• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Gilbert damping in the layered antiferromagnet CrCl3

    2022-02-24 08:59:14XinlinMi米鋅林LedongWang王樂棟QiZhang張琪YitongSun孫藝彤YufengTian田玉峰ShishenYan顏世申andLihuiBai柏利慧
    Chinese Physics B 2022年2期
    關(guān)鍵詞:張琪

    Xinlin Mi(米鋅林), Ledong Wang(王樂棟), Qi Zhang(張琪), Yitong Sun(孫藝彤),Yufeng Tian(田玉峰), Shishen Yan(顏世申), and Lihui Bai(柏利慧)

    School of Physics,State Key Laboratory of Crystal Materials,Shandong University,Jinan 250100,China

    We theoretically and experimentally studied the Gilbert damping evolution of both acoustic and optical magnetic resonance modes in the layered flake CrCl3 with an external magnetic field H applied in plane. Based on a Lagrangian equation and a Rayleigh dissipation function, we predicted that the resonance linewidth ΔH as a function of microwave frequency ω is nonlinear for both acoustic and optical modes in the CrCl3 flake, which is significantly different from the linear relationship of ΔH ∝ω in ferromagnets.Measuring the microwave transmission through the CrCl3 flake,we obtained the ω–H dispersion and damping evolution ΔH–ω for both acoustic and optical modes. Combining both our theoretical prediction and experimental observations,we concluded that the nonlinear damping evolution ΔH–ω is a consequence of the interlayer interaction during the antiferromagnetic resonance,and the interlayer Gilbert dissipation plays an important role in the nonlinear damping evolution because of the asymmetry of the non-collinear magnetizaiton between layers.

    Keywords: Gilbert damping,antiferromagnetic resonance(AFMR),CrCl3

    1. Introduction

    Antiferromagnets (AFMs) allow designing high-speed and robust spintronic devices due to the advantages of zero net magnetization and high resonant frequency up to THz.[1–6]Studies on spin-transfer torque[7–11]and anisotropic magnetoresistance[12,13]explored the rich physics and advanced the potential applications by controlling and detecting the magnetic order in antiferromagnets. Further development and applications of devices based on antiferromagnetic materials require a more comprehensive understanding of antiferromagnetic dynamics. But different from ferromagnetic dynamics, there is little known about antiferromagnetic dynamics[14–16]due to the more complex internal structures and higher resonant frequencies requiring terahertz techniques to detect.[1,17,18]

    To describe the magnetization dynamics of antiferromagnetic systems, a key issue is to find the proper form of damping. Damping represents the dissipation of energy in the magnetic system, which affects the response speed of magnetic devices. It is inextricably linked to many magnetic phenomena such as spin pumping, spin transfer, and domain wall motion,[19,20]and plays an important role in the study of magnetic dynamics. In ferromagnetic systems,there have been a lot of detailed studies on magnetization dynamics with damping,[21–29]and a complete theory has been formed to describe the ferromagnetic dynamics.[22,25]Generally speaking,the magnetization dynamics in a ferromagnetic system is determined by the Landau–Lifshitz–Gilbert (LLG)equation[22,25]

    whereHeffis the effective field including the external field,the exchange field and the anisotropy field.γis the gyromagnetic ratio.αis the Gilbert damping constant. The first term on the right-hand side of Eq. (1) determines the precessional motion of the magnetic moment in the ferromagnet around the effective field. The second term is the Gilbert damping which makes the direction of the magnetic moment gradually align to the effective field. The linewidth of the ferromagnetic resonance derived from the LLG equation shows a linear relationship with frequency ΔH–ω,[30]which produces a good agreement with extensive experiments in the ferromagnetic systems.[30–33]So the magnetic damping in ferromagnets is usually investigated by linewidths due to the linear relationship between ferromagnetic resonance linewidths and damping.[30–33]

    Although there has been a great deal of research in antiferromagnetic dynamics, there is still not a universally accepted dynamic equation until now. In the 1950s, Kittel applied the Landau–Lifshitz equation to the two sublattices of antiferromagnet and calculated the resonance frequencies of AFMs.[34,35]Following the classical Lagrangian approach that has previously been employed for FMs by Gilbert,[22]Kamraet al.used Lagrangian equations with Rayleigh dissipation to describe the antiferromagnetic dynamics in 2019,[36]and successfully predicted the enhancement of the dissipation rate of ferrimagnets at the compensation point, which has agood agreement with recent experiments.[36,37]The same theory was used by Yuanet al.to find a significant effect of the dissipation moment on the magnon lifetime and domain wall motion.[38]These studies are all for the case of collinear magnetization with an external magnetic field less than the spinflop field. In a non-collinear magnetization case,the damping process would be expected to be different because the asymmetry between the sublattices has an impact on dynamical spin exchange interaction during the antiferromagnetic resonance(AFMR).For example,in a layered antiferromagnet CrCl3,the magnetization from each layer can be easily aligned to a noncollinear case by an external magnetic field due to the relative weak coupling.[39]

    In this work, we studied the damping evolution of both acoustic and optical magnetic resonance modes in CrCl3,again starting from the Lagrangian equation with Rayleigh dissipation.[22,36,38]The equations depicting the antiferromagnetic dynamics were established following the method of establishing the LLG equations in ferromagnets using the Lagrangian approach.[22]We obtained the same antiferromagnetic dynamics equations with Kamra and Yuan’s works.[36,38]The Gilbert damping parameter was represented by a 2×2 matrix containing intralayer as well as interlayer damping terms.Then,we applied this theory to describe the antiferromagnetic resonance in CrCl3.[39]The expressions of the linewidths of the optical and acoustic modes were obtained, which predict the linewidth evolution of the optical and acoustic modes with frequency. They both have a non-linear growth but the growth trend of the optical mode is much faster than the acoustic mode. Our experimental data also proved this point. Combining both of our theoretical prediction and experimental observations,we concluded that the nonlinear damping evolution ΔH–ωis a intrinsic nature during the antiferromagnetic resonance and the interlayer Gilbert dissipation plays an important role in the non-linear growth of linewidth because of the asymmetry of the non-collinear magnetization between layers.

    2. The theory of antiferromagnetic dynamics

    We consider the simplest antiferromagnet with two sets of sublattices,whose magnetizations are described byM1andM2,respectively.Here we describe this system in the frame of the Lagrangian classical field theory,with introducing the socalled Rayleigh dissipation functional. Then the Lagrangian equation describing the antiferromagnetic system is given by

    whereL=T ?Uis the Lagrangian,andTandUare the kinetic energy and potential energy of the antiferromagnetic system,respectively. The Rayleigh dissipation functionR,which describes the energy dissipation in the magnetization motion,has the following form in the antiferromagnetic system:

    The parameter matrixηijquantities the intralayer and interlayer dissipation rate of each sublattice magnetization motion, and the interlayer dissipation may derive from the spin pumping effect between adjacent layers in AFMs.[38,40]For the antiferromagnet with two sublattices,the potential energy,whereHiis the effective field applied to thei-th sublattice magnetization,and the Lagrange equation can be simplified to

    The kinetic energy of a spin comes from the Berry phase caused by spin motion.[41]For an antiferromagnet with two sublattices, the kinetic energy can be rewritten asT=, whereAiis the magnetic potential corresponding to thei-th sublattice magnetization,which is decided by ?×Ai=Mi.[38]Replacing the kinetic energy term with the above expression in Eq.(4),we can get

    We find that Eq.(5)has exactly the same form as the LLG equation,with the following transformation:

    where we have made a simplification|M1|=|M2|=M0,which is very reasonable for antiferromagnets. So far we have obtained the equation describing the antiferromagnetic dynamics, which is equivalent to the theory applied in two-sublattice ferrimagnets at the compensation point in Kamra’s work or Yuan’s theory for AFM system with two sublattices.[36,38]

    But there are still too many parameters in the matrixα.Here we proceed to simplify. Firstly,due to the high symmetry of the two sets of sublattices in the antiferromagnet, this requires that theαmatrix is symmetric and the diagonal elements must be equal,namely,α11=α22,α12=α21.Secondly,according to the second law of thermodynamics, the entropy of an isolated system does not decrease, so the energy of a system without external energy input does not increase. This implies that the eigenvalues and the elements of the damping matrixαmust be non-negative.

    When there is only one set of magnetic moments, the termγηijMi×˙Mjwhich describes the interaction between the two sets of magnetic moments no longer exists and theequation naturally evolves into the LLG equation in ferromagnet systems.[22]And if we setη=O,Eq.(5)becomes an equation for an undamped magnetization system,which is equivalent to the Landau–Lifshitz equation in ferromagnets.

    Then we apply the theory developed above to describe the antiferromagnetic dynamics in the layered antiferromagnet CrCl3. In the macro approximation, we assume that the magnetization direction is uniform within each layer in CrCl3,and useM1andM2to represent the total magnetic moment of the two different sublattices. As for the selection of the effective field, we use the same form as in the Liu’s paper,[39]which has been shown to be well suited to describe the antiferromagnetic dynamics in CrCl3. Thus,the LLG equation in CrCl3has the following form:[34,35,39]

    whereHEis the interlayer exchange field andM0is the saturation magnetization,|M1|=|M2|=M0.γis the gyromagnetic ratio andzis along the crystal c axis perpendicular to sample plane. Andα0=α11=α22is the Gilbert damping parameter in the layer,α12=α21is the Gilbert damping parameter between layers,andH=H0+?is the external magnetic field,whereH0is the static magnetic field and?is the rf magnetic field.

    3. The linewidth in the antiferromagnetic resonance

    In the work of Kamra and Yuan,[36,38]they discussed the damping of the right-handed mode and left-handed mode in AFMR when the external magnetic field was applied to the direction of magnetization.[36,38]Different from the situation they discussed, here we discuss the damping of the optical mode and acoustic mode in CrCl3. When the magnetic fieldH0is applied in the layer plane and perpendicular to the direction of magnetization,Eqs.(7)and (8)are symmetric around the direction of the external magnetic field. Under a linear approximation, we can solve Eqs. (7) and (8) to obtain two independent modes(optical mode and acoustic mode),which can be excited by the microwave field in certain conditions.[39]The optical and acoustic modes will form a Lorentzian resonance curve. Their resonant frequenciesωOandωAhave the relationship with magnetic field as follows:[39]

    whereφis the angle of deflection of the magnetization direction under the external magnetic field and has the relationship sinφ=H/2HE. This was the work of Liuet al.,[39]but the effect of damping was neglected in their work and the damping evolution ΔH–ωwas not further investigated. We have found the appropriate damping to describe the dissipation of AFM dynamics in CrCl3, and in this way we obtain the linewidth ΔHas a function of the microwave frequency. Here we do not consider a broaden line width independent of the resonance frequency,which is originated from the multi-domain state as inhomogenous in the real sample.

    Equations(11)and (12)constitute the main conclusions of this paper and demonstrate that(i)the variation of linewidth ΔHwith frequency in antiferromagnets is not a simple linear relationship, which is very different from the linear relationμ0ΔH=μ0ΔH0+αω/γin ferromagnets,[30]and(ii)the linewidth variation is still different between the optical and acoustic modes, with the linewidth of the optical mode increasing faster than the acoustic mode.

    To gain further insight into the results presented in Eqs.(11)and (12), we plot the damping evolution ΔH–ωof the optical and acoustic modes in Fig.1. The parameters employed in the figure areμ0HE=95 mT,μ0M0=330 mT andγ=28/2πGHz/T, which can well reflect the characteristics of antiferromagnets with the weak interlayer coupling,such as CrCl3. The damping parameterαis around 10?2in ferromagnets,such as YIG,and we therefore chooseα0andα12to be on the same order of magnitude. And here we do not consider the effect of the non-uniform linewidth.As shown in Fig.1(a),the linewidths of the optical and acoustic modes both grow nonlinearly with the increase of frequency,but there is a clear difference between them. For the acoustic mode,the linewidth still has a certain value at zero-frequency and grows more slowly,while for the optical mode, the linewidth increases dramatically from zero and surpasses the acoustic mode at around 4.5 GHz. To further investigate the effect of different damping parametersα0,α12on the linewidth,we fixα0and changeα12in the Figs. 1(b) and 1(c). We do the opposite in Figs. 1(d)and 1(e), and find that in the acoustic mode, the growth rate of linewidth increases with the growth ofα0orα12, and the linewidth at the zero-frequency increases with the growth ofα0, but reduces with the growth ofα12. Whenα0=α12, the linewidth at the zero-frequency will disappear. In the optical mode,the linewidth increases with the growth ofα0as it does in the acoustic mode. But with the growth ofα12,it grows at low frequencies and decreases at high frequencies. Moreover,the linewidth at the zero-frequency is always zero. Then we can get the conclusion that the nonlinear damping evolution ΔH–ωis a consequence of the interlayer interaction during the antiferromagnetic resonance, which is not decided byα0orα12and the interlayer Gilbert dissipation also plays an important role in changing the value of the nonlinear linewidth.We notice that the new damping termα12will have the effect only when the sublattice is asymmetric, according to the theory of karma.[36]But in our work, the operation of applying an external magnetic field perpendicular to the direction of magnetization has broken the centrosymmetry, so here the new damping termα12always exists.

    Fig.1. The linewidth ΔH as a function of the frequency for the optical mode and acoustic mode. The curves in blue and red depict the optical and acoustic modes,respectively. (a)The curves are calculated according to Eqs.(11)and(12)by setting α0=0.02,α12=0.01. For(b)and(c)α0=0.02,α12=0,0.01 and 0.02 correspond to dashed,solid and dash-dotted curves,respectively.α12=0.02,α0=0.02,0.04 and 0.06 correspond to dashed,solid and dash-dotted curves for(d)and(e),respectively.

    4. Experimental results

    Based on the above theoretical model, we conducted experiments to investigate the resonance frequency and the damping evolution ΔH–ωof the optical and acoustic modes in antiferromagnet CrCl3. To measure the AFMR signal of the antiferromagnet CrCl3, an external magnetic fieldH=H0+?was applied to the CrCl3/Pt bilayer to drive the antiferromagnetic resonance. The microwave field component?in they–zplane was applied by placing a coplanar waveguide along thex-axis. The static magnetic fieldH0was applied along they-axis. The microwave power was 100 mW and the modulation frequency used for lock-in measurement was 8.33 kHz. Thus,the optical mode and the acoustic mode were driven byhyandhz,respectively.[39]In our experiments,the CrCl3/Pt strip was placed along thex-andy-axis. The microwave transmission intensity was simultaneously measured as a DC voltage through a diode. To perform measurements at low temperatures,the device was placed in a cryogenic chamber.

    Fig. 2. (a) Evolution of the AFMR in CrCl3 measured by DC voltage through a diode. The dispersion (b) and the damping evolutions (c) of the optical and acoustic modes in CrCl3. The damping evolutions with different α12 of the optical(d)and acoustic modes(e)in CrCl3. The blue curve and the red curve in(b)are plotted according to Eqs.(9)and(10),respectively.The blue and the red curves in(c)–(e)are plotted according to Eqs.(11)and(12),respectively. And the dashed curves different from solid curves are the parameter α12=0.

    The evolution of AFMR in CrCl3is measured in DC voltage by sweeping magnetic field at fixed frequencyωas shown in Fig.2(a).

    Figure 2(b) shows the results in which the resonant frequencies of the optical and acoustic modes are as a function of the magnetic fieldH. We use Eqs. (9) and (10) to fit the resonance frequencies.[39]These fits are shown by the red and blue lines in Fig.2(b),which represent the optical and acoustic modes,respectively,with fit parameters ofμ0HE=95 mT,μ0M0=330 mT andγ/2π=28 GHz/T.As shown in Fig.2(b),with the choice of the above parameters, the fitted curves agree well with our experimental data, both for the optical and acoustic modes. And this result has been confirmed by the work of Liuet al.[39]But the damping is neglected in their work which is very important to the antiferromagnetic dynamic.

    Here we further study the damping evolution ΔH–ωof the optical and acoustic modes,which are shown in Figs.2(c)–2(e). Then we use Eqs. (11) and (12) with different nonuniform linewidth terms ΔHO0and ΔHA0to fit the linewidth of the optical and acoustic modes. The parametersHEandM0are fixed, which have been obtained from fitting the resonant frequency above.[39]These fits are shown by the red and blue solid lines in Figs. 2(c)–2(d), which represent the optical and acoustic modes, respectively. The fit parameters employed areα0=0.02,α12=0.013, ΔHO0=3.18 mT and ΔHA0=1.30 mT.As shown in Figs.2(c)–2(e),in the range of 3 GHz to 7 GHz, our theory agrees very well with the experimental data for the optical, and for acoustic modes, there is a small deviation between the experimental data and the theoretical prediction which may originate from our experiment with large error bar,but the trend of variation between the theoretical and experimental data is the same. The optical and acoustic modes both show a non-linear increase in linewidth with increasing frequency. Moreover, our theory and experiments also show that the optical mode will have a dramatic increase in linewidth with increasing frequency.But for acoustic mode,the increasing trend is more gentle than optical mode as shown in Fig. 2(c). So at high frequencies, the linewidth of optical mode will be much larger than acoustic mode. To further study the role ofα12in damping, we setα12=0 in the red and blue dash lines as a contrast in Figs.2(d)and 2(e),and other parameters are the same as the solid lines.But there is no very huge difference between the dashed lines and solid lines in Figs. 2(d) and 2(e). Although our theory predicts thatα12has a significant effect on linewidth, further experiments are needed to verify that.

    5. Summary

    In this work, we have theoretically and experimentally investigated the Gilbert damping evolution ΔH–ωof optical and acoustic mode with frequency in the layered antiferromagnet flake CrCl3. We discovered that the linewidths of both optical and acoustic modes have a nonlinear positive correlation with frequency in AFMs, which is different from the linear relationship in ferromagnets. We developed suitable damping from the Lagrange equation with the Rayleigh dissipation functional to account for the linewidth of the optical and acoustic modes and predicted nonlinear ΔH–ωrelationship for both optical and acoustic modes, which is in agreement with our experimental observations. Combining both our theoretical prediction and experimental observations, we concluded that the nonlinear damping evolution ΔH–ωis a intrinsic nature,which is derived from the interlayer interaction during the antiferromagnetic resonance. Our work provides a method for extracting damping parameters from antiferromagnetic linewidths, allowing a quantitative measure of the magnitude of dissipation in antiferromagnetic resonances.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant No. 11774200), the Shandong Provincial Natural Science Foundation, China (Grant No. ZR2019JQ02), and the Youth Interdisciplinary Science and Innovative Research Groups of Shandong University.

    猜你喜歡
    張琪
    小學(xué)生迪克比
    忙年頒獎禮
    岜沙之晨
    Research on quinoline degradation in drinking water by a large volume strong ionization dielectric barrier discharge reaction system
    馬語者!90后美女騎手與10歲白馬的“戰(zhàn)友情”
    辦公室沙發(fā)設(shè)計
    Polarized red,green,and blue light emitting diodes fabricated with identical device configuration using rubbed PEDOT:PSS as alignment layer?
    國醫(yī)大師張琪治療冠心病穩(wěn)定型心絞痛經(jīng)驗(yàn)
    門外的等待
    A Brief Study on the Strategies to Learn English Well in High Schools
    美女内射精品一级片tv| 伦精品一区二区三区| 亚洲av二区三区四区| 日韩欧美 国产精品| 亚洲av成人精品一二三区| 亚洲精品国产成人久久av| 在现免费观看毛片| 国产 一区 欧美 日韩| 国产精品一区二区三区四区免费观看| 天天躁夜夜躁狠狠久久av| 国产欧美另类精品又又久久亚洲欧美| 亚洲综合精品二区| 一卡2卡三卡四卡精品乱码亚洲| 国产精品不卡视频一区二区| 91aial.com中文字幕在线观看| 一边亲一边摸免费视频| 亚洲欧美清纯卡通| 久久久久久久亚洲中文字幕| 三级国产精品欧美在线观看| 床上黄色一级片| 禁无遮挡网站| 日韩视频在线欧美| 大话2 男鬼变身卡| 床上黄色一级片| 国产精品熟女久久久久浪| 久久久久久久久久久丰满| 国产免费男女视频| 久久这里只有精品中国| 欧美成人一区二区免费高清观看| av在线老鸭窝| 两个人的视频大全免费| 亚洲精品色激情综合| 丰满少妇做爰视频| 亚洲人成网站高清观看| 日韩欧美 国产精品| 天堂√8在线中文| 国模一区二区三区四区视频| 久久久精品大字幕| 一区二区三区高清视频在线| a级毛片免费高清观看在线播放| 99在线视频只有这里精品首页| 最近最新中文字幕大全电影3| .国产精品久久| 最新中文字幕久久久久| 国产成人a∨麻豆精品| 欧美成人精品欧美一级黄| 欧美日韩国产亚洲二区| 日本午夜av视频| 日本免费a在线| 韩国高清视频一区二区三区| 久久鲁丝午夜福利片| 精品人妻视频免费看| 亚洲av电影在线观看一区二区三区 | 精品人妻视频免费看| 一级毛片久久久久久久久女| 女人被狂操c到高潮| 91精品一卡2卡3卡4卡| 欧美又色又爽又黄视频| 91久久精品国产一区二区三区| 精品人妻熟女av久视频| 亚洲无线观看免费| 国产不卡一卡二| 91久久精品国产一区二区成人| 人妻制服诱惑在线中文字幕| 成人三级黄色视频| 卡戴珊不雅视频在线播放| 亚洲av不卡在线观看| 天天一区二区日本电影三级| 精品人妻视频免费看| 日本爱情动作片www.在线观看| 免费看av在线观看网站| 国产黄片美女视频| 国产精品一及| 狂野欧美白嫩少妇大欣赏| 国产在线男女| 日本色播在线视频| 亚洲国产最新在线播放| 久久久精品大字幕| 国产三级中文精品| 一个人免费在线观看电影| 国产精品久久久久久久久免| 欧美日韩综合久久久久久| 亚洲欧洲国产日韩| 国产精品熟女久久久久浪| 丝袜喷水一区| 成人亚洲欧美一区二区av| 91久久精品电影网| 99九九线精品视频在线观看视频| 久久久久九九精品影院| 一级爰片在线观看| 欧美又色又爽又黄视频| 嫩草影院入口| 中文字幕人妻熟人妻熟丝袜美| 插逼视频在线观看| 又粗又硬又长又爽又黄的视频| av女优亚洲男人天堂| 99久久精品一区二区三区| 久久久亚洲精品成人影院| 成年女人永久免费观看视频| 特大巨黑吊av在线直播| 国产精品一区二区三区四区免费观看| av又黄又爽大尺度在线免费看 | 欧美激情久久久久久爽电影| 97人妻精品一区二区三区麻豆| 日日撸夜夜添| 亚洲熟妇中文字幕五十中出| 国产成年人精品一区二区| 听说在线观看完整版免费高清| 国产成人a∨麻豆精品| 日韩 亚洲 欧美在线| 夜夜爽夜夜爽视频| 日韩一本色道免费dvd| 国产视频首页在线观看| 如何舔出高潮| 精品熟女少妇av免费看| 欧美性猛交╳xxx乱大交人| 又爽又黄无遮挡网站| 久久久久国产网址| 在线免费观看的www视频| 精品欧美国产一区二区三| 国产精品电影一区二区三区| 精品人妻视频免费看| 国产精品久久久久久av不卡| 又黄又爽又刺激的免费视频.| 成人毛片a级毛片在线播放| 久久久久久国产a免费观看| 国产视频内射| 网址你懂的国产日韩在线| 久久久久久久久大av| 日本欧美国产在线视频| 91狼人影院| 深夜a级毛片| 六月丁香七月| 精品久久久噜噜| 久久精品人妻少妇| 亚洲国产精品成人综合色| 精品久久久久久久久久久久久| 成年女人看的毛片在线观看| 免费看美女性在线毛片视频| 国产精品久久电影中文字幕| 欧美精品一区二区大全| 狠狠狠狠99中文字幕| 内地一区二区视频在线| 午夜福利在线观看免费完整高清在| 亚洲内射少妇av| 韩国av在线不卡| 黄色一级大片看看| 少妇的逼好多水| 99热这里只有是精品在线观看| 大香蕉久久网| АⅤ资源中文在线天堂| 亚洲人成网站在线播| 全区人妻精品视频| 欧美性感艳星| 国产成人a区在线观看| 精品人妻偷拍中文字幕| 视频中文字幕在线观看| 欧美97在线视频| 国产精品国产三级专区第一集| 狠狠狠狠99中文字幕| 观看免费一级毛片| 亚洲国产精品sss在线观看| 亚洲国产最新在线播放| 天堂网av新在线| 欧美最新免费一区二区三区| 91久久精品电影网| 久久99热这里只频精品6学生 | 黄片无遮挡物在线观看| 男人的好看免费观看在线视频| av专区在线播放| 国产精品福利在线免费观看| 最近手机中文字幕大全| 久久久久久久久久成人| 国产精品人妻久久久影院| 在线免费观看不下载黄p国产| 国产成人freesex在线| 亚洲av.av天堂| 午夜爱爱视频在线播放| 黄色日韩在线| 青春草亚洲视频在线观看| 蜜桃久久精品国产亚洲av| 1000部很黄的大片| 精品久久久久久久久av| 久久国内精品自在自线图片| 日本三级黄在线观看| 三级国产精品欧美在线观看| 一个人观看的视频www高清免费观看| 国产成人a区在线观看| 久久99蜜桃精品久久| videossex国产| 麻豆一二三区av精品| 少妇人妻一区二区三区视频| av女优亚洲男人天堂| 伊人久久精品亚洲午夜| 日本猛色少妇xxxxx猛交久久| 女人被狂操c到高潮| 国产精品久久久久久久电影| 久久6这里有精品| 日本一本二区三区精品| 村上凉子中文字幕在线| 国产片特级美女逼逼视频| 内射极品少妇av片p| 色吧在线观看| 一卡2卡三卡四卡精品乱码亚洲| 三级国产精品欧美在线观看| 欧美xxxx黑人xx丫x性爽| 国产成人午夜福利电影在线观看| 亚洲成人精品中文字幕电影| 国产老妇伦熟女老妇高清| 亚洲欧美日韩东京热| 日韩三级伦理在线观看| 中文字幕免费在线视频6| 成人毛片a级毛片在线播放| 久久99热这里只频精品6学生 | 搡女人真爽免费视频火全软件| 国产淫片久久久久久久久| 久久精品国产亚洲av涩爱| 国产午夜精品久久久久久一区二区三区| 国产视频首页在线观看| 一边摸一边抽搐一进一小说| 亚洲av电影不卡..在线观看| 波多野结衣巨乳人妻| 三级国产精品欧美在线观看| 国产欧美另类精品又又久久亚洲欧美| 亚洲综合精品二区| 99久久人妻综合| 国产精品国产高清国产av| 亚洲美女视频黄频| 日本黄色片子视频| 国产女主播在线喷水免费视频网站 | 我要搜黄色片| 老司机福利观看| 久久久久久久久久久免费av| 3wmmmm亚洲av在线观看| 欧美一区二区亚洲| 麻豆精品久久久久久蜜桃| 成人欧美大片| 国产乱人视频| 春色校园在线视频观看| 国产精品一区二区三区四区免费观看| av在线天堂中文字幕| 老女人水多毛片| 村上凉子中文字幕在线| 亚洲四区av| 久久久久久久久中文| 午夜福利在线观看免费完整高清在| 久久婷婷人人爽人人干人人爱| 久久精品久久精品一区二区三区| 秋霞在线观看毛片| 亚洲成av人片在线播放无| 久久久亚洲精品成人影院| av又黄又爽大尺度在线免费看 | 国产成人午夜福利电影在线观看| 国产精品人妻久久久影院| 欧美成人免费av一区二区三区| 午夜福利高清视频| 大香蕉97超碰在线| 老司机影院毛片| 亚洲av电影在线观看一区二区三区 | 一本久久精品| 久久久久久久久久久免费av| 日日干狠狠操夜夜爽| 欧美潮喷喷水| 丰满人妻一区二区三区视频av| 婷婷色av中文字幕| 婷婷色麻豆天堂久久 | 汤姆久久久久久久影院中文字幕 | 一级黄片播放器| 熟女电影av网| 岛国在线免费视频观看| av在线亚洲专区| 久久久久精品久久久久真实原创| 丰满少妇做爰视频| 国产91av在线免费观看| 高清视频免费观看一区二区 | 少妇丰满av| videossex国产| 国产色婷婷99| 天天躁夜夜躁狠狠久久av| 亚洲高清免费不卡视频| 日韩,欧美,国产一区二区三区 | 岛国毛片在线播放| 国产黄片视频在线免费观看| 99久久精品一区二区三区| 免费电影在线观看免费观看| av线在线观看网站| 搡女人真爽免费视频火全软件| 国产69精品久久久久777片| 边亲边吃奶的免费视频| 99久久精品国产国产毛片| 欧美不卡视频在线免费观看| 狠狠狠狠99中文字幕| 91精品一卡2卡3卡4卡| АⅤ资源中文在线天堂| 黄色欧美视频在线观看| 国产欧美另类精品又又久久亚洲欧美| 午夜久久久久精精品| 国产 一区精品| 亚洲欧美一区二区三区国产| 欧美一区二区精品小视频在线| 亚洲国产最新在线播放| 小说图片视频综合网站| 毛片一级片免费看久久久久| 黄色一级大片看看| 欧美zozozo另类| 国产精品不卡视频一区二区| 久久久精品欧美日韩精品| av在线观看视频网站免费| 乱系列少妇在线播放| 国产熟女欧美一区二区| 国产精品久久视频播放| 日韩国内少妇激情av| or卡值多少钱| 国产午夜精品一二区理论片| 97在线视频观看| 国产色婷婷99| АⅤ资源中文在线天堂| 一级毛片aaaaaa免费看小| 99久久中文字幕三级久久日本| 内地一区二区视频在线| 亚洲av成人精品一二三区| 国产乱来视频区| 国产精品99久久久久久久久| 国产私拍福利视频在线观看| 国产精品一二三区在线看| 日韩欧美 国产精品| 99久久精品国产国产毛片| 在线a可以看的网站| 亚洲欧美日韩卡通动漫| 欧美不卡视频在线免费观看| av卡一久久| 两性午夜刺激爽爽歪歪视频在线观看| 中国国产av一级| 99久久精品一区二区三区| 国产av不卡久久| 亚洲天堂国产精品一区在线| 免费播放大片免费观看视频在线观看 | 中文字幕av在线有码专区| 亚洲熟妇中文字幕五十中出| 99热精品在线国产| 亚洲欧洲日产国产| 国产成人午夜福利电影在线观看| 狂野欧美激情性xxxx在线观看| 99热精品在线国产| 国国产精品蜜臀av免费| 少妇的逼水好多| 亚洲国产欧洲综合997久久,| 又爽又黄无遮挡网站| 亚洲国产高清在线一区二区三| 淫秽高清视频在线观看| 中文字幕制服av| 亚洲av二区三区四区| 国产精品一区二区三区四区久久| 久久精品久久久久久久性| 麻豆久久精品国产亚洲av| 一本久久精品| 日本黄大片高清| 男人的好看免费观看在线视频| 最近中文字幕2019免费版| 亚洲婷婷狠狠爱综合网| 在线天堂最新版资源| 一级爰片在线观看| 亚洲av福利一区| 一级爰片在线观看| 国产黄a三级三级三级人| 国产色婷婷99| 97在线视频观看| 精品久久久久久久人妻蜜臀av| 高清av免费在线| 国产日韩欧美在线精品| 欧美bdsm另类| 久久人人爽人人片av| 国产白丝娇喘喷水9色精品| 久久久久久久久久黄片| 非洲黑人性xxxx精品又粗又长| 免费看光身美女| 免费不卡的大黄色大毛片视频在线观看 | 精品免费久久久久久久清纯| 特级一级黄色大片| 久久精品综合一区二区三区| 尾随美女入室| 一区二区三区四区激情视频| .国产精品久久| 成人无遮挡网站| av天堂中文字幕网| 一本久久精品| 永久免费av网站大全| 国产精品嫩草影院av在线观看| av福利片在线观看| 美女xxoo啪啪120秒动态图| 久久久a久久爽久久v久久| 91aial.com中文字幕在线观看| 日韩欧美精品免费久久| 免费av观看视频| 国产成人91sexporn| 成人性生交大片免费视频hd| 三级男女做爰猛烈吃奶摸视频| 国产黄片视频在线免费观看| 一个人看的www免费观看视频| 性插视频无遮挡在线免费观看| 国产黄片美女视频| 99久久精品国产国产毛片| 国内精品美女久久久久久| 久久久色成人| 亚洲av中文av极速乱| 成年免费大片在线观看| 久久精品久久久久久噜噜老黄 | 国产成人精品婷婷| 亚洲成av人片在线播放无| 超碰av人人做人人爽久久| 特级一级黄色大片| 性插视频无遮挡在线免费观看| 一级黄色大片毛片| 2021少妇久久久久久久久久久| 亚洲精品aⅴ在线观看| 国产精品一区www在线观看| 男人舔奶头视频| 国产精品一二三区在线看| 美女大奶头视频| 午夜精品国产一区二区电影 | 国产精品一区二区在线观看99 | 亚洲人与动物交配视频| 亚洲精品,欧美精品| 91精品国产九色| 亚洲av成人精品一二三区| videos熟女内射| 黑人高潮一二区| 日本一本二区三区精品| a级毛片免费高清观看在线播放| 日韩在线高清观看一区二区三区| 成人午夜高清在线视频| 在线天堂最新版资源| 国产片特级美女逼逼视频| 亚洲精品亚洲一区二区| 欧美成人免费av一区二区三区| 婷婷六月久久综合丁香| 国产高清三级在线| 九九热线精品视视频播放| 中国美白少妇内射xxxbb| 两个人视频免费观看高清| 三级经典国产精品| 亚洲欧美日韩高清专用| 婷婷色麻豆天堂久久 | 丰满人妻一区二区三区视频av| 大又大粗又爽又黄少妇毛片口| 综合色av麻豆| 亚洲最大成人中文| 亚洲国产最新在线播放| 久久热精品热| 久久精品国产99精品国产亚洲性色| 国产美女午夜福利| av播播在线观看一区| 中文字幕免费在线视频6| 99久久中文字幕三级久久日本| 国产探花在线观看一区二区| 久久综合国产亚洲精品| 在线观看66精品国产| 最后的刺客免费高清国语| 三级经典国产精品| 日韩av在线大香蕉| av在线亚洲专区| 久久久精品欧美日韩精品| 国产欧美日韩精品一区二区| 爱豆传媒免费全集在线观看| 国产精品一二三区在线看| 夜夜看夜夜爽夜夜摸| 99国产精品一区二区蜜桃av| 国产精品野战在线观看| av免费观看日本| 秋霞在线观看毛片| 国产精品国产三级专区第一集| 欧美成人精品欧美一级黄| 国产精品一及| 看黄色毛片网站| 嫩草影院新地址| 夫妻性生交免费视频一级片| 亚洲成人久久爱视频| 村上凉子中文字幕在线| 中文字幕人妻熟人妻熟丝袜美| 色哟哟·www| 久久精品国产亚洲av涩爱| 一边摸一边抽搐一进一小说| 久久精品人妻少妇| 99热这里只有精品一区| 国产高清视频在线观看网站| 国产伦在线观看视频一区| 亚洲五月天丁香| 精品一区二区三区人妻视频| 国产精品一二三区在线看| 草草在线视频免费看| 99热精品在线国产| 国产黄色小视频在线观看| 99视频精品全部免费 在线| 国产精品一区www在线观看| 国产 一区精品| 国产亚洲av片在线观看秒播厂 | 校园人妻丝袜中文字幕| 精品熟女少妇av免费看| 国产69精品久久久久777片| 精品久久久久久电影网 | 偷拍熟女少妇极品色| 老司机影院毛片| 国产精品美女特级片免费视频播放器| 美女大奶头视频| 十八禁国产超污无遮挡网站| 国产高清国产精品国产三级 | 国产真实乱freesex| 日韩欧美精品v在线| av黄色大香蕉| 最近视频中文字幕2019在线8| 伦理电影大哥的女人| 欧美色视频一区免费| 亚洲乱码一区二区免费版| 国产在线一区二区三区精 | 久久人妻av系列| 久久久精品欧美日韩精品| .国产精品久久| 国产精品美女特级片免费视频播放器| 色噜噜av男人的天堂激情| 中文字幕久久专区| 一个人免费在线观看电影| 日本免费在线观看一区| 成人鲁丝片一二三区免费| 免费电影在线观看免费观看| 色5月婷婷丁香| 一区二区三区乱码不卡18| 久久久午夜欧美精品| 亚洲精品一区蜜桃| 床上黄色一级片| 少妇的逼水好多| 99九九线精品视频在线观看视频| 51国产日韩欧美| 国产亚洲精品av在线| 狂野欧美激情性xxxx在线观看| 成人午夜精彩视频在线观看| 最新中文字幕久久久久| 久热久热在线精品观看| 日韩欧美精品v在线| 日本黄色片子视频| 少妇人妻一区二区三区视频| 晚上一个人看的免费电影| 久久精品国产自在天天线| 老女人水多毛片| 有码 亚洲区| 久久久久久久亚洲中文字幕| 又粗又硬又长又爽又黄的视频| 成人综合一区亚洲| 长腿黑丝高跟| 国产伦精品一区二区三区四那| 久久欧美精品欧美久久欧美| 99热全是精品| 日本午夜av视频| 亚洲国产精品久久男人天堂| 日韩大片免费观看网站 | 看免费成人av毛片| 亚洲五月天丁香| 国产av码专区亚洲av| 久久韩国三级中文字幕| 中文字幕人妻熟人妻熟丝袜美| 国产欧美日韩精品一区二区| 亚洲怡红院男人天堂| 午夜福利成人在线免费观看| eeuss影院久久| 又爽又黄a免费视频| 日本wwww免费看| 欧美极品一区二区三区四区| 少妇丰满av| 男女那种视频在线观看| 亚洲av成人av| 小蜜桃在线观看免费完整版高清| 18禁在线播放成人免费| 国产精品1区2区在线观看.| 在线免费十八禁| 国产精品综合久久久久久久免费| 久久久国产成人免费| 国产乱人视频| 国产v大片淫在线免费观看| 午夜福利成人在线免费观看| 特级一级黄色大片| av卡一久久| 亚洲av日韩在线播放| 国产乱来视频区| 日本wwww免费看| 国产欧美日韩精品一区二区| 嫩草影院新地址| 国产精品不卡视频一区二区| 一个人观看的视频www高清免费观看| 九九在线视频观看精品| 国产淫片久久久久久久久| 91aial.com中文字幕在线观看| 高清在线视频一区二区三区 | 免费搜索国产男女视频| av天堂中文字幕网| 久久久国产成人免费| 亚洲国产精品sss在线观看| 真实男女啪啪啪动态图| 我要看日韩黄色一级片| 老司机影院毛片| 国产精品嫩草影院av在线观看| 2022亚洲国产成人精品| 国产精品蜜桃在线观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 久久99蜜桃精品久久| 亚洲天堂国产精品一区在线| 国产av不卡久久| 久久精品熟女亚洲av麻豆精品 | 综合色av麻豆| h日本视频在线播放| 成人性生交大片免费视频hd| 国产一区二区在线观看日韩| 亚洲三级黄色毛片| 在线观看美女被高潮喷水网站| 久久久久久久久久久免费av| 在现免费观看毛片| 国产亚洲5aaaaa淫片|