electric field with ZnO ETL is about 1 V/μm larger than that with SnO2ETL, which is conducive to the collection and extracting of carriers. Finally,the PCE of ZnO-based PSC(15.90%)is better than that of SnO2-based PSC(13.47%). Consequently,the conduction band of ETL material should be more matching with that of perovskite in order to eliminateVlossinduced by CBO as much as possible.

    3.2.2. Valence band offset of perovskite/HTL layer

    As shown in Fig. S3(a), whenEvHTLis greater thanEvperovskite, VBO is set to be negative, andEvIDL2(EcIDL2)is set to be consistent withEvHTL(Ecperovskite). In Fig.S3(b),whenEvperovskiteis greater thanEvHTL,VBO is set to be positive,andEcIDL2andEvIDL2are set to be consistent with perovskite. The charge carrier lifetime of IDL2 is set to be 1 ns,other optical and electrical parameters are identical to the perovskite layer.

    As shown in Fig. 6(a),Vocdecreases obviously with the VBO declining from 0 to-0.5 eV.Jscalmost remains constant and FF decreases slightly. As shown in Fig.6(b), when the VBO is negative,the cliff at the IDL2/perovskite interface rises with the raise of|VBO|,which leads to the increase of the carrier recombination rate in IDL2 (Fig. 6(c)). This explains the variation of performance parameters in Fig.6(a). In addition,the device performance drops significantly when VBO is larger than 0.3 eV. A spike is formed at the IDL2/HTL interface (Fig. 6(d)), and the barrier increases significantly when VBO exceeds 0.3 eV. Carrier transport from absorption layer to HTL is seriously impeded,resulting in the decline ofJscand FF.In addition,Vocis almost constant when VBO is positive,and the reason is consistent with the analysis in the previous section. In summary,when VBO is 0-0.3 eV,the optimal PCE(16.09%)and minimumVlossof the device could be obtained.

    3.3. Optimization of doping concentration of charge transport layer

    According to the previous reports, the doping of ETL could affect the extraction of free carriers and the device performance. The doping concentration of the ETL and HTL layer could be controlled by ion doping engineering approaches in experiments. In the simulation, doping concentrations of both ETL and HTL can be achieved by controlling the dopants type (donor concentration and acceptor concentration). The n-type doping concentration of the ETL layer is controlled and varied from 1015cm-3to 1021cm-3to study its influence on the performance in this work. As shown in Fig.7,Jscdecreases slightly with the increase of SnO2doping concentration. TheVocand FF increase firstly and then tend to saturate. The EQE almost remains constant with various ETL doping concentration (Fig. 8(a)), which indicates that the influence of the ETL doping concentration on light absorption is negligible.

    Fig.7.Performance parameters of PSCs with different doping concentration of ETL:(a)Jsc,(b)Voc,(c)FF,and(d)PCE.

    Fig.8. (a)EQE,(b)recombination rate,(c)energy band diagrams,(d)internal longitudinal electric field with different doping concentration of ETL.

    Figure 8(b) shows the carrier recombination rate in the SnO2layer. Impurity is a kind of recombination center,therefore the increase of doping concentration induces the reduction of carrier mobility,resulting in the increase of non-radiative recombination in ETL,leading to the decrease ofJsc. As shown in Fig. 8(c), the cliff does not change between the perovskite layer and IDL1 with the increase of SnO2doping concentration, therefore, the interface defect recombination rate is almost unchanged, however, the built-in electric fields in IDL1 and ETL significantly increase (Fig. 8(d)), so that the carriers can be collected more efficiently,this is consistent with the change ofVocand FF.Finally,the optimal efficiency is 14.15%when the SnO2doping concentration is 1019cm3.

    In addition,the different doping concentrations of Spiro-OMeTAD could affectVocand performance of PSCs as well.The p-type doping concentration of the HTL layer is varied from 1015cm-3to 1021cm-3. Figure 9(a) shows thatJscdecreases slightly with the increase of the Spiro-OMeTAD doping concentration, the main reason is that a large number of metal ions are added to produce the recombination center,which makes the non-radiative recombination in HTL increase sharply as shown in Fig.10(a),leading to the decrease ofJsc.Moreover, figure 9(b) shows thatVocincreases significantly with the increase of the Spiro-OMeTAD doping concentration. The reason is, on the one hand, the energy band position is pulled higher with the increase of the Spiro-OMeTAD doping concentration (Fig. 10(b)), leading to the increase of the electric field in the interface defect layer IDL2, as shown in Fig. 10(c), so the carrier is extracted and separated efficiently by HTL. On the other hand, the cliff is unchanged,which results in that the interface defect recombination does not increase. Consequently,when the doping concentration of Spiro-OMeTAD is 1021cm-3,Vocis improved from 1.14 V to 1.23 V effectively,and the optimal PCE is 12.04%.

    Fig.9.Performance parameters of PSCs with different doping concentration of HTL:(a)Jsc,(b)Voc,(c)FF,and(d)PCE.

    Fig.10. (a)Recombination rate,(b)energy band diagrams(c)internal longitudinal electric field with different doping concentration of HTL.

    3.4. Influence of electrode work function

    In the above study,cathode and anode electrodes are set to ohmic contact. However,the Schottky contact between carrier transport layer and electrode could not be avoided, resulting in the change of the energy band diagrams. Thus,it is meaningful to explore the effect of cathode electrode work function(Φcathode) and anode electrode work function (Φanode) on the performance of PSCs.

    3.4.1. Influence of cathode electrode work function

    In order to avoid the influence ofΦanode, the contact between HTL and anode electrode is set to ohmic contact.By comparingJ-Vcurves corresponding to differentΦcathodefrom-4.8 eV to-6.2 eV (Fig. 11(a)), the device performance decreases significantly. As shown in Fig. 11(b), the conduction band of SnO2keeps elevating with the decrease ofΦcathodefrom-4.8 eV to-6.2 eV, the slope of the energy band of the perovskite layer drastically reduces, which results in a significant decrease of the built-in electric field in the device, leading to the inefficient extraction of free carriers in the perovskite layer (Fig. 11(c)). Furthermore, a spike is formed in the energy band whenΦcathodeis between-5.4 eV and-6.2 eV, therefore, the negative electric field is generated inside the perovskite layer. This situation seriously hinders the transport of the carrier and results in the loss of the device performance. According to Figs.11(d)and 11(e),the carrier concentration increases with the decrease ofΦcathodefrom-4.8 eV to-5.4 eV, however, whenΦcathodeis between-5.8 eV and-6.2 eV, a large number of charge carriers cannot be efficiently collected by the corresponding charge transfer layer, resulting in the accumulation of carriers, which will lead to the increase of interface recombination and the loss ofVoc. In summary,the optimal performance of PSC (Jsc=11.86 mA/cm2,Voc=1.54 V, FF=82.87%,PCE = 15.13%) can be obtained whenΦcathodeis between-4.8 eV and-4.6 eV. Generally speaking, transparent conductive oxide(TCO)film is used as cathode electrode in planar forward structure PSCs,Hence,ITO and FTO are suitable for the device structure in this study.

    Fig.11. (a)The J-V curves,(b)energy band diagrams and(c)internal longitudinal electric field of PSCs with different Φcathode. (d)Electron and(e)hole concentration distributions of the perovskite layer with various Φcathode.

    3.4.2. Influence of anode electrode work function

    In this section, the contact between ETL and cathode electrode is set to ohmic contact. As shown in Fig. 12(a),the performance increases significantly with the decrease ofΦanodefrom-4.0 eV to-5.4 eV.For planar forward structure PSCs,the anode electrode is usually made of metal. When the metal electrode is Schottky contact with the p-type semiconductor,

    Fig.12. (a)The J-V curves,(b)energy band diagrams and(c)internal longitudinal electric field of PSCs with different Φanode. (d)Electron and(e)hole concentration distributions of the perovskite layer with various Φanode.

    4. Conclusion

    Several factors that affect theVocand the performance of single-junction CsPbIBr2PSC are investigated. Firstly, the thickness of the absorption layer is studied and the optimal value is 200 nm. As for CBO, when the conduction band of perovskite is higher than that of ETL, the band cliff leads to the increase of the carrier recombination rate in the interface defect layer, andVlossincreases obviously. In contrast,when the conduction band of perovskite is lower than that of ETL, the spike seriously hinders the transport of carriers from the absorber layer to ETL, resulting in the decrease ofJscand FF, however, there is almost no influence onVocdue to the decrease of both the photoelectric current and the forward current. The suitable value of CBO is 0-0.5 eV,and theVocof CsPbIBr2PSC with ZnO ETL increases significantly from 1.37 V to 1.52 V compared with that with SnO2ETL,owing to the better matching conduction band with CsPbIBr2absorption layer. The optimum VBO is 0-0.3 eV,and the reason is similar to CBO. What’s more, the doping concentration of CTL is optimized to minimizeVlossand improve the performance. The optimum doping concentrations of SnO2and Spiro-OMeTAD are 1019cm-3and 1021cm-3, respectively. Finally,whenΦcathode(Φanode)is between-4.8 eV and-4.6 eV (between-5.4 eV and-5.2 eV), the minimalVlossand optimal performance are obtained.

    Acknowledgements

    This work was financially supported by the National Natural Science Foundation of China (Grant No. 52192610),the Key Research and Development Program of Shaanxi Province, China (Grant No. 2020GY-310), Youth Project of Natural Science Basic Research Program of Shaanxi Province, China (Grant No. 2021JQ-189), the Joint Research Funds of Department of Science & Technology of Shaanxi Province and Northwestern Polytechnical University(Grant No.2020GXLH-Z-018),and the Fundamental Research Funds for the Central Universities,China.

    猜你喜歡
    趙鵬晶晶王家
    Digging for the past
    王家新的詩
    作品(2020年9期)2020-12-09 05:43:39
    炎熱的夏天
    王家灣
    The Impact of Dignity on Design Behavior
    青年生活(2019年3期)2019-09-10 16:57:14
    “同分異構(gòu)體”知識(shí)解談
    輕松一閱
    中老年保健(2017年7期)2017-05-30 12:38:17
    輕松一閱
    中老年保健(2017年3期)2017-05-30 08:31:12
    尋找失蹤的少女
    銀億股份:于無聲處聽驚雷
    av专区在线播放| 九草在线视频观看| 成人漫画全彩无遮挡| 久久99蜜桃精品久久| 三级国产精品欧美在线观看| 国产成人freesex在线| 亚洲人成网站高清观看| 欧美97在线视频| 免费黄频网站在线观看国产| a级毛色黄片| 性色avwww在线观看| 欧美zozozo另类| 嫩草影院入口| 18禁在线无遮挡免费观看视频| 搡老乐熟女国产| 国产成人91sexporn| 菩萨蛮人人尽说江南好唐韦庄| 婷婷色麻豆天堂久久| 亚洲精品日韩在线中文字幕| 亚洲精品乱码久久久久久按摩| 三级经典国产精品| 一个人看视频在线观看www免费| 久久久久久久久久久丰满| 18禁动态无遮挡网站| 99久久精品国产国产毛片| av在线播放精品| av一本久久久久| 九九久久精品国产亚洲av麻豆| 亚洲精品乱码久久久久久按摩| 欧美日本视频| 国产色爽女视频免费观看| 国产黄色视频一区二区在线观看| 午夜免费鲁丝| 一边亲一边摸免费视频| 丰满人妻一区二区三区视频av| 日本与韩国留学比较| 成人亚洲欧美一区二区av| 久久亚洲国产成人精品v| 亚洲人成网站高清观看| 精品人妻一区二区三区麻豆| 免费看日本二区| 51国产日韩欧美| 日韩免费高清中文字幕av| 女人十人毛片免费观看3o分钟| 观看美女的网站| 搡老乐熟女国产| 欧美精品国产亚洲| 国产精品一及| 少妇被粗大猛烈的视频| 在线观看免费日韩欧美大片 | 爱豆传媒免费全集在线观看| 亚洲美女视频黄频| 一区在线观看完整版| 亚洲激情五月婷婷啪啪| 亚洲电影在线观看av| 久久国产精品大桥未久av | 丝瓜视频免费看黄片| 免费看av在线观看网站| 99久国产av精品国产电影| 综合色丁香网| 国产精品欧美亚洲77777| 亚洲伊人久久精品综合| 欧美日韩在线观看h| 永久网站在线| 久久久久久久久久久免费av| 欧美人与善性xxx| h视频一区二区三区| 涩涩av久久男人的天堂| 久久精品国产鲁丝片午夜精品| 国产精品久久久久久精品古装| 欧美xxxx性猛交bbbb| 亚洲精品日本国产第一区| 在线观看免费高清a一片| 在线观看国产h片| a级毛片免费高清观看在线播放| 五月玫瑰六月丁香| 免费观看a级毛片全部| 日产精品乱码卡一卡2卡三| 国产成人精品久久久久久| 一个人看的www免费观看视频| 国产探花极品一区二区| 亚洲欧美成人精品一区二区| 欧美97在线视频| 日本欧美视频一区| 国产日韩欧美在线精品| 免费人成在线观看视频色| 丝袜喷水一区| 乱码一卡2卡4卡精品| 又爽又黄a免费视频| 精品亚洲成a人片在线观看 | 天堂俺去俺来也www色官网| 一本久久精品| 亚洲欧美清纯卡通| 精品久久久久久久末码| 亚洲色图综合在线观看| 国产综合精华液| 美女xxoo啪啪120秒动态图| 亚洲内射少妇av| 国产精品一及| 97超视频在线观看视频| 国产男人的电影天堂91| 一本色道久久久久久精品综合| 久久精品国产自在天天线| 我的女老师完整版在线观看| 国产爱豆传媒在线观看| 大话2 男鬼变身卡| 夜夜看夜夜爽夜夜摸| 欧美三级亚洲精品| 欧美日韩一区二区视频在线观看视频在线| 黄色日韩在线| 99精国产麻豆久久婷婷| 十八禁网站网址无遮挡 | av视频免费观看在线观看| videos熟女内射| 伊人久久国产一区二区| 亚洲国产精品国产精品| 久久久久久久大尺度免费视频| 国产亚洲av片在线观看秒播厂| 欧美老熟妇乱子伦牲交| 精品亚洲成a人片在线观看 | 美女主播在线视频| 看非洲黑人一级黄片| 美女主播在线视频| 久久精品久久久久久噜噜老黄| 亚洲国产av新网站| 亚洲一级一片aⅴ在线观看| 爱豆传媒免费全集在线观看| 欧美另类一区| 欧美性感艳星| 日本爱情动作片www.在线观看| 亚洲高清免费不卡视频| 国产精品久久久久成人av| 乱系列少妇在线播放| 亚洲精品成人av观看孕妇| 如何舔出高潮| 97在线人人人人妻| 美女中出高潮动态图| 熟女av电影| 麻豆成人av视频| 国产在线免费精品| av.在线天堂| 亚洲欧美一区二区三区黑人 | 美女福利国产在线 | 午夜精品国产一区二区电影| 熟妇人妻不卡中文字幕| 一级爰片在线观看| 在线精品无人区一区二区三 | 狂野欧美激情性xxxx在线观看| 亚洲高清免费不卡视频| 美女高潮的动态| 成人午夜精彩视频在线观看| 国产色婷婷99| 18+在线观看网站| 久久精品国产亚洲av涩爱| 成人亚洲精品一区在线观看 | av国产免费在线观看| 国产精品人妻久久久影院| 少妇的逼好多水| 青春草亚洲视频在线观看| 嫩草影院新地址| videossex国产| 亚洲国产色片| 国产乱来视频区| 亚洲精品456在线播放app| 亚洲美女搞黄在线观看| 少妇精品久久久久久久| 另类亚洲欧美激情| 99re6热这里在线精品视频| 最近中文字幕2019免费版| 久久国产乱子免费精品| 成人18禁高潮啪啪吃奶动态图 | 在线观看一区二区三区| 欧美一区二区亚洲| 乱系列少妇在线播放| 精品一品国产午夜福利视频| 久久久久久九九精品二区国产| 久久久国产一区二区| 热99国产精品久久久久久7| 三级经典国产精品| 夫妻性生交免费视频一级片| 日本午夜av视频| 中文精品一卡2卡3卡4更新| 亚洲高清免费不卡视频| 内地一区二区视频在线| 精品酒店卫生间| 深夜a级毛片| 久久久精品94久久精品| 免费黄色在线免费观看| 中文在线观看免费www的网站| 国产成人一区二区在线| 自拍偷自拍亚洲精品老妇| 国产高清国产精品国产三级 | 纵有疾风起免费观看全集完整版| 免费不卡的大黄色大毛片视频在线观看| 午夜福利视频精品| 久久久久久久大尺度免费视频| 欧美激情极品国产一区二区三区 | 美女主播在线视频| 黄色怎么调成土黄色| 国产亚洲一区二区精品| 男女无遮挡免费网站观看| 亚洲欧美一区二区三区黑人 | 欧美日本视频| 91久久精品电影网| 成人国产麻豆网| 欧美国产精品一级二级三级 | 下体分泌物呈黄色| 国产乱人偷精品视频| 夜夜看夜夜爽夜夜摸| 九色成人免费人妻av| 日韩欧美精品免费久久| 亚洲图色成人| 欧美+日韩+精品| 只有这里有精品99| av又黄又爽大尺度在线免费看| 亚洲成人手机| 免费看日本二区| 国产精品99久久久久久久久| 日韩免费高清中文字幕av| 欧美xxxx黑人xx丫x性爽| 纯流量卡能插随身wifi吗| 97超碰精品成人国产| 国产女主播在线喷水免费视频网站| 18禁裸乳无遮挡动漫免费视频| 国产精品久久久久久av不卡| 国产乱来视频区| 成人午夜精彩视频在线观看| 成人亚洲欧美一区二区av| 日本vs欧美在线观看视频 | 日韩欧美精品免费久久| 内地一区二区视频在线| 黄色一级大片看看| 国产精品福利在线免费观看| 在线观看美女被高潮喷水网站| 少妇人妻精品综合一区二区| 一级爰片在线观看| 国产免费一级a男人的天堂| 国产男人的电影天堂91| 春色校园在线视频观看| 国产日韩欧美亚洲二区| 国产一区二区三区综合在线观看 | 天天躁夜夜躁狠狠久久av| 少妇人妻 视频| 欧美日韩视频高清一区二区三区二| 在线免费十八禁| 久久精品国产a三级三级三级| 色综合色国产| 五月伊人婷婷丁香| 在线观看国产h片| 水蜜桃什么品种好| 国产免费又黄又爽又色| 女人久久www免费人成看片| freevideosex欧美| 舔av片在线| 国内精品宾馆在线| 久久精品国产鲁丝片午夜精品| 女性生殖器流出的白浆| 亚洲激情五月婷婷啪啪| 免费不卡的大黄色大毛片视频在线观看| 国产精品久久久久久av不卡| 99热6这里只有精品| 一级爰片在线观看| 日本-黄色视频高清免费观看| 国产精品无大码| 亚洲精品国产色婷婷电影| 丝袜脚勾引网站| av黄色大香蕉| 大香蕉久久网| h日本视频在线播放| 亚洲精品aⅴ在线观看| 欧美精品一区二区免费开放| 在线观看免费日韩欧美大片 | 亚洲精品一二三| 亚洲欧美一区二区三区黑人 | 日韩电影二区| 永久网站在线| 日韩大片免费观看网站| 日日摸夜夜添夜夜爱| 18禁动态无遮挡网站| 精品少妇黑人巨大在线播放| 精品视频人人做人人爽| 女人久久www免费人成看片| 精品一区二区免费观看| 久久人人爽av亚洲精品天堂 | 国产精品一区二区性色av| www.色视频.com| 久久人人爽av亚洲精品天堂 | 永久网站在线| 亚洲欧洲国产日韩| 夜夜骑夜夜射夜夜干| 亚洲av成人精品一区久久| 99精国产麻豆久久婷婷| 少妇的逼好多水| 99热全是精品| 国产精品一区二区三区四区免费观看| 亚洲真实伦在线观看| 免费观看性生交大片5| 免费看日本二区| 日本黄色日本黄色录像| 亚洲真实伦在线观看| 97在线视频观看| 黄色视频在线播放观看不卡| 国产欧美日韩精品一区二区| 老司机影院毛片| 日韩制服骚丝袜av| 一区二区三区乱码不卡18| 亚洲人成网站在线播| 成人免费观看视频高清| 日韩精品有码人妻一区| 91精品伊人久久大香线蕉| 97在线人人人人妻| 精品酒店卫生间| 亚洲精品日韩av片在线观看| 99九九线精品视频在线观看视频| 久久久久性生活片| 国产又色又爽无遮挡免| 身体一侧抽搐| 欧美少妇被猛烈插入视频| 少妇熟女欧美另类| 在线精品无人区一区二区三 | 亚洲人与动物交配视频| 亚洲不卡免费看| 永久网站在线| av免费在线看不卡| av卡一久久| videos熟女内射| 欧美日韩综合久久久久久| 国产一区二区在线观看日韩| 91在线精品国自产拍蜜月| 狂野欧美激情性bbbbbb| 国产探花极品一区二区| 亚洲欧美成人综合另类久久久| 午夜老司机福利剧场| av视频免费观看在线观看| 国产精品秋霞免费鲁丝片| 丰满少妇做爰视频| 秋霞伦理黄片| 日韩精品有码人妻一区| 丝袜脚勾引网站| 看免费成人av毛片| 七月丁香在线播放| av女优亚洲男人天堂| 国产成人一区二区在线| 草草在线视频免费看| 日韩免费高清中文字幕av| 精品视频人人做人人爽| 国产真实伦视频高清在线观看| 午夜福利视频精品| 国产免费又黄又爽又色| 2022亚洲国产成人精品| 高清不卡的av网站| 少妇精品久久久久久久| 亚洲激情五月婷婷啪啪| 啦啦啦中文免费视频观看日本| 国产 一区 欧美 日韩| 国产成人精品久久久久久| 舔av片在线| 九九爱精品视频在线观看| 国产精品久久久久久久电影| 国产男女内射视频| 丝袜脚勾引网站| 不卡视频在线观看欧美| 各种免费的搞黄视频| 建设人人有责人人尽责人人享有的 | 高清欧美精品videossex| 国产免费又黄又爽又色| 久久久午夜欧美精品| 综合色丁香网| 少妇精品久久久久久久| 观看av在线不卡| 我要看黄色一级片免费的| 尾随美女入室| 日韩中字成人| 高清欧美精品videossex| 欧美人与善性xxx| 国产欧美另类精品又又久久亚洲欧美| 性色av一级| 22中文网久久字幕| 天天躁日日操中文字幕| a级一级毛片免费在线观看| 精品国产三级普通话版| 国产片特级美女逼逼视频| 欧美激情极品国产一区二区三区 | 超碰av人人做人人爽久久| 中文字幕制服av| 99精国产麻豆久久婷婷| 国产综合精华液| 亚洲av在线观看美女高潮| 亚洲欧美精品自产自拍| 在线观看国产h片| 高清毛片免费看| 日本-黄色视频高清免费观看| 精品久久国产蜜桃| 97精品久久久久久久久久精品| 国产一区有黄有色的免费视频| 欧美日韩一区二区视频在线观看视频在线| 少妇的逼好多水| 色视频www国产| 国产一区二区三区综合在线观看 | 男女边吃奶边做爰视频| 亚洲精品456在线播放app| 在线观看av片永久免费下载| 大香蕉97超碰在线| 久久女婷五月综合色啪小说| 欧美一区二区亚洲| 一个人免费看片子| 日韩中字成人| 啦啦啦啦在线视频资源| 一区二区三区四区激情视频| 久久精品国产鲁丝片午夜精品| 亚洲熟女精品中文字幕| 韩国av在线不卡| 亚洲av欧美aⅴ国产| 天美传媒精品一区二区| 如何舔出高潮| 一级毛片黄色毛片免费观看视频| 久久综合国产亚洲精品| av在线老鸭窝| 久久99精品国语久久久| 日韩欧美精品免费久久| 免费av不卡在线播放| 丰满迷人的少妇在线观看| 又爽又黄a免费视频| 亚洲精品亚洲一区二区| 王馨瑶露胸无遮挡在线观看| 制服丝袜香蕉在线| 精品久久久久久久久av| 亚洲av综合色区一区| 熟女电影av网| 夫妻午夜视频| 国产91av在线免费观看| 人妻夜夜爽99麻豆av| 少妇裸体淫交视频免费看高清| 老师上课跳d突然被开到最大视频| 国内少妇人妻偷人精品xxx网站| 一区二区三区四区激情视频| 一个人免费看片子| av播播在线观看一区| 国产成人a∨麻豆精品| 亚洲三级黄色毛片| 久久国产乱子免费精品| 中文字幕精品免费在线观看视频 | 十八禁网站网址无遮挡 | 天堂8中文在线网| 久久久精品免费免费高清| 五月玫瑰六月丁香| 亚洲精品一区蜜桃| 九九久久精品国产亚洲av麻豆| 国产亚洲一区二区精品| 国产精品国产三级专区第一集| 一级毛片我不卡| 久久久久久久久久人人人人人人| 99九九线精品视频在线观看视频| 成人一区二区视频在线观看| 亚洲av.av天堂| 精品99又大又爽又粗少妇毛片| 久久人妻熟女aⅴ| 2018国产大陆天天弄谢| 国产精品久久久久久精品古装| 午夜福利网站1000一区二区三区| 国产成人精品婷婷| 亚洲精品456在线播放app| 91久久精品电影网| 亚洲综合精品二区| 日韩国内少妇激情av| 夫妻午夜视频| 精品亚洲成a人片在线观看 | 国产精品久久久久久精品电影小说 | 亚洲第一区二区三区不卡| 日韩成人av中文字幕在线观看| 夜夜爽夜夜爽视频| 国内揄拍国产精品人妻在线| 亚洲精品日本国产第一区| 大香蕉久久网| 狂野欧美激情性xxxx在线观看| 精品亚洲成a人片在线观看 | 欧美xxxx性猛交bbbb| 欧美日韩综合久久久久久| 日日摸夜夜添夜夜爱| 看免费成人av毛片| 免费久久久久久久精品成人欧美视频 | 国产精品秋霞免费鲁丝片| 欧美极品一区二区三区四区| 国产一区二区三区av在线| 妹子高潮喷水视频| 免费高清在线观看视频在线观看| 日韩 亚洲 欧美在线| 纵有疾风起免费观看全集完整版| 夜夜骑夜夜射夜夜干| 伊人久久精品亚洲午夜| 中文精品一卡2卡3卡4更新| 午夜精品国产一区二区电影| av网站免费在线观看视频| 在线观看免费高清a一片| 99久久精品一区二区三区| 国产精品人妻久久久影院| 亚洲图色成人| 亚洲欧美精品专区久久| 久久国内精品自在自线图片| 免费大片黄手机在线观看| 噜噜噜噜噜久久久久久91| 欧美一级a爱片免费观看看| 国产精品秋霞免费鲁丝片| 国产69精品久久久久777片| 日韩欧美 国产精品| 一区二区三区乱码不卡18| 看免费成人av毛片| 成人18禁高潮啪啪吃奶动态图 | 人体艺术视频欧美日本| 免费观看性生交大片5| 亚洲精华国产精华液的使用体验| 99久久中文字幕三级久久日本| 欧美日韩亚洲高清精品| 久久精品人妻少妇| 日韩亚洲欧美综合| 亚洲第一区二区三区不卡| 亚洲综合精品二区| 全区人妻精品视频| 中文字幕精品免费在线观看视频 | 欧美日韩在线观看h| 黄色视频在线播放观看不卡| 在线天堂最新版资源| 欧美zozozo另类| 亚洲性久久影院| 麻豆国产97在线/欧美| 在线观看一区二区三区激情| 看非洲黑人一级黄片| 色视频www国产| 在线观看av片永久免费下载| 最后的刺客免费高清国语| 国产在线免费精品| 深爱激情五月婷婷| 国产淫语在线视频| 日韩三级伦理在线观看| 亚洲精品一区蜜桃| 看非洲黑人一级黄片| 99热这里只有是精品在线观看| 国产永久视频网站| 我要看黄色一级片免费的| 新久久久久国产一级毛片| 国产 一区精品| 麻豆精品久久久久久蜜桃| 日韩一本色道免费dvd| 春色校园在线视频观看| 一个人看的www免费观看视频| 国精品久久久久久国模美| 人人妻人人爽人人添夜夜欢视频 | 国产成人精品久久久久久| 精品久久久精品久久久| 国产探花极品一区二区| 成人18禁高潮啪啪吃奶动态图 | 两个人的视频大全免费| 亚洲va在线va天堂va国产| 一个人看的www免费观看视频| av在线播放精品| 欧美激情国产日韩精品一区| 搡老乐熟女国产| 国产午夜精品一二区理论片| 夫妻午夜视频| 亚洲丝袜综合中文字幕| 777米奇影视久久| 免费黄频网站在线观看国产| 精品国产三级普通话版| 久久久久久久大尺度免费视频| 黄片无遮挡物在线观看| 麻豆精品久久久久久蜜桃| 91午夜精品亚洲一区二区三区| 亚洲欧美中文字幕日韩二区| av在线蜜桃| 男人和女人高潮做爰伦理| 欧美日韩综合久久久久久| 18禁在线无遮挡免费观看视频| 国产精品.久久久| 一区二区三区四区激情视频| 一个人看视频在线观看www免费| 噜噜噜噜噜久久久久久91| 另类亚洲欧美激情| 一边亲一边摸免费视频| 成年女人在线观看亚洲视频| 国国产精品蜜臀av免费| 成人综合一区亚洲| 一级片'在线观看视频| 男女无遮挡免费网站观看| xxx大片免费视频| 日韩视频在线欧美| 国产精品免费大片| 久热这里只有精品99| 少妇的逼好多水| 日韩电影二区| 国产亚洲欧美精品永久| av专区在线播放| 亚洲国产欧美人成| 久久这里有精品视频免费| av一本久久久久| 久久亚洲国产成人精品v| 天堂8中文在线网| 少妇高潮的动态图| 国语对白做爰xxxⅹ性视频网站| 1000部很黄的大片| 水蜜桃什么品种好| 成人黄色视频免费在线看| 九九爱精品视频在线观看| 亚洲美女视频黄频| videos熟女内射| av又黄又爽大尺度在线免费看| 大又大粗又爽又黄少妇毛片口| 麻豆国产97在线/欧美| 午夜免费男女啪啪视频观看| av一本久久久久| 久久久久久久久久成人| 亚洲,一卡二卡三卡| 三级经典国产精品| 性色avwww在线观看| 国产免费一级a男人的天堂| 日韩 亚洲 欧美在线|