竇海石,張幽彤,艾 強(qiáng),趙心琦
面向耦合分流動(dòng)力構(gòu)型的拖拉機(jī)犁耕工況控制策略
竇海石,張幽彤※,艾 強(qiáng),趙心琦
(北京理工大學(xué)機(jī)械與車輛學(xué)院,北京 100089)
當(dāng)前中國(guó)農(nóng)田集群和能源短缺現(xiàn)狀極大地促進(jìn)了混合動(dòng)力拖拉機(jī)的推廣與使用,然而混動(dòng)拖拉機(jī)動(dòng)態(tài)變載荷工況加大了整機(jī)功率的耦合與分流難度。為此,該研究以發(fā)動(dòng)機(jī)和雙電機(jī)為動(dòng)力源,利用圖論原理設(shè)計(jì)出滿足全功率范圍作業(yè)需求的兩種動(dòng)力系統(tǒng)耦合分流構(gòu)型。此外,為實(shí)現(xiàn)整機(jī)的高能效目的,提出了基于馬爾科夫決策的能量管理策略:首先根據(jù)拖拉機(jī)的載荷譜對(duì)整機(jī)作業(yè)環(huán)境進(jìn)行辨識(shí),采集犁耕作業(yè)環(huán)境下的拖拉機(jī)工作參數(shù)將需求功率抽象為馬爾科夫決策中的狀態(tài)轉(zhuǎn)移過程;然后將整機(jī)能耗作為最優(yōu)控制的成本函數(shù),通過價(jià)值迭代函數(shù)求解最優(yōu)控制律下電機(jī)2的工作區(qū)間。最后,采用硬件在環(huán)試驗(yàn)對(duì)提出的能量管理策略進(jìn)行了有效性和可行性驗(yàn)證。試驗(yàn)結(jié)果表明,相比于傳統(tǒng)基于規(guī)則的能量管理,提出的能量管理試驗(yàn)策略降低了7.2%的油耗。所設(shè)計(jì)的耦合分流構(gòu)型拓展了拖拉機(jī)動(dòng)力系統(tǒng)能量流的路徑,直接耦合分流構(gòu)型擬替代傳統(tǒng)動(dòng)力換擋的技術(shù)難點(diǎn)。能量管理策略在能效特性方面有一定優(yōu)勢(shì),所提出的耦合分流動(dòng)力構(gòu)型為突破大馬力拖拉機(jī)動(dòng)力換擋的卡脖子技術(shù)提供了參考。
拖拉機(jī);試驗(yàn);能量管理策略;控制策略;耦合分流構(gòu)型;馬爾科夫決策
國(guó)內(nèi)農(nóng)田集約化發(fā)展的現(xiàn)狀促進(jìn)了大馬力拖拉機(jī)的快速發(fā)展。傳統(tǒng)的大馬力拖拉機(jī)在作業(yè)時(shí)需要不斷地通過動(dòng)力換擋和無(wú)極變速來(lái)適應(yīng)頻繁波動(dòng)的外界負(fù)載[1-2]。然而,當(dāng)前自主化設(shè)計(jì)的大馬力拖拉機(jī)受制于加工工藝、材料和加工精度等技術(shù)問題,短時(shí)間內(nèi)很難突破動(dòng)力換擋和無(wú)極變速在制造工藝上的卡脖子難題。因此,發(fā)動(dòng)機(jī)-電機(jī)耦合的混合動(dòng)力拖拉機(jī)構(gòu)型能夠借助電機(jī)快速響應(yīng)特性優(yōu)化發(fā)動(dòng)機(jī)換擋的穩(wěn)定性,具有替代傳統(tǒng)動(dòng)力換擋的潛力[3-4]。
混合動(dòng)力拖拉機(jī)在提高整機(jī)燃油經(jīng)濟(jì)性的同時(shí)可以減少碳排放,滿足農(nóng)業(yè)機(jī)械的綠色環(huán)保要求[5]。但是與混合動(dòng)力乘用車不同的是,混動(dòng)拖拉機(jī)作業(yè)負(fù)載具有動(dòng)態(tài)變載荷特性,需要根據(jù)該特性進(jìn)行功率分流的構(gòu)型設(shè)計(jì),以提高整機(jī)的作業(yè)效率。趙江靈等[6]通過構(gòu)建動(dòng)力性、經(jīng)濟(jì)性與成本的評(píng)價(jià)體系確定某車型串/并聯(lián)混合動(dòng)力系統(tǒng)的構(gòu)型。劉振濤[7]基于“完全圖”理論確定行星輪系混合動(dòng)力系統(tǒng)的構(gòu)型。傳統(tǒng)大馬力拖拉機(jī)前后橋輸出和動(dòng)力輸出軸(Power Take-Off,PTO)通過減速分動(dòng)箱實(shí)現(xiàn),柴油機(jī)動(dòng)力經(jīng)分動(dòng)箱分流至驅(qū)動(dòng)橋和PTO,拖拉機(jī)行駛車速和旋耕模式下葉片轉(zhuǎn)速呈線性耦合關(guān)系,造成拖拉機(jī)的作業(yè)質(zhì)量難以提高,且作業(yè)載荷沖擊會(huì)影響拖拉機(jī)的駕駛性能。為解決這一問題,本文提出直接耦合分流構(gòu)型對(duì)拖拉機(jī)前后橋和PTO進(jìn)行解耦輸出。
此外,混合動(dòng)力拖拉機(jī)在實(shí)際工作時(shí)受到工況不確定性和外界載荷沖擊的影響,容易制約整機(jī)燃油經(jīng)濟(jì)性和動(dòng)力性的發(fā)揮[8]。為此,需要針對(duì)混動(dòng)拖拉機(jī)的作業(yè)工況和負(fù)載環(huán)境進(jìn)行實(shí)時(shí)功率需求預(yù)測(cè)和能量管理策略的優(yōu)化。功率需求預(yù)測(cè)具有滾動(dòng)優(yōu)化和反饋校正的優(yōu)點(diǎn),能減小沖擊載荷對(duì)能量管理策略的影響[9-10]。錢立軍等[11]基于隨機(jī)模型預(yù)測(cè)控制原理預(yù)測(cè)了四輪混合動(dòng)力汽車轉(zhuǎn)矩需求,在保證電池荷電狀態(tài)下提高了燃油經(jīng)濟(jì)性。秦大同等[12]建立了顯示隨機(jī)模型的預(yù)測(cè)控制能量管理策略,通過模型簡(jiǎn)化方法把非線性的能量管理問題轉(zhuǎn)化為二次優(yōu)化問題,測(cè)試結(jié)果表明提出的優(yōu)化方法能夠大幅度的提高整機(jī)燃油能效特性。為解決作業(yè)過程中變載荷沖擊的問題,Guo等[13]提出了二維的間歇式迭代學(xué)習(xí)控制和時(shí)間式模型預(yù)測(cè)控制策略,測(cè)試結(jié)果表明該策略能夠有效地預(yù)測(cè)整機(jī)功率,并且具有較好的收斂速度,擁有一定的實(shí)時(shí)執(zhí)行能力。Zhang[14]等針對(duì)串/并聯(lián)插電式混合動(dòng)力汽車開發(fā)了一種基于學(xué)習(xí)的模型預(yù)測(cè)控制策略,以期解決混合動(dòng)力汽車的非線性能量管理問題,仿真結(jié)果表明提出的策略可以優(yōu)化分配發(fā)動(dòng)機(jī)和電機(jī)的功率需求,然而該方法需要大量的算法優(yōu)化和最優(yōu)軌跡尋根過程,會(huì)消耗大量的整車控制器計(jì)算資源,不利于相關(guān)策略的在線執(zhí)行。此外,上述方法大多基于混合動(dòng)力乘用車展開,很少探究混合動(dòng)力拖拉機(jī)的綜合能量管理,而混動(dòng)拖拉機(jī)作業(yè)負(fù)載具有動(dòng)態(tài)變載荷特性使其能量管理策略的設(shè)計(jì)更為復(fù)雜。
為解決以上難題,本文以混合動(dòng)力拖拉機(jī)為研究對(duì)象,采用圖論原理設(shè)計(jì)滿足全范圍作業(yè)功率需求的動(dòng)力系統(tǒng)耦合分流構(gòu)型。在此基礎(chǔ)上,提出基于作業(yè)環(huán)境辨識(shí)的功率需求預(yù)測(cè)和最優(yōu)能量管理策略。
根據(jù)分層圖論原理所設(shè)計(jì)的拖拉機(jī)動(dòng)力系統(tǒng)直接耦合分流構(gòu)型如圖1所示。動(dòng)力單元包括ISG(Integrated Starter and Generator)電機(jī)、驅(qū)動(dòng)電機(jī)和發(fā)動(dòng)機(jī),驅(qū)動(dòng)電機(jī)的轉(zhuǎn)子軸為空心結(jié)構(gòu),驅(qū)動(dòng)電機(jī)的動(dòng)力經(jīng)兩檔變速箱變速后主要用于拖拉機(jī)前后橋的驅(qū)動(dòng)。發(fā)動(dòng)機(jī)和ISG電機(jī)之間的動(dòng)力通過離合器C1連接,ISG電機(jī)的動(dòng)力輸出軸與驅(qū)動(dòng)電機(jī)的轉(zhuǎn)子軸同軸裝配,它們之間的動(dòng)力通過離合器C2實(shí)現(xiàn)耦合或分離。發(fā)動(dòng)機(jī)和ISG電機(jī)的動(dòng)力主要作為動(dòng)力輸出軸旋耕時(shí)的動(dòng)力源。控制單元主要包括整車控制器(Vehicle Control Unit, VCU)、發(fā)動(dòng)機(jī)控制器(Engine Control Unit, ECU)、電機(jī)控制(Motor Control Unit, MCU)和動(dòng)力電池的管理系統(tǒng)(Battery Management System, BMS),它們之間通過CAN(Controller Area Network)網(wǎng)絡(luò)進(jìn)行連接和通訊,實(shí)現(xiàn)整拖拉機(jī)的協(xié)同控制[14]。
1.低速擋 2.同步器 3.高速擋 4.前驅(qū)動(dòng)輸出 5.后驅(qū)動(dòng)輸出 6.PTO動(dòng)力輸出 7.PTO減速箱 8.發(fā)動(dòng)機(jī) 9.ISG電機(jī) 10.驅(qū)動(dòng)電機(jī) 11.動(dòng)力電池
1.Low gear 2.Synchronizer 3.High gear 4.Front drive output 5. Rear drive output 6.PTO power output 7.PTO gearbox 8.Engine 9.ISG motor 10.Drive motor 11.Power battery
注:C1,C2,C3為離合器;VCU為整車控制器;MCU為電機(jī)控制器;ECU為發(fā)動(dòng)機(jī)控制器;BMS為電池管理系統(tǒng)。
Note: C1, C2, C3 is the clutch. VCU is the vehicle control unit, MCU is the motor control unit. ECU is the engine control unit. BMS is the battery management system.
圖1 耦合分流構(gòu)型及功率流示意圖
Fig.1 Schematic diagram of the coupled shunt configuration and power flow
動(dòng)力單元和離合器的布局為拖拉機(jī)多種作業(yè)項(xiàng)目功率需求的全覆蓋而設(shè)計(jì)。根據(jù)動(dòng)力單元和離合器(C1,C2,C3)所處的狀態(tài),直接耦合分流動(dòng)力系統(tǒng)拖拉機(jī)的工作模式如表1所示。根據(jù)拖拉機(jī)作業(yè)項(xiàng)目的功率需求,選擇拖拉機(jī)所對(duì)應(yīng)的功率流路徑和變速箱檔位。為調(diào)節(jié)發(fā)動(dòng)機(jī)的工作區(qū)間并減小發(fā)動(dòng)機(jī)因載荷沖擊引起的大范圍的轉(zhuǎn)矩波動(dòng),選擇ISG電機(jī)作為動(dòng)力調(diào)節(jié)單元(發(fā)動(dòng)機(jī)或電動(dòng)機(jī))。單電機(jī)2模式為拖拉機(jī)旋耕作業(yè)項(xiàng)目前后橋驅(qū)動(dòng)和PTO解耦輸出而設(shè)定。
表1 直接耦合分流拖拉機(jī)工作模式
與動(dòng)力系統(tǒng)直接耦合的構(gòu)型相比,通過行星排可實(shí)現(xiàn)動(dòng)力系統(tǒng)的間接耦合和分流,該方式使得動(dòng)力分配更為靈活[15]。所設(shè)計(jì)的間接耦合分流構(gòu)型結(jié)構(gòu)示意圖如圖2所示。
1.離合器 2.制動(dòng)器 3.太陽(yáng)輪 4.行星架 5.外齒圈 6.驅(qū)動(dòng)輸出軸 7.PTO輸出軸
1.Clutch 2.Brake 3.Sun gear 4.Planet carrier 5.Outer ring gear 6.Drive output shaft 7.PTO output shaft
注:R、C、S分別為外齒圈,行星輪和太陽(yáng)輪。
Note: R, C and S are outer gear ring, planetary gear and sun gear respectively.
圖2 行星輪系間接動(dòng)力耦合系統(tǒng)構(gòu)型
Fig.2 Configuration of indirect dynamic coupling system of planetary gear train
負(fù)載輸出(PTO輸出)和驅(qū)動(dòng)輸出工作模式介紹如下:1)切斷離合器1使得發(fā)動(dòng)機(jī)和電機(jī)1(ISG電機(jī))構(gòu)成增程器模式,而電機(jī)2處于單獨(dú)工作模式。該模式下整機(jī)的PTO輸出和驅(qū)動(dòng)輸出均由電機(jī)2負(fù)責(zé),而增程器(發(fā)動(dòng)機(jī)+電機(jī)1)則根據(jù)整機(jī)電池電量進(jìn)行發(fā)電補(bǔ)償,該模式使得發(fā)動(dòng)機(jī)不依賴于外部負(fù)載工作,而可以長(zhǎng)時(shí)間地工作于高效率區(qū),減少發(fā)動(dòng)機(jī)油耗。2)閉合離合器1使得發(fā)動(dòng)機(jī)動(dòng)力經(jīng)過行星架輸出給PTO,滿足拖拉機(jī)大負(fù)載作業(yè)工況下的大轉(zhuǎn)矩需求;此外,電機(jī)2和行星架的轉(zhuǎn)矩經(jīng)行星輪系耦合后可通過外齒圈輸出至驅(qū)動(dòng)系統(tǒng),滿足整機(jī)行駛時(shí)的驅(qū)動(dòng)需求。當(dāng)制動(dòng)器處于制動(dòng)狀態(tài)時(shí)行星架靜止,驅(qū)動(dòng)軸的能量可通過電機(jī)2的負(fù)轉(zhuǎn)矩模式進(jìn)行制動(dòng)能量回收,減少整機(jī)能量消耗。
為便于后續(xù)能量管理策略的構(gòu)建,重點(diǎn)建立動(dòng)力耦合系統(tǒng)中轉(zhuǎn)速與轉(zhuǎn)矩耦合關(guān)系。定義行星輪系特征參數(shù)為
式中z和z分別表示外齒圈和太陽(yáng)輪的齒數(shù)。根據(jù)周轉(zhuǎn)輪系的轉(zhuǎn)速關(guān)系得到:
式中ω,ω,ω分別為太陽(yáng)輪、外齒圈和行星架的轉(zhuǎn)速, r/min 。需要注意的是,如果忽略行星輪的慣性,力矩傳遞過程滿足如下方程:
T∶T∶T=1∶∶?(1+)(3)
式中T、T與T分別為太陽(yáng)輪、外齒圈與行星架的內(nèi)轉(zhuǎn)矩,即行星輪系對(duì)各個(gè)部件的作用力矩,N·m。定義功率分流機(jī)構(gòu)的傳動(dòng)比和臨界傳動(dòng)比分別為
當(dāng)該構(gòu)型動(dòng)力傳動(dòng)處于平衡狀態(tài)時(shí):
式中2、1/e分別為電機(jī)2驅(qū)動(dòng)轉(zhuǎn)矩、電機(jī)1和發(fā)動(dòng)機(jī)轉(zhuǎn)矩耦合轉(zhuǎn)矩,N?m,T為外齒圈輸出驅(qū)動(dòng)的轉(zhuǎn)矩,N?m。由式(2)~(6)得電機(jī)2的轉(zhuǎn)速、轉(zhuǎn)矩和發(fā)動(dòng)機(jī)與電機(jī)1耦合后的轉(zhuǎn)速1/e、轉(zhuǎn)矩1/e關(guān)系為
式中2和1/e分別為電機(jī)2的角速度、發(fā)動(dòng)機(jī)和電機(jī)1耦合后的轉(zhuǎn)速, r/min。發(fā)動(dòng)機(jī)和電機(jī)的動(dòng)力產(chǎn)生存在本質(zhì)區(qū)別,不同形式動(dòng)力系統(tǒng)的控制策略有所差異,為使行星輪系動(dòng)力耦合系統(tǒng)快速響應(yīng)不同作業(yè)項(xiàng)目下拖拉機(jī)的動(dòng)力需求,在犁耕項(xiàng)目下本文選擇發(fā)動(dòng)機(jī)轉(zhuǎn)矩控制,電機(jī)1和電機(jī)2轉(zhuǎn)速控制[16-17]。行星輪系動(dòng)力學(xué)模型可表示為
在犁耕模式下,拖拉機(jī)需要克服滾動(dòng)阻力和牽引阻力,由牽引平衡方程式牽引力F和滾動(dòng)阻力F分別表示為[18]
F是通過經(jīng)驗(yàn)公式求得的機(jī)具端負(fù)載阻力,N,實(shí)際在田間工作時(shí)需要考慮作業(yè)對(duì)象、作業(yè)時(shí)間和作業(yè)地點(diǎn)隨時(shí)間的變化。相關(guān)試驗(yàn)表明牽引阻力隨時(shí)間連續(xù)變化[18],為方便研究可以近似的用正弦曲線表示負(fù)載阻力隨時(shí)間的變化關(guān)系,所以機(jī)具端負(fù)載阻力F特性如式(12)所示。其中是牽引阻力不均率,取值范圍為0.2~0.4;f為農(nóng)機(jī)具阻力變化的頻率,Hz;為拖拉機(jī)的作業(yè)時(shí)間,s。犁耕作業(yè)模式下主要參數(shù)[19]如表2所示,其整車需求功率表示為
式中v為不考慮滑移狀態(tài)下的拖拉機(jī)縱向行駛速度,m/s。
表2 犁耕作業(yè)模式下主要參數(shù)
為評(píng)估耦合分流拖拉機(jī)整車能量管理,需要對(duì)動(dòng)力電池系統(tǒng)進(jìn)行建模。動(dòng)力電池采用包含電壓源和電池內(nèi)阻的一階等效電路(圖3a),為簡(jiǎn)化建模過程開路電壓隨電量SOC(State of Charge)和環(huán)境溫度的非線性變化在室溫中測(cè)得,如圖3b所示,滿電狀態(tài)開路電壓為336 V,隨電量SOC近似呈線性關(guān)系。
放電或充電過程中電量SOC會(huì)隨母線電流和電池輸出、輸入功率變化,其差分方程表示為[20]
式中0為電池最大容量,Ah;I為母線電流,A;P為電池輸出、輸出功率,kW;為電池放電時(shí)間,s。
母線電流根據(jù)開路電壓和電池內(nèi)阻確定:
式中VOC為電池開路電壓,V;Ri為電池內(nèi)阻,W;VBT為負(fù)載端電壓,V。
為了提高功率需求預(yù)測(cè)的準(zhǔn)確度,需要對(duì)拖拉機(jī)的作業(yè)環(huán)境進(jìn)行區(qū)分。國(guó)內(nèi)耕作環(huán)境有平原、盆地、丘陵等多種作業(yè)環(huán)境,不同的地形環(huán)境土壤參數(shù)和耕深會(huì)對(duì)犁耕作業(yè)產(chǎn)生很大影響。其中,平原、盆地和丘陵的犁耕速度曲線如圖4a所示[21],平原作業(yè)環(huán)境中拖拉機(jī)作業(yè)速度較為穩(wěn)定,丘陵環(huán)境中拖拉機(jī)作業(yè)速度有小幅波動(dòng),盆地環(huán)境介于兩者之間。在3種不同耕作環(huán)境中,犁耕負(fù)載阻力如圖4b所示,其中丘陵負(fù)載阻力的波動(dòng)頻率最高。
因不同地域環(huán)境的土壤參數(shù)存在差異,根據(jù)已繪制好的載荷譜[22],通過查表法(比較拖拉機(jī)當(dāng)前工作環(huán)境采集到的載荷數(shù)據(jù)和載荷譜)對(duì)拖拉機(jī)當(dāng)前的犁耕土壤作業(yè)環(huán)境進(jìn)行辨識(shí),平原、盆地和丘陵采集的數(shù)據(jù)統(tǒng)計(jì)結(jié)果如表3所示,其中平原作業(yè)載荷波動(dòng)幅度最小,盆地作業(yè)載荷幅值最大。
圖4 不同地形環(huán)境下速度與犁耕負(fù)載阻力曲線
表3 不同作業(yè)環(huán)境載荷統(tǒng)計(jì)結(jié)果
基于已知功率譜的載荷分布特征,將采樣的載荷統(tǒng)計(jì)結(jié)果與已知功率譜進(jìn)行對(duì)比,有助于發(fā)動(dòng)機(jī)高效穩(wěn)定工作區(qū)間的確定。在本文提出的間接耦合分流動(dòng)力系統(tǒng)構(gòu)型中,電機(jī)1用于調(diào)節(jié)發(fā)動(dòng)機(jī)的工作點(diǎn),處于發(fā)電模式,或不參與動(dòng)力系統(tǒng)。電機(jī)2用于平衡拖拉機(jī)的載荷沖擊。功率需求變化受外界載荷沖擊波動(dòng)影響,加速度變化取決于駕駛員對(duì)加速踏板和制動(dòng)踏板的操作,該值變化是不可預(yù)知的,所以拖拉機(jī)加速度變化與上一時(shí)刻的歷史狀態(tài)無(wú)關(guān)。因此,將拖拉機(jī)的加速度變化視為馬爾科夫過程[23-24],使用馬爾科夫鏈對(duì)拖拉機(jī)功率需求進(jìn)行預(yù)測(cè)。根據(jù)采集的整機(jī)速度和加速度,計(jì)算當(dāng)前時(shí)刻的功率需求,從而得到當(dāng)前車速下功率需求概率轉(zhuǎn)移函數(shù)。具體來(lái)說(shuō),利用整機(jī)的動(dòng)力學(xué)負(fù)載構(gòu)建馬爾科夫決策過程。在犁耕過程中拖拉機(jī)主要克服滾動(dòng)阻力、坡道阻力、空氣阻力、加速阻力和負(fù)載阻力,由車輛動(dòng)力學(xué)方程可得:
式中F為空氣阻力,N;F為坡道阻力,N;F為加速阻力,N;F為滾動(dòng)阻力,N;F是犁耕負(fù)載阻力,N;v是不考慮滑移狀態(tài)下的拖拉機(jī)縱向行駛速度,m/s;為拖拉機(jī)使用質(zhì)量,kg;是空氣密度,kg/m3;A是拖拉機(jī)迎風(fēng)面積,m2;c是風(fēng)阻系數(shù)。
構(gòu)建的離散速度、加速度和功率需求序列為
馬爾科夫狀態(tài)轉(zhuǎn)移概率矩陣表示為[25]
為了實(shí)現(xiàn)拖拉機(jī)發(fā)動(dòng)機(jī)和雙電機(jī)的能量分配和轉(zhuǎn)矩協(xié)調(diào),本文提出了整機(jī)最優(yōu)能量管理策略。拖拉機(jī)能量預(yù)測(cè)及管理模塊主要根據(jù)作業(yè)環(huán)境下的負(fù)載工況,動(dòng)態(tài)地分配發(fā)動(dòng)機(jī)和電機(jī)的功率輸出比例,使整機(jī)的等效燃油效率最高。具體地,將發(fā)動(dòng)機(jī)和電機(jī)的功率輸出分配看作是離散時(shí)間序列的馬爾科夫決策問題[26],狀態(tài)空間方程可表示為
式中()為系統(tǒng)狀態(tài)變量,為電機(jī)轉(zhuǎn)速和電量SOC;()為系統(tǒng)動(dòng)作變量,為電機(jī)轉(zhuǎn)矩;()為干擾變量,令()=P,并滿足在平原地形犁耕工況下的概率轉(zhuǎn)移分布。根據(jù)馬爾科夫決策過程的貝爾曼方程,轉(zhuǎn)化為單步轉(zhuǎn)移的回報(bào)為
由于功率需求為隨機(jī)變量,下一時(shí)刻的狀態(tài)可視為條件概率,回報(bào)均值為
1)初始化價(jià)值函數(shù)()=0;
2)策略評(píng)估:計(jì)算策略π下的動(dòng)作價(jià)值(,);
3)策略改善:保留單步最大的動(dòng)作價(jià)值()=max(,);
4)整體的價(jià)值函數(shù)()是否收斂,如果收斂則輸出回報(bào)均值V()和策略π*,否則重復(fù)步驟(2)、(3)。
即當(dāng)V(s+1)-V(s)<Δ時(shí),輸出最優(yōu)策略為,為第s步在動(dòng)作a下取得的回報(bào),為權(quán)重系數(shù)。該策略需滿足式(8)和(9)的發(fā)動(dòng)機(jī)和電機(jī)約束,求解計(jì)算拖拉機(jī)能量預(yù)測(cè)及決策過程函數(shù),并利用價(jià)值迭代算法求解最優(yōu)控制率π*。拖拉機(jī)在平原犁耕作業(yè)模式,電機(jī)2的轉(zhuǎn)矩大小隨功率需求和電量SOC的分配關(guān)系如圖5所示。通過查表法根據(jù)功率需求和電量SOC值確定電機(jī)2的轉(zhuǎn)矩輸出。
為了驗(yàn)證本文提出的功率預(yù)測(cè)算法和能量管理策略的有效性和可執(zhí)行性,本節(jié)進(jìn)行了硬件在環(huán)試驗(yàn),分別探究了基于功率譜的整機(jī)作業(yè)環(huán)境辨識(shí)效果、平原作業(yè)模式下整機(jī)的節(jié)能效果以及具體的功率分配性能等。
考慮到拖拉機(jī)的功率需求預(yù)測(cè)需要對(duì)整機(jī)的作業(yè)環(huán)境進(jìn)行辨析,本節(jié)首先利用拖拉機(jī)的行駛速度和土壤參數(shù)等對(duì)平原、盆地和丘陵等耕作環(huán)境下的載荷環(huán)境進(jìn)行先驗(yàn)性聚類。將不同作業(yè)環(huán)境下采集到的作業(yè)載荷進(jìn)行均值聚類,并將這3種作業(yè)環(huán)境的聚類中心和拖拉機(jī)的載荷譜相比較。基于均值聚類對(duì)拖拉機(jī)作業(yè)環(huán)境的辨識(shí)如圖6所示。由于土壤參數(shù)的不同,使拖拉機(jī)阻力變化的頻率和幅值存在差異,3種作業(yè)環(huán)境中兩兩之間的聚類中心互異,便于作業(yè)環(huán)境的識(shí)別。
圖6 基于K均值聚類對(duì)拖拉機(jī)作業(yè)環(huán)境的辨識(shí)
作業(yè)載荷的最大值與聚類中心最為接近,所以將作業(yè)載荷的最大值作為作業(yè)環(huán)境辨識(shí)的參考依據(jù),然后根據(jù)聚類中心的分布對(duì)拖拉機(jī)作業(yè)環(huán)境進(jìn)行在線辨識(shí),辨識(shí)結(jié)果如表4所示。為減小作業(yè)環(huán)境辨識(shí)的計(jì)算量,測(cè)試最多選取了900個(gè)樣本點(diǎn),結(jié)果表明在一定范圍內(nèi)測(cè)試樣本點(diǎn)的增加有利于作業(yè)環(huán)境辨識(shí)準(zhǔn)確度的提高。
表4 數(shù)據(jù)采集不同時(shí)間間隔辨識(shí)結(jié)果比較
硬件在環(huán)試驗(yàn)主要驗(yàn)證控制策略的有效性和可行性。搭建的拖拉機(jī)動(dòng)力系統(tǒng)、負(fù)載模型和整車控制器的硬件在環(huán)試驗(yàn)平臺(tái)如圖7所示。本文利用Matlab模型構(gòu)建拖拉機(jī)的負(fù)載模型和整機(jī)動(dòng)力學(xué)模型,離線求解最優(yōu)的能量分配策略,將最優(yōu)的發(fā)動(dòng)機(jī)轉(zhuǎn)矩和電機(jī)轉(zhuǎn)矩分配值置于整車控制器內(nèi)。拖拉機(jī)系統(tǒng)模型根據(jù)當(dāng)前的功率需求通過CAN總線發(fā)送給整車控制器,整車控制器根據(jù)載荷譜辨識(shí)當(dāng)前作業(yè)環(huán)境,再通過狀態(tài)轉(zhuǎn)移矩陣計(jì)算下一時(shí)刻的需求功率,借助查表法分配發(fā)動(dòng)機(jī)和電機(jī)轉(zhuǎn)矩,最后通過CAN總線回傳給拖拉機(jī)負(fù)載模型,實(shí)現(xiàn)控制過程的閉環(huán)調(diào)節(jié)。
圖7 硬件在環(huán)試驗(yàn)平臺(tái)
為了驗(yàn)證拖拉機(jī)的能效優(yōu)化特性,本節(jié)采用圖4a中的平原工況下犁耕作業(yè)項(xiàng)目對(duì)整機(jī)的轉(zhuǎn)矩分配進(jìn)行測(cè)試。為了驗(yàn)證提出最優(yōu)能量管理的經(jīng)濟(jì)性,本文采用傳統(tǒng)的基于規(guī)則的方法作為對(duì)照組,所設(shè)計(jì)的規(guī)則如表5所示,比例因子1~3的選取通過步長(zhǎng)為0.1的遍歷尋優(yōu)方式確定,在滿足整車轉(zhuǎn)矩需求的前提下若比例因子滿足分配后電機(jī)2的平均效率大于65%時(shí),則確定該循環(huán)工況下比例因子的值,且在整個(gè)循環(huán)過程中為定值。
表5 不同作業(yè)環(huán)境下基于規(guī)則的動(dòng)力輸出
不同功率需求下電機(jī)2和發(fā)動(dòng)機(jī)的工作點(diǎn)分布情況分別如圖8所示。相比于傳統(tǒng)的基于規(guī)則的策略,提出的最優(yōu)能量管理策略使得發(fā)動(dòng)機(jī)更多地工作在高功率高效率區(qū)域,改善了發(fā)動(dòng)機(jī)的燃油經(jīng)濟(jì)性;與此同時(shí),電機(jī)2的工作區(qū)域更多的是對(duì)發(fā)動(dòng)機(jī)功率的補(bǔ)償,滿足整機(jī)的總功率需求。而傳統(tǒng)的基于規(guī)則的方案按照既定規(guī)則分配發(fā)動(dòng)機(jī)和電機(jī)2的功率需求,不能保證整機(jī)的能效最優(yōu)性。相比于基于規(guī)則的能量分配方案,提出的最優(yōu)能量管理策略與基于規(guī)則的方法相比降低7.2%的油耗。
本節(jié)進(jìn)一步分析本文提出的功率需求預(yù)測(cè)對(duì)整機(jī)能效特性的影響,結(jié)果如圖9所示。本節(jié)仍采用平原工況下犁耕作業(yè)項(xiàng)目對(duì)相關(guān)策略進(jìn)行驗(yàn)證,電機(jī)2效率通過查電機(jī)MAP圖得到的曲線如圖9a所示,電量SOC曲線和燃油消耗分別如圖9b和9c所示。電量SOC曲線在418 s時(shí),兩控制策略在同一電量水平,在之后的時(shí)間通過電機(jī)1發(fā)電維持電量SOC的穩(wěn)定。發(fā)動(dòng)機(jī)燃油消耗是通過當(dāng)前狀態(tài)下輸出的功率查閱發(fā)動(dòng)機(jī)萬(wàn)有特性曲線算得。采用功率需求預(yù)測(cè)方法能夠極大地改善電機(jī)的工作范圍,使得電機(jī)的平均工作效率提高4.54%左右,這有利于進(jìn)一步提升整機(jī)的能效性。
圖8 電機(jī)和發(fā)動(dòng)機(jī)工作點(diǎn)分布對(duì)比
圖9 整機(jī)能效特性影響
為了解決大馬力混合動(dòng)力拖拉機(jī)作業(yè)時(shí)動(dòng)態(tài)變載荷工況對(duì)動(dòng)力換擋和無(wú)極變速的需求,提出了兩種耦合分流拖拉機(jī)動(dòng)力系統(tǒng)構(gòu)型。此外為提高整機(jī)的能效特性,對(duì)整機(jī)的功率需求進(jìn)行了預(yù)測(cè),在平原環(huán)境犁耕作業(yè)工況下進(jìn)行硬件在環(huán)試驗(yàn),結(jié)果表明:
1)與傳統(tǒng)的基于規(guī)則的能量管理策略方案相比,提出的基于馬爾科夫決策過程的最優(yōu)能量管理策略能夠優(yōu)化發(fā)動(dòng)機(jī)的工作區(qū)間,使發(fā)動(dòng)機(jī)盡可能地工作在大功率高效率工作區(qū),同時(shí)采用驅(qū)動(dòng)電機(jī)對(duì)發(fā)動(dòng)機(jī)的功率進(jìn)行一定程度的補(bǔ)償,以期滿足整機(jī)的功率需求。提出的方法能夠降低約7.2%的燃油消耗。
2)在平原環(huán)境犁耕工況下采用整機(jī)功率需求預(yù)測(cè)可以進(jìn)一步提升驅(qū)動(dòng)電機(jī)的能效特性,將電機(jī)的平均效率提升約4.54%左右。
[1] 曹付義,李文渤,韓其炎,等. 拖拉機(jī)液壓機(jī)械無(wú)級(jí)變速器綜合模式切換規(guī)律[J]. 農(nóng)業(yè)工程學(xué)報(bào),2022,38(12):41-47.
Cao Fuyi, Li Wenbo, Han Qiyan, et al. Switching of the comprehensive mode for the hydro-mechanical continuously variable transmission of a tractor[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(12): 41-47. (in Chinese with English abstract)
[2] 張海軍,劉峰,朱思洪,等. 大馬力拖拉機(jī)新型液壓功率分流無(wú)級(jí)變速器優(yōu)化設(shè)計(jì)[J]. 南京農(nóng)業(yè)大學(xué)學(xué)報(bào),2016,39(1):156-165.
Zhang Haijun, Liu Feng, Zhu Sihong, et al. The optimization design of a new type of hydraulic power-split continuously variable transmission for high-power tractors[J]. Journal of Nanjing Agricultural University, 2016, 39(1): 156-165. (in Chinese with English abstract)
[3] Ghobadpour A, Mousazadeh H, Kelouwani S, et al. An intelligent energy management strategy for an off-road plug-in hybrid electric tractor based on farm operation recognition[J]. IET Electrical Systems in Transportation, 2021, 11(4): 333-347.
[4] Zhang Y, Xu H, Liu H, et al. Research on the evaluation index of handling stability of tractor and double trailer combination[J]. China Journal of Highway and Transport, 2017, 30(5): 145-151.
[5] 武仲斌,劉宇,張君,等. 電動(dòng)拖拉機(jī)動(dòng)力電池壓載構(gòu)型設(shè)計(jì)與參數(shù)優(yōu)化[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2021,52(10):425-433.
Wu Zhongbin, Liu Yu, Zhang Jun, et al. Configuration design and parameter optimization of power battery ballast for electric tractor[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(10): 425-433. (in Chinese with English abstract)
[6] 趙江靈,徐向陽(yáng),祁宏鐘,等. 串并聯(lián)式機(jī)電耦合系統(tǒng)方案設(shè)計(jì)及尋優(yōu)分析[J]. 汽車技術(shù),2020(10):5-10.
Zhao Jiangling, Xu Xiangyang, Qi Hongzhong, et al. Design and optimization of series-parallel electromechanical coupling system[J]. Automobile Technology, 2020(10): 5-10. (in Chinese with English abstract)
[7] 劉振濤. EVT混合動(dòng)力傳動(dòng)系統(tǒng)的圖論建模與構(gòu)型綜合設(shè)計(jì)理論研究[D]. 重慶:重慶大學(xué),2016.
Liu Zhentao. Research on Graph Modeling and Configuration Synthesis and Design of EVT Hybrid Electric Powertrains[D]. Chongqing: Chongqing University, 2016. (in Chinese with English abstract)
[8] Lagnelv O, Larsson G, Nilsson D, et al. Performance comparison of charging systems for autonomous electric field tractors using dynamic simulation[J]. Biosystems Engineering, 2020, 194: 121-137.
[9] 張風(fēng)奇,胡曉松,許康輝,等. 混合動(dòng)力汽車模型預(yù)測(cè)能量管理研究現(xiàn)狀與展望[J]. 機(jī)械工程學(xué)報(bào),2019,55(10):86-108.
Zhang Fengqi, Hu Xiaosong, Xu Kanghui, et al. Current status and prospects for model predictive energy management in hybrid electric vehicles[J]. Journal of Mechanical Engineering, 2019, 55(10): 86-108. (in Chinese with English abstract)
[10] 景遠(yuǎn),焦曉紅. 基于交通信息和模型預(yù)測(cè)控制的混合動(dòng)力汽車能量管理策略綜述[J]. 燕山大學(xué)學(xué)報(bào),2019,43(4):319-330.
Jing Yuan, Jiao Xiaohong. Review on energy management strategies for hybrid electric vehicles based on traffic information and model predictive control[J]. Journal of Yanshan University, 2019, 43(4): 319-330. (in Chinese with English abstract)
[11] 錢立軍,荊紅娟,邱利宏. 基于隨機(jī)模型預(yù)測(cè)控制的四驅(qū)混合動(dòng)力汽車能量管理[J]. 中國(guó)機(jī)械工程,2018,29(11):1342-1348.
Qian Lijun, Jing Hongjuan, Qiu Lihong. Energy management of a 4WD HEV based on SMPC[J]. China Mechanical Engineering, 2018, 29(11): 1342-1348. (in Chinese with English abstract)
[12] 秦大同,秦嶺. 基于顯式隨機(jī)模型預(yù)測(cè)控制的功率分流式混合動(dòng)力車輛能量管理策略[J]. 華南理工大學(xué)學(xué)報(bào)(自然科學(xué)版),2019,47(7):112-120.
Qin Datong, Qin Ling. Energy management strategy for a power-split hybrid electric vehicle based on explicit stochastic model predictive control[J]. Journal of South China University of Technology (Natural Science Edition), 2019, 47(7): 112-120. (in Chinese with English abstract)
[13] Guo H Q, Liu C Z, Yong J W, et al. Model predictive iterative learning control for energy management of plug-in hybrid electric vehicle[J]. IEEE Access, 2019, 7: 71323-71334.
[14] Zhang Y J, Huang Y J, Chen Z, et al. A novel learning-based model predictive control strategy for plug-in hybrid electric vehicle[J]. IEEE Transactions on Transportation Electrification, 2022, 8(1): 23-35.
[15] Dou H, Wei H, Zhang Y, et al. Configuration design and optimal energy management for coupled-split powertrain tractor[J]. Machines, 2022, 10(12): 1175.
[16] Hu J, Zu G, Jia M, et al. Parameter matching and optimal energy management for a novel dual-motor multi-modes powertrain system[J]. Mechanical Systems and Signal Processing, 2019, 116: 113-128.
[17] 朱鎮(zhèn),賴龍輝,王登峰,等. 油電混合機(jī)械液壓式拖拉機(jī)動(dòng)力系統(tǒng)節(jié)能性[J]. 農(nóng)業(yè)工程學(xué)報(bào),2022,38(17):52-60.
Zhu Zhen, Lai Longhui, Wang Dengfeng, et al. Energy saving characteristics of the mechanical hydraulic tractor power system with oil electric hybrid power[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(17): 52-60. (in Chinese with English abstract)
[18] 陳燕呢. 電動(dòng)拖拉機(jī)動(dòng)力系統(tǒng)設(shè)計(jì)與驅(qū)動(dòng)控制方法研究[D].北京:中國(guó)農(nóng)業(yè)大學(xué),2018.
Chen yanni. Study on Design and Drive Control Methods of Powertrain for Electric Tractor[D]. Beijing: China Agricultural University, 2018. (in Chinese with English abstract)
[19] 周志立,倪倩,徐立友. 并聯(lián)混合動(dòng)力拖拉機(jī)傳動(dòng)系參數(shù)設(shè)計(jì)及性能分析[J]. 河南科技大學(xué)學(xué)報(bào)(自然科學(xué)版),2016,37(6):9-15.
Zhou Zhili, Ni Qian, Xu Liyou. Design and performance analysis of parallel hybrid electric tractor transmission parameters[J]. Journal of Henan University of Science and Technology (Natural Science), 2016, 37(6): 9-15. (in Chinese with English abstract)
[20] Wei H, Zhong Y, Fan L, et al. Design and validation of a battery management system for solar-assisted electric vehicles[J]. Journal of Power Sources, 2021(30): 513.
[21] 劉孟楠. 電動(dòng)拖拉機(jī)設(shè)計(jì)理論及控制策略研究[D]. 西安:西安理工大學(xué),2020.
Liu Mengnan. Study on Design Theory and Control Strategt of Elelctric Trector[D]. Xi’an: Xi’an University of Technology, 2020. (in Chinese with English abstract)
[22] 閆祥海,周志立,賈方. 拖拉機(jī)動(dòng)力輸出軸動(dòng)態(tài)轉(zhuǎn)矩載荷譜編制與驗(yàn)證[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(19):74-81.
Yan Xianghai, Zhou Zhili, Jia Fang. Compilation and verification of dynamic torque load spectrum of tractor power take-off[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(19): 74-81. (in Chinese with English abstract)
[23] Xiang C, Ding F,Wang W, et al. MPC-based energy management with adaptive Markov-chain prediction for a dual-mode hybrid electric vehicle[J]. Science China Technological Sciences, 2017, 60(5): 93-104.
[24] Chen L, Ma X, Wei S, et al. Real-time energy management strategy of multi-wheel electric drive vehicles with load power prediction function[J]. IEEE Access, 2021, 99(1): 1-16.
[25] 許紹航,席軍強(qiáng),陳慧巖. 基于越野工況預(yù)測(cè)的混合動(dòng)力履帶車輛能量管理策略[J]. 兵工學(xué)報(bào),2019,40(8):1572-1579.
Xu Shaohang, Xi Junqiang, Chen Huiyan. Energy management of hybrid electric tracked vehicle based on off-road condition prediction[J]. Acta Armamentarii, 2019, 40(8): 1572-1579. (in Chinese with English abstract)
[26] 鄒淵,陳銳,侯仕杰,等. 基于隨機(jī)動(dòng)態(tài)規(guī)劃的混合動(dòng)力履帶車輛能量管理策略[J]. 機(jī)械工程學(xué)報(bào),2012,48(14):91-96.
Zou Yuan, Chen Rui, Hou Shijie, et al. Energy management strategy for hybrid electric tracked vehicle based on stochastic dynamic programming[J]. Journal of Mechanical Engineering, 2012, 48(14): 91-96. (in Chinese with English abstract)
Control strategy for hybrid tractor plow conditions oriented to coupled-split dynamic configuration
Dou Haishi, Zhang Youtong※, Ai Qiang, Zhao Xinqi
(,,100089,)
A hybrid power system has been widely used in Hybrid Electric Tractors (HETs) under farmland clustering and energy shortage in China. However, a great design difficulty can be found in the dynamic and variable load conditions of a working tractor on an unstructured road. Particularly, the powertrain flow can be used to realize the coupling and decoupling between the output power of the driven axle and Power Take-Off (PTO). It is a high demand to develop flexible powertrain for tractors, in order to improve the operation performance of agricultural machinery. Thus, the coupled-split powertrain system has been proposed with the principle of graph theory towards the single engine, dual motors, and clutch. All power ranges demand has been satisfied with the variable combination mode between the clutch and power units. In addition, the energy allocation can be optimized between the engine and motors in the background of non-linear loads. In this study, a Markov Decision Process (MDP) based Energy Management Strategy (EMS) was proposed to allocate the power between the engine and motors along with the dynamic and variable load. Firstly, the spectrum of the working load was collected in the period to distinguish the working scenarios. Specifically, the sample of the working environment included plains, hills, and basins. Secondly, the demand power in plowing was abstracted as the state transition of the MDP in the premise of tractor parameters collected under the plow condition, with which the comprehensive dynamics of tractor loads were mathematically formulated. Thirdly, energy consumption was defined as the cost function in the optimal control process, which was solved by the value iteration function. The working range of motor-2 was determined under the guidance of optimal control. In the actual plowing condition, the torque of motor-2 was optimized and determined along with the demand power and state of charge (SOC), which was converted to a look-up table and download in the Vehicle Control Unit (VCU). Finally, the effectiveness and feasibility of the system were validated with the hardware-in-loop test. Among them, the program was also conducted in the VCU on the actual test bench. Meanwhile, the model of the tractor was established for the co-simulation. The result indicated that the improved EMS reduced fuel consumption by 7.2%, compared with the traditional. The demand power forecast strategy further improved the energy efficiency characteristics of the drive motor in the plain plowing environment. In addition, the novel powertrain configurations of the tractor contained the direct and indirect coupled-split power system, which expanded the path of power flow between power units and wheels. Besides, the direct coupled-split configuration has the potential application to replace the technical difficulties of traditional power shifts and Continuously Variable Transmission (CVT). The new strategy can be expected to serve as high energy efficiency. The powertrain of coupled-split configuration can provide a strong reference to breaking through the difficult situation of power shift and CVT for high-power tractors. The finding can be expected to make great progress in the hybrid power system of the tractor in agricultural machinery.
hybrid power tractors; experiment; energy management strategy; control strategy; coupled-split configuration; Markov decision
10.11975/j.issn.1002-6819.2022.23.005
S222.12
A
1002-6819(2022)-23-0041-09
竇海石,張幽彤,艾強(qiáng),等. 面向耦合分流動(dòng)力構(gòu)型的拖拉機(jī)犁耕工況控制策略[J]. 農(nóng)業(yè)工程學(xué)報(bào),2022,38(23):41-49.doi:10.11975/j.issn.1002-6819.2022.23.005 http://www.tcsae.org
Dou Haishi, Zhang Youtong, Ai Qiang, et al. Control strategy for hybrid tractor plow conditions oriented to coupled-split dynamic configuration[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(23): 41-49. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2022.23.005 http://www.tcsae.org
2022-07-19
2022-11-20
國(guó)家重點(diǎn)研發(fā)計(jì)劃資助項(xiàng)目(2021YFB3101500),中國(guó)博士后基金資助項(xiàng)目(2022TQ0032, 2022M710380)
竇海石,博士生,研究方向?yàn)榛旌蟿?dòng)力拖拉機(jī)。Email:yuanhaoyuy@163.com
張幽彤,教授,博士生導(dǎo)師,研究方向?yàn)榛旌蟿?dòng)力控制技術(shù)。Email:youtong@bit.edu.cn