• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Forrestiacids C and D, unprecedented triterpene-diterpene adducts from Pseudotsuga forrestii

    2022-09-15 03:11:02PngJunZhouYiZangCongLiLinYuanHuaqiangZngJiaLiJinFngHuJuanXiong
    Chinese Chemical Letters 2022年9期

    Png-Jun Zhou, Yi Zang, Cong Li, Lin Yuan, Huaqiang Zng, Jia Li, Jin-Fng Hu,?,Juan Xiong

    a Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201203, China

    b School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Ecology and Conservation, Taizhou University, Taizhou 318000, China

    c State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China

    d College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China

    e Frontier Research Center for Multidisciplinary Sciences, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710072, China

    ABSTRACT Forrestiacids C (1) and D (2), a pair of C-25 epimeric triterpene–diterpene adducts were isolated from the needles and twigs of the vulnerable conifer Pseudotsuga forrestii.This unprecedented class of compounds might be generated via an intermolecular Michael addition reaction of a rearranged 6/6/5/5-fused spiro-lanostene with an abietene.Their structures were established by spectroscopic data and X-ray crystallography.The adducts showed inhibitory activities against the ATP-citrate lyase (ACL) and acetyl-CoA carboxylase 1 (ACC1), two rate-limiting enzymes in the de novo lipogenesis pathway.

    Keywords:Forrestiacid Pseudotsuga forrestii Pinaceae Michael adduct Lipogenesis inhibitor

    Pinaceae, the largest conifer family with 220 to 250 species assigned to 11 genera and are distinctive in being primarily trees rather than shrubs [1].Species of the Pinaceae are among the most valuable and commercially important plants (e.g., cedar, fir, larch,pine, and spruce).This family has also attracted great interest for higher potential in the field of natural products drug discovery.A survey unveiled that Pinaceae ranked among the top-20 privileged drug-prolific families that produced high numbers of approved drugs [2].

    Highly concerning is that 34% of the conifer species worldwide are currently threatened with extinction [3].As for Pinaceae, there are 39 species recorded in the first volume of the China Plant Red Data Book (CPRDB).This signifies that this family occupies a great proportion (ca.10%) of this reference,which listed a total of 388 species [4].Plant diversity loss significantly exacerbates the complications in the discovery of new natural products-derived drugs owing to the rare and endangered plants (REPs) being better botanical sources [2,5,6].An important goal for the conservation of the endangered plants is to provide key resources for researchers for new chemistry with utility in the control of new and emerging drug targets [7].Thus, there is an urgent need to prioritize protection and utilization of these fragile plant species.In recent years,we have paid special attention to rare and endangered coniferous plants native to China [8].In particular, REPs in the Pinaceae family have aroused an extra interest [9,10], due to their high potency in drug discovery, relatively other species diversity, and easier sample collections from the renewable needles and twigs from these large trees distributed and managed in the wild or cultivated in botanic gardens.

    As a small genus in Pinaceae,Pseudotsugacomprises only a few recognized species distributed in the northern hemisphere,demonstrating a typical eastern Asia and western North America disjunct distribution patterns [4,11].The type speciesP.menziesii,Douglas-fir, is one of the most economically important timbers in the world [11].In China, there are five endemicPseudotsugaspecies(i.e., Asian Douglas-fir) or varieties:P.forrestii,P.sinensis,P.brevifolia,P.gaussenii, andP.wilsoniana[1].All these species are recorded as vulnerable or endangered in CPRDB [4], and have also been nationally protected at the ‘second-grade’in China [12].

    Fig.1.A new class of terpenoid hetero-dimeric Michael adducts from Pseudotsuga forrestii.

    Fig.2.COSY and key HMBC correlations of 1 and 2.

    The relictPseudotsugaspeciesP.forrestiiis distributed within a total area ofca.5000 km2(mainly in the Lancang river basin and partly in the Jinsha river basin in south-western China) [1,4].Besides timber,P.forrestiihas a high ornamental value since its pinecones look like a blooming rose after ripening.In a preceding study onP.forrestii, two unique triterpene–diterpene adducts(forrestiacids A and B,m/z769 [M+H]+) featuring a novel carbon skeleton formed by intermolecular Diels-Alder cycloadditions between a spiro-lanostane triterpene unit and an abietadiene unit(Fig.S1 in Supporting information), were obtained by the implementation of HR-MS/MS-based molecular ion networking (MoIN)[13].Further purification of the minor metabolites with the same target pseudo-molecular ion [M+H]+atm/z769 by the guidance of MoIN (Fig.S2 in Supporting information) afforded another two unprecedented hetero-dimers (1 and 2) (Fig.1), but constructedviaan intermolecular Michael addition reaction of a rearranged 6/6/5/5-fused spiro-lanostene (C30-unit) with an abietene(C20-unit).The intriguing skeleton features a unique single C–C bond between C-25 (C30-unit) and C-13′ (C20-unit), which is quite different from those in the Diels-Alder adducts (forrestiacids A and B) [13].Herein, we describe their isolation and structural elucidation, together with the lipogenesis inhibitory activities.This work is the Part XXI in a series of “Phytochemical and biological studies on rare and endangered plants endemic to China” (for Part XX, see ref.[13]).

    Forrestiacid C (1), obtained as colorless needles from MeOH,was assigned the molecular formula C50H72O6as evidenced by the HR-ESI-MS ion atm/z791.5194 [M+Na]+(calcd.for C50H72O6Na,791.5221).In the up-field region of the1H NMR spectrum of 1,eight singlet methyls and one doublet methyl were observed atδH0.82 (s, 3H), 0.88 (s, 3H), 0.98 (d,J=6.5 Hz, 3H), 1.17 (s, 3H), 1.20 (s,6H), 1.43 (s, 3H), 1.73 (s, 3H), and 2.05 (s, 3H) (Table 1).Two pairs of olefinic proton resonances atδH4.86/4.65 and 5.28/5.12 (each 1H, br s) arose from two exomethylene groups.The13C NMR data(Table 1) of 1, with the aid of DEPT 135 and HSQC spectra, revealed 50 carbon resonances ascribable for nine methyls, 19 methylenes,five methines, 13 quaternary carbons, two carboxyls, and two ketocarbonyls.These data highlighted that 1 should be a (C30+C20)pentaterpene, similar to forrestiacids A and B [13].

    Fig.3.ROE correlations of 1 and 2.

    Comprehensive analyses of the 1D and 2D NMR spectroscopic data of 1 implied the presence of a spiro-lanostane-type tetracyclic triterpenoid and an abietadiene-type diterpenoid unit (Fig.2).For the triterpenoid part, the rearranged 6/6/5/5-fused spiro-lanostane nucleus bearing a 3-ketocarbonyl group (δC216.0) and the double allyl nodal [i.e., spiro[4.4]nona-8,14(30)-diene] motif was evidenced by the COSY and HMBC correlations as depicted in Fig.2.As for the abietane part, an exomethylene group was located at C-15′ based on the HMBC correlations from H2-16′ (δH5.28/5.12)to C-15′/C-13′, and from H3-17′ (δH2.05) to C-13′/C-15′/C-17′ (Fig.2).Another double bond, being a trisubstituted one [δH6.36, s (H-14′);δC138.6 (C-8′), 127.0 (C-14′)] was then elucidated to be sited between C-8′ and C-14′ by the HMBC correlations from H-14′ to C-7′, C-9′, and C-13′.In addition, the two carboxyl groups were assigned to attach to C-4′ and C-25, respectively, on the basis of HMBC cross peaks of H3-19′ with C-4′ and C-18′ (δC181.2), and of H3-26 with C-25 and C-27 (δC177.9).The remaining keto-carbonyl group atδC209.6 was placed at C-23 based on its HMBC correlations with the two pairs of deshielded methylene protons of H2-22(δH2.88/2.49) and H2-24 (δH3.60/2.89).

    Moreover, the spiro-lanostane fragment was connected with the abietadiene by the formation of a new carbon–carbon single bond between C-25 and C-13′.This was defined by the HMBC correlations from H3-26 (δH1.73) to C-24, C-25, C-27, and C-13′.

    Further inspection of the ROESY spectrum of 1 (Fig.3) confirmed that the relative configuration of the spiro-lanostane nucleus was consistent with those of structurally related compounds,such as neoabiestrine F and forrestiacids A and B [13].Concerning the abietene unit, its relative configuration could be readily assigned as shown in Fig.3 based on the ROE correlations of H3-19′/H3-20′ and H-5′/H-9′.The isopropenyl group at C-13′ wasβpositioned as evidenced by the diagnostic correlation between H3–17′ and H3–20′.However, determination of the stereochemistry at the quaternary carbon C-25 proved challenging due to the absence of available ROESY data for this flexible alkyl chain.

    Interestingly, accompanied with 1, its C-25 epimer, forrestiacid D (2), co-occurred in the same subfraction (for details, see Experimental in Supporting information).The molecular formula of 2 was determined to be identical with 1 from the positive-mode HR-ESI-MS ion atm/z791.5213 [M+Na]+(calcd.791.5221).Consistently, the1H and13C NMR spectroscopic data of 2 highly resembled those of 1 (Table 1).In terms of the13C chemical shifts,the largest difference between the two isolates was only 0.5 ppm(C-22,δC46.3vs.45.8).It was similar with the1H NMR data—there were just two positions where the proton resonances differed by 0.2 and 0.3 ppm (i.e., H-14′ and H-24b, respectively).The aforementioned data suggested that compound 2 should be a diastereoisomer of 1 with a different stereochemistry at C-25 and/or C-13′.This assumption was reinforced by further analyses of the1H–1H COSY and HMBC spectra, which revealed that 2 did possessthe same 2D structure as 1.Similar to 1, a key correlation between H3-17′ and H3-20′ was also observed in the ROESY spectrum of 2,assigning a same relative configuration at C-13′ in both 1 and 2.Taken together, compound 2 was undoubtedly deduced to be a C-25 epimer of 1.

    Table 1 1H (600 MHz) and 13C (150 MHz) NMR data (δ in ppm, J in Hz, in pyridine-d5) for 1 and 2.

    Table 2 Inhibitory activities of 1 and 2 against ACL and ACC1.

    Determination of the C-25 configurations in 1 and 2 was a difficult task.The electronic circular dichroism (ECD) spectra of the two epimers were overlaid with each other (Fig.S3 in Supporting information), precluding the application of ECD calculations.Moreover, the NMR shifts are very similar between 1 and 2, just as described above.The NMR calculations would thus most likely not be able to differentiate between the two epimers.In our experience, NMR calculations commonly produce deviations from13C NMR experimental values of 1 ppm or more, so the error associated with the calculations are greater than the difference in the NMR shifts between the different epimers.As expected, the results obtained from the preliminary GIAO NMR calculations with DP4+probability analysis predicted that, the two epimers both matched closely with the calculated data of (25S)-isomer with 100% probability, along with 0% probability for the (25R)-isomer.Hence, in the case of 1 and 2, the quantum NMR computational method also seems ineffectual and powerless.Actually, the limit of NMR calculations for the structural assignment of complex natural products has been well documented by Marcarinoet al.[14].

    Fig.4.OLEX2 drawing of compound 1 (more close-up views shown in Fig.S4 in Supporting information).

    Fortunately, after repeated attempts, a qualified crystal of 1 acquired in MeOH allowed a successful performance of single crystal X-ray diffraction [Flack parameter 0.02(18), Fig.4].This unambiguously confirmed the relative and absolute configurations of 1, especially the configuration at C-25 (25S).The whole structure of (5R,10S,13R,17S,20R,25S,4′R,5′R,9′S,10′R,13′S)-1, was thus unequivocally established as depicted.Accordingly, the absolute configuration of 2 was defined as(5R,10S,13R,17S,20R,25R,4′R,5′R,9′S,10′R,13′S).

    The structural features implied that 1 and 2 would be generatedviaa Michael addition between a unique spiro-lanostanetype triterpenoid precursor neoabiestrine F (co-occurring in the title plant [13]) and an abietadiene precursor (Scheme 1).The 24-en-23-one group in the side chain of neoabiestrine F would act as the ‘Michael acceptor’, whereas the diene motif in the diterpenoid would act as the ‘Michael donor’.

    Scheme 1.Proposed biosynthetic pathway for 1 and 2.

    Michael addition is one of the most important C–C bondforming reactions in synthetic organic chemistry.The natural product biosynthetic machinery also uses a Michael-type addition to synthesize structurally diverse bioactive compounds [15].So far,a number of naturally occurring Michael adducts (e.g., polyketides [16a], cytochalasin homodimer [16b], trimeric macrodiolide[16c], andent-kauranoid dimers [16d]) with interesting bioactivities have been reported.Among them, the terpenoid homo- or hetero-dimers are quite rare.To our knowledge, only a few have been encountered.For examples, three Michael adducts ofentkaurane-type diterpenoid homo-dimers from theIsodonspecies[16d,e].Forrestiacids C and D are the first two triterpene–diterpeneadducts formed by Michael addition and represent an unusual chemical class of terpenoid hetero-dimers.

    The efficacy of bempedoic acid [the first ATP-citrate lyase(ACL) inhibitor approved by Food and Drug Administration (FDA)]as a low-density lipoprotein cholesterol (LDL-C)-lowering agent,has validated ACL inhibition as a therapeutic strategy for glycolipid metabolic disorders (e.g., hyperlipidemia and hypercholesterolemia) [17,18].In our previous study, forrestiacids A and B, the two [4+2]-adducts exhibited potent inhibitory effects against ACL,and elicited dual inhibition on the fatty acid and cholesterol syntheses in HepG2 cells [13].Continuing our studies on the discovery of novel ACL and lipogenesis inhibitors from natural products,compounds 1 and 2 were evaluated for their ACL inhibitory effects.As illustrated in Table 2, they both displayed remarkable inhibition on ACL, with 50% inhibiting concentration (IC50) values of 10.99 and 22.78 μmol/L, respectively.BMS 303141 was used as the positive control (IC50: 0.46±0.13 μmol/L).Interestingly, bempedoic acid and forrestiacids A–D all are dicarboxylic acid derivatives.Compared with the Diels-Alder adducts forrestiacids A and B (IC50s<5 μmol/L) [13], the Michael adducts (1, 2), with the absence of a bridged-ring system (Fig.S1), showed relatively weaker inhibitory effects against ACL, although they have the same molecular weight.In addition, the 25S-isomer (1) demonstrated more potent inhibitory effect on ACL than its epimer (2).Interestingly, the 25Sisomer (1) also displayed significant inhibition (IC50: 7.84 μmol/L)against acetyl-CoA carboxylase 1 (ACC1), which is also one of the rate-limiting enzymes in fatty acid synthesis by converting acetyl-CoA to malonyl CoA [19].ACC1 has been considered as a potential drug target for glycolipid metabolic disorders (especially for hepatic steatosis).It is worth mentioning that, only slight inhibitory effects on ACL and ACC1 were found for the triterpene precursor neoabiestrine F, with IC50values of 24.33 and 24.40 μmol/L, respectively.Taken together, the above findings indicated that the chirality of C-25 in forrestiacids C and D might play an important role in the lipogenesis inhibition of these Michael adducts, which warrants further investigations.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was supported by grants from the National Natural Science Foundation of China (Nos.21937002, 81773599, 21772025).The authors thank Prof.Mark T.Hamann (Medical University of South Carolina, USA) and Dr.Yike Zou (Department of Chemistry and Biochemistry, University of California, at Los Angeles, USA) for their kind suggestions and assistance with the NMR quantum computations.

    Supplementary materials

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2021.12.009.

    午夜福利高清视频| 女人被狂操c到高潮| 蜜桃久久精品国产亚洲av| 免费观看精品视频网站| 亚洲中文字幕一区二区三区有码在线看| 久久国产乱子免费精品| 亚洲av男天堂| 亚洲国产最新在线播放| 午夜精品国产一区二区电影 | 久久99热这里只频精品6学生 | 永久网站在线| 国产精品永久免费网站| 岛国毛片在线播放| 久久这里只有精品中国| 日本爱情动作片www.在线观看| 国产乱来视频区| 秋霞伦理黄片| 91午夜精品亚洲一区二区三区| 天堂√8在线中文| 国产精华一区二区三区| 十八禁国产超污无遮挡网站| 亚洲成人av在线免费| 男人舔女人下体高潮全视频| 天美传媒精品一区二区| 亚洲国产色片| 亚洲在线观看片| 国产精品一区二区在线观看99 | 国产 一区 欧美 日韩| 久久精品影院6| 久久精品影院6| 亚洲欧洲国产日韩| 欧美日韩精品成人综合77777| 少妇人妻一区二区三区视频| 最新中文字幕久久久久| 婷婷色麻豆天堂久久 | 国产精品电影一区二区三区| 国产淫语在线视频| 久久久久免费精品人妻一区二区| 亚洲国产精品国产精品| 久久久精品大字幕| 免费观看精品视频网站| 黄色配什么色好看| 小说图片视频综合网站| 我的老师免费观看完整版| 神马国产精品三级电影在线观看| 国产精品福利在线免费观看| 亚洲综合色惰| 精品久久国产蜜桃| av在线天堂中文字幕| 好男人视频免费观看在线| 一级黄片播放器| 成人亚洲精品av一区二区| 99热精品在线国产| 亚洲性久久影院| 国产成人freesex在线| 久久精品91蜜桃| 国产女主播在线喷水免费视频网站 | 欧美激情国产日韩精品一区| av福利片在线观看| 在线观看av片永久免费下载| 男人舔女人下体高潮全视频| 91久久精品国产一区二区三区| 久久精品影院6| 99九九线精品视频在线观看视频| 校园人妻丝袜中文字幕| 亚洲va在线va天堂va国产| 国产精品一二三区在线看| 又黄又爽又刺激的免费视频.| 国产在线男女| 不卡视频在线观看欧美| 麻豆久久精品国产亚洲av| 免费观看a级毛片全部| АⅤ资源中文在线天堂| 一二三四中文在线观看免费高清| 最近2019中文字幕mv第一页| 久久精品国产鲁丝片午夜精品| 久久久欧美国产精品| 亚洲欧美精品自产自拍| 成人一区二区视频在线观看| 麻豆乱淫一区二区| 免费在线观看成人毛片| 特大巨黑吊av在线直播| 别揉我奶头 嗯啊视频| 精品国内亚洲2022精品成人| 国语自产精品视频在线第100页| 成人毛片a级毛片在线播放| 欧美日本亚洲视频在线播放| 97超视频在线观看视频| 欧美一区二区国产精品久久精品| 免费搜索国产男女视频| 欧美xxxx性猛交bbbb| 女的被弄到高潮叫床怎么办| 国产伦精品一区二区三区四那| 午夜精品一区二区三区免费看| 成人亚洲欧美一区二区av| 精品一区二区三区人妻视频| 久久久a久久爽久久v久久| 精品免费久久久久久久清纯| 国产一区二区在线av高清观看| 男女国产视频网站| 听说在线观看完整版免费高清| 亚洲综合精品二区| 国产v大片淫在线免费观看| 国产精品野战在线观看| 国内精品美女久久久久久| 久久99蜜桃精品久久| 国产亚洲91精品色在线| 久久鲁丝午夜福利片| av在线蜜桃| 日韩精品有码人妻一区| 激情 狠狠 欧美| 青青草视频在线视频观看| 一本一本综合久久| 午夜福利成人在线免费观看| 看黄色毛片网站| 成年女人看的毛片在线观看| 特大巨黑吊av在线直播| 男女下面进入的视频免费午夜| 亚洲18禁久久av| 女人十人毛片免费观看3o分钟| 大香蕉97超碰在线| 国产精品蜜桃在线观看| 欧美潮喷喷水| 亚洲av二区三区四区| 汤姆久久久久久久影院中文字幕 | 国语自产精品视频在线第100页| 欧美日本亚洲视频在线播放| 久久精品影院6| 最后的刺客免费高清国语| 免费在线观看成人毛片| 国产色婷婷99| 日本熟妇午夜| 人人妻人人澡欧美一区二区| 深爱激情五月婷婷| 成年av动漫网址| 夫妻性生交免费视频一级片| 噜噜噜噜噜久久久久久91| 啦啦啦啦在线视频资源| 欧美三级亚洲精品| 免费观看人在逋| 亚洲不卡免费看| .国产精品久久| av免费在线看不卡| 三级国产精品片| 岛国毛片在线播放| 久久久久久国产a免费观看| 韩国高清视频一区二区三区| 亚洲国产高清在线一区二区三| 国产成年人精品一区二区| 午夜激情福利司机影院| av天堂中文字幕网| 精品久久国产蜜桃| 欧美极品一区二区三区四区| 1000部很黄的大片| 久久综合国产亚洲精品| 午夜久久久久精精品| 22中文网久久字幕| 国产精品久久久久久av不卡| 日韩在线高清观看一区二区三区| 色吧在线观看| 国产亚洲av嫩草精品影院| 国产又色又爽无遮挡免| 久久久久久久久大av| 亚洲最大成人手机在线| 熟妇人妻久久中文字幕3abv| 国产国拍精品亚洲av在线观看| 99热全是精品| 亚洲av二区三区四区| 亚洲av免费在线观看| 久99久视频精品免费| 国产伦一二天堂av在线观看| 国产高清视频在线观看网站| 国产精品伦人一区二区| 亚洲国产高清在线一区二区三| 变态另类丝袜制服| 男人狂女人下面高潮的视频| 国产av码专区亚洲av| 国产成人福利小说| 精品99又大又爽又粗少妇毛片| 插逼视频在线观看| 一夜夜www| 天堂影院成人在线观看| 日韩av不卡免费在线播放| 视频中文字幕在线观看| 青春草视频在线免费观看| 国产午夜精品久久久久久一区二区三区| 亚洲av熟女| 亚洲人成网站高清观看| 2022亚洲国产成人精品| 国产成人a∨麻豆精品| 欧美一级a爱片免费观看看| 欧美一区二区精品小视频在线| 国产黄色小视频在线观看| 国产又黄又爽又无遮挡在线| 亚洲自拍偷在线| 成人无遮挡网站| 国产日韩欧美在线精品| 男女下面进入的视频免费午夜| 亚洲国产最新在线播放| 男女那种视频在线观看| 麻豆成人av视频| 亚洲欧美日韩高清专用| 中文乱码字字幕精品一区二区三区 | 在线免费观看的www视频| 能在线免费看毛片的网站| 亚洲国产精品国产精品| 欧美最新免费一区二区三区| 久久这里只有精品中国| 国产高清有码在线观看视频| 人妻系列 视频| 亚洲欧美成人精品一区二区| 日韩av不卡免费在线播放| 久久久精品94久久精品| 中文字幕精品亚洲无线码一区| 国产淫语在线视频| 亚洲自拍偷在线| 欧美xxxx黑人xx丫x性爽| 成人亚洲精品av一区二区| 久久精品国产鲁丝片午夜精品| 国产黄色小视频在线观看| 99久久精品国产国产毛片| 高清在线视频一区二区三区 | 男女国产视频网站| 亚洲国产精品国产精品| 国产一区二区在线观看日韩| 国模一区二区三区四区视频| 赤兔流量卡办理| 精品久久久久久久久亚洲| 大香蕉97超碰在线| 三级男女做爰猛烈吃奶摸视频| 床上黄色一级片| 久久草成人影院| 国产高潮美女av| 搡老妇女老女人老熟妇| 精品国内亚洲2022精品成人| 国产精品av视频在线免费观看| 好男人在线观看高清免费视频| 久久亚洲国产成人精品v| 久久久久久久久久黄片| 亚洲欧美精品综合久久99| 91久久精品电影网| 一区二区三区四区激情视频| 国产成人一区二区在线| 淫秽高清视频在线观看| av黄色大香蕉| 亚洲精品成人久久久久久| 国内精品宾馆在线| 九草在线视频观看| 亚洲国产欧美人成| 亚洲av不卡在线观看| 成人毛片60女人毛片免费| 色播亚洲综合网| 看黄色毛片网站| 日韩欧美三级三区| 久久亚洲国产成人精品v| 菩萨蛮人人尽说江南好唐韦庄 | 国产精品一区二区在线观看99 | 国模一区二区三区四区视频| 国产免费男女视频| 国产黄a三级三级三级人| 亚洲av电影不卡..在线观看| 亚洲国产精品sss在线观看| 99在线视频只有这里精品首页| 国产白丝娇喘喷水9色精品| 久久精品影院6| 国产在线一区二区三区精 | 久久精品夜色国产| 成人毛片a级毛片在线播放| 69av精品久久久久久| kizo精华| 欧美一区二区国产精品久久精品| 直男gayav资源| 亚洲av中文av极速乱| 亚洲最大成人手机在线| 一个人看的www免费观看视频| 亚洲欧洲日产国产| 中文字幕久久专区| av又黄又爽大尺度在线免费看 | 91av网一区二区| 欧美色视频一区免费| 欧美最新免费一区二区三区| 99久久无色码亚洲精品果冻| 国产精品国产高清国产av| 亚洲最大成人av| 日韩欧美国产在线观看| 亚洲成人精品中文字幕电影| 久久久久性生活片| 成人毛片60女人毛片免费| 亚洲国产最新在线播放| 在线观看66精品国产| 搡老妇女老女人老熟妇| 搞女人的毛片| 免费观看人在逋| 国产又色又爽无遮挡免| 男女国产视频网站| 少妇的逼水好多| 免费电影在线观看免费观看| 色尼玛亚洲综合影院| 哪个播放器可以免费观看大片| 精品无人区乱码1区二区| 亚洲中文字幕一区二区三区有码在线看| av视频在线观看入口| 久久久久免费精品人妻一区二区| 国产精品三级大全| 亚洲在线自拍视频| 国产精品,欧美在线| 亚洲av电影不卡..在线观看| 国产一区二区在线观看日韩| 麻豆av噜噜一区二区三区| 日本-黄色视频高清免费观看| 91精品伊人久久大香线蕉| 伦精品一区二区三区| 成人特级av手机在线观看| videos熟女内射| 热99在线观看视频| 午夜福利成人在线免费观看| 黄片wwwwww| 国产精品伦人一区二区| 国产精品福利在线免费观看| 成人鲁丝片一二三区免费| 午夜福利高清视频| 亚洲人与动物交配视频| 午夜福利网站1000一区二区三区| 1024手机看黄色片| 人妻夜夜爽99麻豆av| 一边摸一边抽搐一进一小说| 九九在线视频观看精品| 91久久精品国产一区二区成人| 久久久欧美国产精品| 国产亚洲午夜精品一区二区久久 | 又爽又黄a免费视频| 亚洲精品日韩av片在线观看| 国产乱来视频区| 亚洲av中文av极速乱| 亚洲成人久久爱视频| 亚洲av日韩在线播放| 大香蕉97超碰在线| 亚洲av日韩在线播放| 久久国内精品自在自线图片| 成年女人看的毛片在线观看| 亚洲精品国产av成人精品| 三级男女做爰猛烈吃奶摸视频| 日日干狠狠操夜夜爽| 精品少妇黑人巨大在线播放 | 在线天堂最新版资源| 卡戴珊不雅视频在线播放| 内射极品少妇av片p| 成人特级av手机在线观看| 久久久久久久亚洲中文字幕| 国产成年人精品一区二区| 男女那种视频在线观看| 又粗又硬又长又爽又黄的视频| 久久久久久久亚洲中文字幕| 久久久久久久久久黄片| 色视频www国产| 亚洲av中文字字幕乱码综合| 免费看av在线观看网站| 欧美+日韩+精品| 久久国产乱子免费精品| 丝袜美腿在线中文| 午夜老司机福利剧场| 国产精品嫩草影院av在线观看| 亚洲无线观看免费| 日韩中字成人| av卡一久久| 赤兔流量卡办理| 久久99热这里只有精品18| 国产精品久久久久久久久免| 久久久亚洲精品成人影院| 国产精品熟女久久久久浪| 日本熟妇午夜| 欧美精品国产亚洲| 久久久久网色| 亚洲国产高清在线一区二区三| 乱人视频在线观看| 午夜福利成人在线免费观看| 寂寞人妻少妇视频99o| 综合色丁香网| 国产片特级美女逼逼视频| 水蜜桃什么品种好| 亚洲av中文字字幕乱码综合| 午夜日本视频在线| 国产精品久久视频播放| 午夜免费男女啪啪视频观看| 九九久久精品国产亚洲av麻豆| 国产真实乱freesex| 三级经典国产精品| 九九热线精品视视频播放| 亚洲不卡免费看| 久久久亚洲精品成人影院| 国产精品久久视频播放| 中国美白少妇内射xxxbb| 国产精品人妻久久久影院| 亚洲欧美精品综合久久99| 久久久亚洲精品成人影院| 午夜老司机福利剧场| 国产伦在线观看视频一区| 亚洲av成人av| 99久久人妻综合| 精品人妻视频免费看| 99久久精品国产国产毛片| 国产精品久久久久久久电影| 久久久久久国产a免费观看| 99在线视频只有这里精品首页| 亚洲精品影视一区二区三区av| 国产乱来视频区| 精品一区二区三区人妻视频| av又黄又爽大尺度在线免费看 | 久久精品久久久久久久性| 九九在线视频观看精品| 欧美性猛交黑人性爽| 国产v大片淫在线免费观看| 亚洲欧美精品自产自拍| a级毛色黄片| 国产免费一级a男人的天堂| 精品免费久久久久久久清纯| 18+在线观看网站| 国产私拍福利视频在线观看| 如何舔出高潮| 精品人妻偷拍中文字幕| 亚洲高清免费不卡视频| 国产成人freesex在线| or卡值多少钱| 欧美97在线视频| 在线观看一区二区三区| 麻豆精品久久久久久蜜桃| 日本黄大片高清| 狠狠狠狠99中文字幕| 亚洲无线观看免费| 少妇的逼好多水| 一级av片app| 亚洲第一区二区三区不卡| 搡老妇女老女人老熟妇| 国产伦精品一区二区三区四那| 欧美精品国产亚洲| 秋霞伦理黄片| 天美传媒精品一区二区| 久久久久久久久久久免费av| 国产精品熟女久久久久浪| 日韩一本色道免费dvd| 麻豆精品久久久久久蜜桃| 欧美日韩精品成人综合77777| 久久精品国产亚洲av天美| 日本wwww免费看| 观看免费一级毛片| 丰满乱子伦码专区| 久久久久久久久久成人| 色播亚洲综合网| 亚洲电影在线观看av| 久99久视频精品免费| 中文欧美无线码| 亚洲不卡免费看| 高清日韩中文字幕在线| 欧美97在线视频| 青春草亚洲视频在线观看| 岛国毛片在线播放| 99久国产av精品国产电影| 又粗又爽又猛毛片免费看| www.色视频.com| 99久久成人亚洲精品观看| 99久久精品热视频| 99热这里只有是精品50| 国产一区二区在线av高清观看| 国产伦在线观看视频一区| 嫩草影院入口| 亚洲中文字幕一区二区三区有码在线看| 精品一区二区三区视频在线| 欧美精品一区二区大全| 久久草成人影院| 久久久久久久久大av| 午夜精品一区二区三区免费看| 国产一区二区亚洲精品在线观看| 亚洲精华国产精华液的使用体验| 丝袜美腿在线中文| 夜夜看夜夜爽夜夜摸| 国产麻豆成人av免费视频| 日本午夜av视频| 国产亚洲av片在线观看秒播厂 | 超碰av人人做人人爽久久| 亚洲国产精品合色在线| 一本一本综合久久| 亚洲欧美日韩无卡精品| 国产色爽女视频免费观看| 少妇的逼好多水| 亚洲国产日韩欧美精品在线观看| 欧美激情在线99| 九九在线视频观看精品| 精品人妻熟女av久视频| 精品人妻视频免费看| 久久精品国产亚洲av天美| 黑人高潮一二区| 小蜜桃在线观看免费完整版高清| 国产免费又黄又爽又色| 嫩草影院精品99| 人人妻人人澡人人爽人人夜夜 | 女人被狂操c到高潮| 亚洲综合色惰| 秋霞伦理黄片| 国产免费视频播放在线视频 | 日本猛色少妇xxxxx猛交久久| 搞女人的毛片| 亚洲最大成人手机在线| 午夜福利在线在线| 高清在线视频一区二区三区 | 国产色婷婷99| 99九九线精品视频在线观看视频| 欧美日韩综合久久久久久| 少妇人妻精品综合一区二区| 成人国产麻豆网| 成人欧美大片| 国产免费视频播放在线视频 | 国产精品日韩av在线免费观看| 内射极品少妇av片p| 欧美成人一区二区免费高清观看| 国产免费福利视频在线观看| 久久精品久久久久久久性| 亚洲av.av天堂| 美女被艹到高潮喷水动态| 在线观看美女被高潮喷水网站| 欧美日韩综合久久久久久| 国产中年淑女户外野战色| 少妇被粗大猛烈的视频| 又黄又爽又刺激的免费视频.| 成人特级av手机在线观看| 亚洲精华国产精华液的使用体验| or卡值多少钱| 天堂网av新在线| 波多野结衣巨乳人妻| 亚洲熟妇中文字幕五十中出| 国产淫语在线视频| 床上黄色一级片| 老女人水多毛片| 草草在线视频免费看| 尤物成人国产欧美一区二区三区| 3wmmmm亚洲av在线观看| 国产单亲对白刺激| 真实男女啪啪啪动态图| 久久精品国产自在天天线| 国产美女午夜福利| 日本黄色视频三级网站网址| 大香蕉97超碰在线| 91久久精品电影网| 成人av在线播放网站| 中文天堂在线官网| 最近的中文字幕免费完整| 自拍偷自拍亚洲精品老妇| 韩国高清视频一区二区三区| 免费观看a级毛片全部| 久久久久久久国产电影| 99久久精品热视频| 亚洲精品一区蜜桃| 亚洲18禁久久av| 亚洲三级黄色毛片| 天堂√8在线中文| 看黄色毛片网站| 国产黄色小视频在线观看| 亚洲色图av天堂| 久久久久九九精品影院| ponron亚洲| 韩国高清视频一区二区三区| 26uuu在线亚洲综合色| 乱码一卡2卡4卡精品| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | www.av在线官网国产| 欧美成人a在线观看| h日本视频在线播放| 久久午夜福利片| 插逼视频在线观看| 亚洲欧美中文字幕日韩二区| 亚洲精品日韩在线中文字幕| 男人狂女人下面高潮的视频| 欧美日韩精品成人综合77777| av黄色大香蕉| 国产精品,欧美在线| 亚洲丝袜综合中文字幕| 青春草亚洲视频在线观看| 人妻制服诱惑在线中文字幕| 搡老妇女老女人老熟妇| 夫妻性生交免费视频一级片| 国产老妇伦熟女老妇高清| 亚洲激情五月婷婷啪啪| 超碰97精品在线观看| 亚洲国产精品专区欧美| 99热精品在线国产| 成人特级av手机在线观看| 亚洲成av人片在线播放无| 国产黄色小视频在线观看| 国产白丝娇喘喷水9色精品| 久久久久九九精品影院| 亚洲国产高清在线一区二区三| 岛国在线免费视频观看| 91狼人影院| 岛国在线免费视频观看| 久久久欧美国产精品| 国国产精品蜜臀av免费| 天堂av国产一区二区熟女人妻| 国产精品日韩av在线免费观看| 久久久久久久久久成人| 日本av手机在线免费观看| 老司机影院毛片| 久久久国产成人免费| 国产真实伦视频高清在线观看| 亚洲美女搞黄在线观看| 亚洲国产欧美在线一区| 国产精品不卡视频一区二区| 亚洲va在线va天堂va国产| 国内精品美女久久久久久| 99在线视频只有这里精品首页| 91aial.com中文字幕在线观看| 亚洲精品一区蜜桃| 国产精品日韩av在线免费观看| 岛国毛片在线播放| 久久国内精品自在自线图片| 日韩一本色道免费dvd| 老司机福利观看|