• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    High power-added-efficiency AlGaN/GaN HEMTs fabricated by atomic level controlled etching

    2022-02-24 08:59:08XinchuangZhang張新創(chuàng)BinHou侯斌FuchunJia賈富春HaoLu蘆浩XueruiNiu牛雪銳MeiWu武玫MengZhang張濛JialeDu杜佳樂LingYang楊凌XiaohuaMa馬曉華andYueHao郝躍
    Chinese Physics B 2022年2期
    關(guān)鍵詞:楊凌新創(chuàng)

    Xinchuang Zhang(張新創(chuàng)) Bin Hou(侯斌) Fuchun Jia(賈富春) Hao Lu(蘆浩)Xuerui Niu(牛雪銳) Mei Wu(武玫) Meng Zhang(張濛) Jiale Du(杜佳樂)Ling Yang(楊凌) Xiaohua Ma(馬曉華) and Yue Hao(郝躍)

    1School of Advanced Materials and Nanotechnology,Xidian University,Xi’an 710071,China2School of Microelectronics,Xidian University,Xi’an 710071,China

    An atomic-level controlled etching(ACE)technology is invstigated for the fabrication of recessed gate AlGaN/GaN high-electron-mobility transistors(HEMTs)with high power added efficiency. We compare the recessed gate HEMTs with conventional etching(CE)based chlorine,Cl2-only ACE and BCl3/Cl2 ACE,respectively. The mixed radicals of BCl3/Cl2 were used as the active reactants in the step of chemical modification. For ensuring precise and controllable etching depth and low etching damage,the kinetic energy of argon ions was accurately controlled. These argon ions were used precisely to remove the chemical modified surface atomic layer. Compared to the HEMTs with CE, the characteristics of devices fabricated by ACE are significantly improved,which benefits from significant reduction of etching damage. For BCl3/Cl2 ACE recessed HEMTs,the load pull test at 17 GHz shows a high power added efficiency(PAE)of 59.8%with an output power density of 1.6 W/mm at Vd=10 V,and a peak PAE of 44.8%with an output power density of 3.2 W/mm at Vd=20 V in a continuous-wave mode.

    Keywords: AlGaN/GaN HEMTs,recess etching,low damage,high power added efficiency

    1. Introduction

    As an excellent representative of third-generation semiconductors,GaN HEMT heterojunction is widely used in high frequency, high efficiency and high power fields, attributing to its high electron mobility (~2000 cm2/V·s), high density(1013cm?2) and high critical breakdown electric field.[1–5]The fabrication of a large number of GaN power electronic devices and RF power devices strongly depends on the etching process.[6–9]However, conventional etching (CE) based on plasma, such as reactive ion etching (RIE) and inductively coupled plasma (ICP), often suffers from some prickly problems including large significant etching damage and uncontrollable etching depth.[10,11]To solve the above problem,atomic layer etching(ALE)of GaN based on XeF2/BCl3and Cl2/Ar has been proposed.[12,13]Nevertheless, Ohbaet al.found that an ultrasmooth surface could be realized by ALE based on BCl3/Cl2, while ALE based on chlorine-only could result in a rough surface morphology.[14]Kimet al.found that when BCl3is added to Cl2, the density of Cl+andcould be significantly reduced during the gas was glow. The decrease of Cl+anddensity can significantly reduce the plasma damage.[15]This shows that ALE based on BCl3/Cl2is more potential than ALE of chlorine-only. However, Ohbaet al.only studied the etching process of AlGaN.[14]Reports on GaN radio frequency devices fabricated by BCl3/Cl2based ALE are still lacking.

    In this work,we developed a BCl3/Cl2and Cl2-only based atomic level controlled etching(ACE)technology for AlGaN.By BCl3/Cl2and Cl2-only based ACE technology, we fabricated recessed gate HEMTs devices and compared them with HEMTs fabricated by CE process. For the recessed HEMTs with Cl2-only ACE and BCl3/Cl2ACE technology,theIon/Ioffratios of the device are increased by one order of magnitude and more than two orders of magnitude, respectively. At the same time, the DC peak transconductance is increased from 375 mS/mm to 453 mS/mm and 540 mS/mm. At 17 GHz,the HEMTs with Cl2-only ACE and BCl3/Cl2ACE,respectively,exhibit attractive peak power added efficiency(PAE)of 57.1%and 59.8% at drain bias of 10 V in a continuous-wave mode.The results presented here are believed to boost the low damage etching process for radio frequency applications.

    2. Process mechanism of ACE technology

    As shown in Fig. 1, the basic BCl3/Cl2ACE concept consists of chemical modification and physical removal.BCl3/Cl2-based chemistry is used in ACE for GaN.BCl3/Cl2-based free radicals remove residual oxygen and chemically modify the surface atoms of AlGaN, which improve chlorination coverage.[16–18]In the physical reaction step, the kinetic energy of argon ion is precisely controlled by a pulse-time-regulated RF power,sequentially the chlorine atom layer is just removed.[19–21]A chlorinated layer is formed by the self-limiting chemical reaction between an atomic layer on the GaN surface and the mixed radicals of BCl3/Cl2in Fig.1(step 1), ionized by an ICP coil power with the radio frequency of 13.56 MHz. After purging the surplus radicals,the chlorinated layer is removed by argon ions in Fig. 2 (step 2),followed by purging of by-products with BCl3/Cl2. The detailed process parameters are shown in the arrow flow charts.It should be noted that the pulse duty in Fig.2(step 2)is 30%.

    As shown in Fig. 2(a), the AFM (atomic force microscope) scanning morphologies of the etched area surface of the AlGaN samples with 20, 50, 100, 150 and 200 etching cycles are shown with the surface roughness of 0.221 0.241 0.257 0.259 and 0.313 nm by BCl3/Cl2ACE, and the corresponding etching depths are 11, 26, 52, 78 and 105 nm, respectively. The root-mean-square(RMS)roughness of initial un-etching sample is 0.253 nm. With the increase of the number of ACE cycles, the etching depth increases linearly, and the surface roughness of the etched area remains constant at a very low level. The etch per cycle (EPC) is 0.52 nm/cycle,which is in agreement with the lattice constant of GaN alongcaxis.[22]Although the numbers of ACE cycles for all the samples are different, their EPCs are the same, which indicates that the ACE technology has excellent repeatability and stability. What’s more, BCl3/Cl2ACE is capable of realizing atomic-scale control of AlGaN. The EPC of Cl2-only ACE is 0.54 nm/cycle which is slightly larger than the ones of BCl3/Cl2ACE.This may be due to the plasma damage caused by more Cl+andin the chlorine plasma. By adding BCl3into Cl2, the concentration of Cl+andis reduced and the plasma damage is suppressed in the step of chemical modification.[15]Figure 2(b) compares between chemical modification only, physical removal only, and the EPC of BCl3/Cl2ACE(full cycle). The two key steps(in Fig.1 step 1 and step 2)are executed separately for 200 cycles.The EPC of chemical modification is zero,while ones of physical removal is 0.07 nm/cycle. This indicates that the chemical modification and physical removal of BCl3/Cl2ACE are completely separated in time. However, the EPC of chemical modification only and the ones of physical removal only for Cl2-only ACE are 0.02 and 0.07 nm/cycle. This result shows that there is a slight etching effect in the chlorine glow process.

    Fig.1. ACE cyclic process: (a)chlorination of GaN surface atomic layer by BCl3/Cl2 radicals; (b)pump out the excessive free radicals and purge chamber with Ar; (c)argon ion bombards the chlorinated atomic layer to form; (d)pump out the by-products and purge chamber with BCl3/Cl2.

    Fig.2. (a)Etching depth and RMS roughness versus the number of BCl3/Cl2 ACE cycles(inset: surface topography(area: 5μm×5μm)of the initial unetched sample and the sample with 200 cycles ACE).(b)Result of EPC test based on BCl3/Cl2.

    3. Device structure and fabrication

    As shown in Fig. 3(a), the AlGaN/GaN HEMT fabricated in this work was grown on a 3-inch SiC substrate,which comprises a 3-nm GaN cap layer, a 21-nm Al0.25Ga0.75N barrier layer, a 400-nm i-GaN channel, and a GaN buffer layer from top to bottom. An electron sheet concentration of 8.29×1012cm?2,a sheet resistance of 303 Ω/□,and a mobility of 1946 cm2/V·s were measured by room-temperature Hall measurements. The ohmic contact formation of source and drain included a deposition of Ti/Al/Ni/Au metal stack and annealed at 840°C for 30 s in N2. Nitrogen ion implantation was then used for device isolation. Transfer length method(TLM)showed an ohmic contact resistance of 0.39 Ω·mm. A 60-nm plasma enhanced chemical vapor deposition(PECVD)SiNxwas utilized as a passivation layer. Electron beam lithography defined the recessed-gate foot of 0.17 μm. After CF4based plasma removing the passivation layer,the AlGaN barrier layer was recessed by BCl3/Cl2ACE and Cl2-only ACE technology. The recessed depth was measured to be 18 nm by AFM with 35 and 33 cycles, resulting in an EPC of 0.52 and 0.54 nm/cycle, respectively. For comparison, 18 nm recess was etched by CE process (the rate of CE is 3 nm/min with an ICP coil power of 150 W,a bias power of 5 W,operating pressure of 5 mTorr,BCl3/Cl2(20 sccm/20 sccm),process time of 6 min),the depth of which was controlled by the process time. Figures 3(b),3(c)and 3(d)illustrate the AFM surface morphology of the sample with CE, Cl2-only ACE and BCl3/Cl2based ACE recessed etching process,respectively. It is shown that the surface morphology maintains a clear and continuous atomic step and a very low surface roughness with RMS roughness of 0.220 nm after BCl3/Cl2based ACE.The Cl2-only ACE-HEMT shows a rough surface morphology with RMS roughness of 0.257 nm,while the recessed gate with CE shows a roughness of 0.353 nm.After the gate lithography,the Ni/Au/Ni gate metal was deposited. The gate root width(Lg),gate head width, source-drain spacing (Lsd), and source-gate space (Lsg) are 0.17 μm, 0.9 μm, 2.5 μm, and 1 μm, respectively.

    Fig.3. (a)Schematic diagram of recessed AlGaN/GaN HEMTs, and surface topography(area: 5μm×5μm)of(b)CE recess, (c)Cl2-only ACE recess,and(d)BCl3/Cl2 ACE recess.

    4. Results and discussion

    The DC transferId–Vg, outputId–Vd, gate reverse Schottky characteristics and the field-effect mobility(μFE)with gate voltage of the recessed gate HEMTs by the CE, Cl2-only ACE and BCl3/Cl2ACE process are performed. As shown in Fig. 4(a), owing to precise controlling bombardment and effectively suppressed etching damage of the ACE technology, the drain leakage current of the device decreases from 2.7×10?5to 3.7×10?6and 2.6×10?7A/mm,theIon/Ioffratio increases from 4.9×104to 4.8×105and 6.8×106,and the peak transconductance of the device increased from 375 to 453 and 540 mS/mm. Figure 4(b)shows that the drain saturation current was raised from 785 to 995 and 1031 mA/mm for three types of HEMTs. As can be seen from Fig. 4(c), compared with the HEMTs by the CE, the gate leakage of HEMTs by Cl2-only ACE and HEMTs by BCl3/Cl2ACE decreases by one order of magnitude and more than two orders of magnitude respectively. Figure 4(d)shows the transferI–Vsweep in linear region and extractedμFEas a function ofVg. TheμFEof the recessed-HEMTs channel was studied withLsg,Lg,LgdandLsdof 3,50,3 and 56μm devices,in which the influence of series resistance on Gm was negligible. The peak mobility of recessed HEMT with the Cl2-only ACE and BCl3/Cl2ACE process is 1204 and 1487 cm2/V·s. However, ones of the HEMT with CE is 953 cm2/V·s. It was probably due to the fact that ACE did not cause the loss of nitrogen in the process of recessing the AlGaN barrier and ultimately reduced the surface trap concentration.[23]The peak mobility of recessed HEMT with the Cl2-only ACE is lower than that of recessed HEMT with BCl3/Cl2ACE, which may be caused by plasma damage during chlorination(Fig.1,step 1).

    Figure 5 shows the pulse transfer characteristics of three types of HEMTs at a gate voltage of?6 V to 2 V and the current collapse ratio can be expressed as

    where ΔIdsis the variation of drain pulse current (Vg=2 V)before and after electrical stress, andIds0is the drain pulse current(Vg=2 V)before applying electric stress.

    The HEMTs with Cl2-only ACE and BCl3/Cl2ACE show current collapse (collapse ratio: 4.1%, Fig. 5(b); 2.7%,Fig. 5(c)), under a quiescent bias of (VGSQ,VDSQ)=(?8 V,0 V). They are all smaller than a value of 6.3% for CEHEMTs.At(VGSQ,VDSQ)=(?8 V,20 V),the current collapse ratio decreases from 25.2% (CE HEMT) to 13.1% (Cl2-only ACE)and 8.5%(BCl3/Cl2ACE).The BCl3/Cl2ACE HEMT and Cl2-only ACE HEMT show tiny threshold voltage shift(ΔVth=0.04 V and 0.14 V) under a quiescent bias of (VGSQ,VDSQ)=(?8 V,20 V),while that of CE ones is 0.28 V.Such shift may be caused by the trapped electrons introduced under the gate during the recessing process.[23]

    Fig. 4. DC characteristics of the recessed AlGaN/GaN HEMTs with ACE and CE gate recess. (a) Transfer characteristics at Vd =10 V, (b)output characteristics,(c)gate reverse leakage characteristics,(d)field-effect mobility as a function of gate voltage for three types of HEMTs.

    Fig. 5. Pulsed transfer I–V characteristics of recessed gate HEMTs with (a) CE, (b) Cl2-only ACE , (c) BCl3/Cl2 ACE at a gate voltage of?6 V to 2 V for(VGSQ,VDSQ=0 V,0 V),(VGSQ,VDSQ=?8 V,0 V)and(VGSQ,VDSQ=?8 V,20 V).

    Fig.6. Small-signal characteristics of the recessed HEMTs at Vd=10 V,Vg=0.2 V with(a)CE gate recess and(b)Cl2-only ACE gate recess,(c)BCl3/Cl2 ACE gate recess.

    Fig.7. Load-pull characteristics of the fabricated HEMTs at 17 GHz with WG=2×50μm in CW mode. (a)CE recessed,(b)Cl2-only ACE recessed,and(c)BCl3/Cl2 ACE recessed.

    Fig.8. Large-signal characteristics of BCl3/Cl2 ACE HEMTs at 17 GHz with WG=2×50μm in CW mode: (a)at Vd=20 V,(b)RF output power density and peak PAE versus Vd.

    Small-signal measurements was used to compare the current-gain cutoff frequency (fT) and maximum oscillation frequency (fmax) of the three kinds of recessed gate HEMTs in the frequency range from 0.1 GHz to 40 GHz. As shown in Figs.6(b)and 6(c),under the same bias condition ofVd=10 V andVg=0.2 V,the BCl3/Cl2ACE-HEMT and Cl2-only ACEHEMT show afT/fmaxof 82/193 GHz and 63/165 GHz, respectively. However, the ones of CE-HEMT were 54 and 138 GHz, respectively, as shown in Fig. 6(a). This is consistent with the law of channel field effect mobility.

    The large-signal microwave power measurements of recessed HEMTs with ACE and CE were carried out at 17 GHz in continuous-wave (CW) mode, as shown in Fig. 7. All devices were biased atVd=10 V and class-AB condition. Benefiting from the suppressed gate leakage current as well as the current collapse,[24]the large-signal performance of the recessed HEMTs with ACE has been significantly improved compared with the CE-HEMT,high PAEs of 59.8%and 57.1%are achieved in the BCl3/Cl2ACE-HEMT and Cl2-only ACEHEMT,which is about 10.2%and 7.5%higher than those with CE. In addition, the corresponding output power density has also been increased to 1.6 W/mm and 1.4 W/mm,respectively,while that for the CE HEMTs is 1.0 W/mm.

    In order to evaluate the higher voltage operation of the BCl3/Cl2ACE-HEMTs,we performed the large-signal test atVd=20 V biased in a CW mode, as shown in Fig. 8(a). The peak PAE of BCl3/Cl2ACE-HEMTs is 44.8%with the output power density of 3.2 W/mm at 17 GHz. Output power density and peak PAE as a function of drain voltage(Vd=10,15 and 20 V)for BCl3/Cl2ACE-HEMTs are shown in Fig.8(b).WhenVd=15 V, the output power density is 2.5 W/mm and the peak PAE is 52.8%.With the increase of drain bias voltage,the peak PAE decreases,which may be related to the increase of gate leakage current as shown in Fig. 4(c).[25]The further study will focus on the PAE improvement at higher operation voltage such as using N2O plasma treatment.[26]

    5. Conclusion and perspectives

    An atomic level controlled etching technology is proposed for fabrication of recessed gate AlGaN/GaN HEMTs.Adding BCl3to the chlorination process significantly reduces the roughness of the AlGaN etched surface. The etching depth of the AlGaN can be controlled accurately due to precise power control. The BCl3/Cl2ACE-recessed AlGaN/GaN HEMTs exhibits an attractive PAE of 59.8% at 17 GHz in a CW mode. The ACE technology can solve the current prob-lem of conventional plasma etching in the fabrication of recessed AlGaN/GaN devices, and AlGaN/GaN Fin-FET devices, which is full of potential in the future development of GaN technology.

    Acknowledgements

    This work was supported by the National Natural Science Foundation of China (Grant Nos. 62090014, 62188102,62104184, 62104178, and 62104179) and the Fundamental Research Funds for the Central Universities of China (Grant Nos.XJS201102,XJS211101,XJS211106,and ZDRC2002).

    猜你喜歡
    楊凌新創(chuàng)
    陜西楊凌成立彩色小麥團(tuán)隊(duì)
    楊凌推出穩(wěn)農(nóng)助農(nóng)“定心丸”
    解碼楊凌:不老的農(nóng)業(yè)
    楊凌深耕服務(wù)“田園”
    新創(chuàng)企業(yè)網(wǎng)絡(luò)導(dǎo)向?qū)ζ髽I(yè)績效的影響:戰(zhàn)略能力的中介效應(yīng)
    陜西青年作家采風(fēng)團(tuán)走進(jìn)陜西楊凌
    2017山西省新春新創(chuàng)優(yōu)秀劇目展演
    戲友(2017年1期)2017-06-19 19:33:43
    藏戲表演舞臺調(diào)度傳承與發(fā)展的點(diǎn)滴思考——以新創(chuàng)藏戲劇目《圖蘭朵》為例
    結(jié)句的新創(chuàng)(外一題)——李清照《武陵春》
    中華詩詞(2017年9期)2017-04-18 14:04:37
    新創(chuàng)企業(yè)的滯漲
    色视频www国产| 欧美bdsm另类| 我的老师免费观看完整版| 国产精品不卡视频一区二区| av黄色大香蕉| 国产69精品久久久久777片| 最近2019中文字幕mv第一页| 国产精品久久久久成人av| 亚洲av电影在线观看一区二区三区| 色婷婷av一区二区三区视频| 蜜臀久久99精品久久宅男| 欧美最新免费一区二区三区| 亚洲中文av在线| 亚洲在久久综合| 久久这里有精品视频免费| 久久精品国产a三级三级三级| 下体分泌物呈黄色| 99久久精品国产国产毛片| 国产成人免费无遮挡视频| 一级二级三级毛片免费看| 免费久久久久久久精品成人欧美视频 | 精品少妇内射三级| 少妇的逼好多水| 一本色道久久久久久精品综合| 免费观看a级毛片全部| 国产老妇伦熟女老妇高清| 一级毛片 在线播放| 国产伦精品一区二区三区视频9| 亚洲欧美精品专区久久| 亚洲精品日韩在线中文字幕| 国产有黄有色有爽视频| 久久久国产精品麻豆| 国产成人freesex在线| 高清视频免费观看一区二区| 两个人免费观看高清视频 | 午夜福利网站1000一区二区三区| 欧美最新免费一区二区三区| 99视频精品全部免费 在线| 亚洲av二区三区四区| 看免费成人av毛片| 久久精品国产亚洲av涩爱| 青春草视频在线免费观看| 久久这里有精品视频免费| 99热这里只有是精品50| 亚洲国产毛片av蜜桃av| av在线app专区| 老熟女久久久| 熟妇人妻不卡中文字幕| 亚洲国产欧美日韩在线播放 | 97超碰精品成人国产| 久久久精品免费免费高清| 少妇被粗大的猛进出69影院 | 纵有疾风起免费观看全集完整版| av有码第一页| 国产在线视频一区二区| 熟女av电影| 高清视频免费观看一区二区| 亚洲国产精品999| 久久久久久久久久成人| 亚洲在久久综合| 黄色配什么色好看| 欧美人与善性xxx| 免费看光身美女| 伦精品一区二区三区| 精品少妇黑人巨大在线播放| 内射极品少妇av片p| 欧美日韩综合久久久久久| 亚洲精华国产精华液的使用体验| 欧美精品高潮呻吟av久久| 高清在线视频一区二区三区| 欧美 日韩 精品 国产| 香蕉精品网在线| 婷婷色av中文字幕| 特大巨黑吊av在线直播| 晚上一个人看的免费电影| 亚洲成人一二三区av| 一级av片app| 中文字幕免费在线视频6| 亚洲美女搞黄在线观看| 涩涩av久久男人的天堂| 日本欧美视频一区| 少妇精品久久久久久久| 久热这里只有精品99| 久久av网站| 91精品一卡2卡3卡4卡| 人妻一区二区av| a级片在线免费高清观看视频| 一级爰片在线观看| 大又大粗又爽又黄少妇毛片口| 亚洲人成网站在线观看播放| 国产精品不卡视频一区二区| 亚洲,欧美,日韩| 国产成人freesex在线| 人妻制服诱惑在线中文字幕| 亚洲国产精品999| 岛国毛片在线播放| 欧美激情极品国产一区二区三区 | 国产极品天堂在线| 交换朋友夫妻互换小说| 亚洲丝袜综合中文字幕| 熟女av电影| www.av在线官网国产| 黑丝袜美女国产一区| 在线天堂最新版资源| 亚洲第一区二区三区不卡| 边亲边吃奶的免费视频| 久久国产精品大桥未久av | 午夜免费鲁丝| 亚洲精品久久久久久婷婷小说| 久久99蜜桃精品久久| 国产日韩一区二区三区精品不卡 | 人体艺术视频欧美日本| 老司机影院毛片| 26uuu在线亚洲综合色| 午夜影院在线不卡| 夜夜爽夜夜爽视频| 亚洲人成网站在线观看播放| 欧美+日韩+精品| 蜜臀久久99精品久久宅男| 欧美精品一区二区大全| 2022亚洲国产成人精品| 国产精品偷伦视频观看了| 日韩中字成人| av福利片在线| 大码成人一级视频| 欧美日韩视频高清一区二区三区二| 久久精品久久精品一区二区三区| 日韩欧美精品免费久久| 男人爽女人下面视频在线观看| 国产精品久久久久久精品古装| 美女视频免费永久观看网站| 老熟女久久久| a级一级毛片免费在线观看| 国产精品99久久久久久久久| 看十八女毛片水多多多| 日本-黄色视频高清免费观看| 美女大奶头黄色视频| 哪个播放器可以免费观看大片| 日日撸夜夜添| 亚洲欧美精品专区久久| 久久久久久久久久久久大奶| 国产熟女午夜一区二区三区 | 99国产精品免费福利视频| 少妇被粗大的猛进出69影院 | 只有这里有精品99| 26uuu在线亚洲综合色| 亚洲自偷自拍三级| 亚洲欧洲精品一区二区精品久久久 | 一本—道久久a久久精品蜜桃钙片| 久久久久久伊人网av| 夫妻午夜视频| 六月丁香七月| 女性被躁到高潮视频| 国产视频内射| 十八禁高潮呻吟视频 | 街头女战士在线观看网站| 久久精品久久久久久噜噜老黄| 亚洲内射少妇av| 亚洲情色 制服丝袜| 成人无遮挡网站| a 毛片基地| 久久精品久久久久久久性| 亚洲美女搞黄在线观看| h视频一区二区三区| 国产成人freesex在线| 人体艺术视频欧美日本| 久久热精品热| 久久精品久久久久久噜噜老黄| 一本色道久久久久久精品综合| 国产亚洲最大av| 日本爱情动作片www.在线观看| 日韩免费高清中文字幕av| av女优亚洲男人天堂| 国产欧美日韩一区二区三区在线 | 亚洲精品一区蜜桃| 一级爰片在线观看| 国产伦在线观看视频一区| 国产av码专区亚洲av| 久久99蜜桃精品久久| 大码成人一级视频| 高清不卡的av网站| 精品久久久精品久久久| 51国产日韩欧美| 国产爽快片一区二区三区| 成年女人在线观看亚洲视频| 国产精品99久久久久久久久| 亚洲精品aⅴ在线观看| 美女主播在线视频| 国产成人精品婷婷| 综合色丁香网| 成年人午夜在线观看视频| 欧美日韩亚洲高清精品| 男人添女人高潮全过程视频| 十八禁网站网址无遮挡 | 精品少妇久久久久久888优播| 99久久精品国产国产毛片| 国产无遮挡羞羞视频在线观看| 久久狼人影院| 成人免费观看视频高清| 在线观看av片永久免费下载| 哪个播放器可以免费观看大片| 欧美精品国产亚洲| 免费观看性生交大片5| 丝袜脚勾引网站| 亚洲精品一区蜜桃| 亚洲国产精品999| 波野结衣二区三区在线| 亚洲精品久久午夜乱码| 午夜福利影视在线免费观看| 啦啦啦啦在线视频资源| 高清在线视频一区二区三区| 亚洲性久久影院| 亚洲av欧美aⅴ国产| 精品国产乱码久久久久久小说| 日韩强制内射视频| 婷婷色综合www| 亚洲精品国产av蜜桃| 赤兔流量卡办理| 老司机影院毛片| 欧美日韩视频精品一区| 成人国产麻豆网| 丰满乱子伦码专区| 国产亚洲精品久久久com| 亚洲精品中文字幕在线视频 | 五月开心婷婷网| 国产黄色免费在线视频| 自拍欧美九色日韩亚洲蝌蚪91 | 日韩电影二区| 成人免费观看视频高清| 国产精品福利在线免费观看| 一级,二级,三级黄色视频| 哪个播放器可以免费观看大片| 国产亚洲最大av| 一本一本综合久久| 国产精品久久久久久精品古装| 日韩视频在线欧美| 大香蕉久久网| 一区二区三区精品91| 少妇的逼好多水| 99久久精品国产国产毛片| 久久精品国产亚洲av天美| 亚洲精品一二三| 久久久久久久久久久久大奶| 欧美精品国产亚洲| 日韩免费高清中文字幕av| 自线自在国产av| 久久久久久久久久成人| 男女边摸边吃奶| 国产精品人妻久久久影院| 一区二区三区乱码不卡18| 亚洲美女搞黄在线观看| 成年人免费黄色播放视频 | 国产男人的电影天堂91| 亚洲成人手机| 国产一级毛片在线| 18+在线观看网站| 在线看a的网站| 各种免费的搞黄视频| 91精品国产国语对白视频| 中文字幕亚洲精品专区| 老女人水多毛片| 精品人妻熟女毛片av久久网站| 欧美精品一区二区大全| 亚洲自偷自拍三级| 春色校园在线视频观看| 99久久人妻综合| 看十八女毛片水多多多| 69精品国产乱码久久久| 9色porny在线观看| 日本黄色片子视频| 18+在线观看网站| 日韩av在线免费看完整版不卡| 黑人高潮一二区| av国产久精品久网站免费入址| 在线亚洲精品国产二区图片欧美 | 久久这里有精品视频免费| 中文字幕人妻丝袜制服| 我的女老师完整版在线观看| 毛片一级片免费看久久久久| 男人狂女人下面高潮的视频| 久久毛片免费看一区二区三区| 22中文网久久字幕| 自拍欧美九色日韩亚洲蝌蚪91 | 国产白丝娇喘喷水9色精品| 国产一区二区三区av在线| 一级毛片电影观看| 狂野欧美白嫩少妇大欣赏| 成年女人在线观看亚洲视频| 久久人妻熟女aⅴ| 一级毛片 在线播放| 91精品伊人久久大香线蕉| 亚洲国产成人一精品久久久| 欧美日本中文国产一区发布| 少妇人妻一区二区三区视频| 亚洲情色 制服丝袜| 亚洲欧美日韩另类电影网站| 午夜视频国产福利| 我的老师免费观看完整版| 2018国产大陆天天弄谢| 99久久精品国产国产毛片| 久久久a久久爽久久v久久| 久久久久久久久久人人人人人人| 日本vs欧美在线观看视频 | 亚洲无线观看免费| 只有这里有精品99| 色视频在线一区二区三区| 婷婷色av中文字幕| 精品人妻熟女毛片av久久网站| 亚洲美女黄色视频免费看| 久久影院123| 丰满饥渴人妻一区二区三| 午夜免费男女啪啪视频观看| a级毛片在线看网站| 国产高清国产精品国产三级| 免费在线观看成人毛片| 尾随美女入室| 亚洲精品日韩av片在线观看| 综合色丁香网| 国产精品蜜桃在线观看| www.av在线官网国产| 午夜av观看不卡| 国产黄片视频在线免费观看| 国产精品蜜桃在线观看| 亚洲欧美日韩东京热| 免费播放大片免费观看视频在线观看| 高清不卡的av网站| 自线自在国产av| 国产男女超爽视频在线观看| 赤兔流量卡办理| 制服丝袜香蕉在线| 激情五月婷婷亚洲| 国产成人aa在线观看| 熟女av电影| 国产 一区精品| 日日爽夜夜爽网站| 黑人巨大精品欧美一区二区蜜桃 | 久久精品久久精品一区二区三区| 久久久久久久国产电影| 大陆偷拍与自拍| 亚洲精品乱久久久久久| 99久国产av精品国产电影| 日韩精品免费视频一区二区三区 | 欧美精品国产亚洲| 最近手机中文字幕大全| 成人综合一区亚洲| 两个人的视频大全免费| 免费av中文字幕在线| 99热全是精品| 不卡视频在线观看欧美| 国产熟女午夜一区二区三区 | 亚洲精品国产色婷婷电影| 中文乱码字字幕精品一区二区三区| 精品一品国产午夜福利视频| 亚洲精品视频女| 国产黄片视频在线免费观看| 精品99又大又爽又粗少妇毛片| h日本视频在线播放| 99久久中文字幕三级久久日本| 日韩亚洲欧美综合| 国产精品不卡视频一区二区| 免费观看a级毛片全部| 亚洲高清免费不卡视频| 国产色婷婷99| 久久热精品热| 啦啦啦中文免费视频观看日本| 成年av动漫网址| 亚洲欧美一区二区三区黑人 | 校园人妻丝袜中文字幕| 晚上一个人看的免费电影| av福利片在线观看| 七月丁香在线播放| 中文乱码字字幕精品一区二区三区| 国产精品人妻久久久久久| 少妇丰满av| 国产片特级美女逼逼视频| 欧美激情国产日韩精品一区| 国内揄拍国产精品人妻在线| 王馨瑶露胸无遮挡在线观看| 日韩精品免费视频一区二区三区 | 在线观看美女被高潮喷水网站| 乱人伦中国视频| 日本-黄色视频高清免费观看| 日韩中文字幕视频在线看片| 黄色视频在线播放观看不卡| 亚洲精品一二三| 亚洲综合色惰| 中文字幕精品免费在线观看视频 | 久久影院123| 久久久久久久久久久丰满| 午夜福利网站1000一区二区三区| 久久午夜综合久久蜜桃| 亚洲不卡免费看| 成人毛片60女人毛片免费| 久久影院123| 高清在线视频一区二区三区| 久久久亚洲精品成人影院| 一区二区三区四区激情视频| 国产在线一区二区三区精| 午夜福利网站1000一区二区三区| 人人妻人人添人人爽欧美一区卜| 又爽又黄a免费视频| 男的添女的下面高潮视频| 国产综合精华液| 国产精品麻豆人妻色哟哟久久| 只有这里有精品99| 亚洲高清免费不卡视频| 久久婷婷青草| 精华霜和精华液先用哪个| 免费观看的影片在线观看| 午夜福利,免费看| 亚州av有码| 久久久久国产精品人妻一区二区| 国产成人freesex在线| 菩萨蛮人人尽说江南好唐韦庄| 在线免费观看不下载黄p国产| 欧美激情国产日韩精品一区| 久久久久久伊人网av| 麻豆乱淫一区二区| .国产精品久久| 日韩强制内射视频| 国产在线一区二区三区精| 交换朋友夫妻互换小说| 啦啦啦中文免费视频观看日本| 日本91视频免费播放| 国产精品久久久久久久电影| 成人18禁高潮啪啪吃奶动态图 | 好男人视频免费观看在线| 两个人免费观看高清视频 | 99热全是精品| 欧美三级亚洲精品| 青青草视频在线视频观看| 观看免费一级毛片| 亚洲天堂av无毛| 丝袜脚勾引网站| 一个人看视频在线观看www免费| 日韩三级伦理在线观看| 欧美成人精品欧美一级黄| 久久人妻熟女aⅴ| 精品久久久久久电影网| 国产片特级美女逼逼视频| 国产黄片美女视频| 国产亚洲午夜精品一区二区久久| 18禁动态无遮挡网站| 亚洲一区二区三区欧美精品| av国产久精品久网站免费入址| 18+在线观看网站| 18禁裸乳无遮挡动漫免费视频| 建设人人有责人人尽责人人享有的| 国产成人午夜福利电影在线观看| 大香蕉久久网| 噜噜噜噜噜久久久久久91| 观看免费一级毛片| 日本午夜av视频| 水蜜桃什么品种好| 欧美日韩综合久久久久久| 9色porny在线观看| 精品一品国产午夜福利视频| 亚洲美女视频黄频| 韩国av在线不卡| 全区人妻精品视频| 亚洲色图综合在线观看| 久久久精品免费免费高清| 桃花免费在线播放| 嘟嘟电影网在线观看| 91午夜精品亚洲一区二区三区| 我要看黄色一级片免费的| 免费看光身美女| 国国产精品蜜臀av免费| 97在线人人人人妻| 最新的欧美精品一区二区| 亚洲欧美清纯卡通| 国产精品一区二区三区四区免费观看| 午夜激情久久久久久久| 蜜桃久久精品国产亚洲av| 欧美亚洲 丝袜 人妻 在线| 久久久久网色| 久久国产精品大桥未久av | 久久这里有精品视频免费| 18禁裸乳无遮挡动漫免费视频| 三上悠亚av全集在线观看 | 国产成人aa在线观看| 九九在线视频观看精品| 国产av国产精品国产| 久久av网站| 黑人猛操日本美女一级片| 国产一区有黄有色的免费视频| 日韩不卡一区二区三区视频在线| 秋霞在线观看毛片| 亚洲av日韩在线播放| 好男人视频免费观看在线| 国产在线免费精品| 青青草视频在线视频观看| 久久久精品免费免费高清| 丰满人妻一区二区三区视频av| 九九爱精品视频在线观看| 亚洲熟女精品中文字幕| 秋霞在线观看毛片| 久久久亚洲精品成人影院| 色婷婷久久久亚洲欧美| 99精国产麻豆久久婷婷| 一二三四中文在线观看免费高清| 国产伦理片在线播放av一区| 亚洲内射少妇av| 日本欧美视频一区| 国产精品国产三级国产av玫瑰| 99热这里只有精品一区| 少妇人妻一区二区三区视频| 久久人人爽人人片av| 两个人的视频大全免费| 99久久精品国产国产毛片| 女人久久www免费人成看片| 九九久久精品国产亚洲av麻豆| 国产精品嫩草影院av在线观看| 亚洲成色77777| av卡一久久| 亚洲国产日韩一区二区| 国产国拍精品亚洲av在线观看| a级毛色黄片| 三级国产精品欧美在线观看| 好男人视频免费观看在线| 亚洲三级黄色毛片| 成人黄色视频免费在线看| a级毛色黄片| freevideosex欧美| 午夜激情福利司机影院| a级毛片在线看网站| 人妻少妇偷人精品九色| 成人毛片a级毛片在线播放| 美女cb高潮喷水在线观看| 波野结衣二区三区在线| 91精品国产国语对白视频| av视频免费观看在线观看| 国产成人精品婷婷| 黑人巨大精品欧美一区二区蜜桃 | 男人狂女人下面高潮的视频| 亚洲精品,欧美精品| 久久人人爽人人片av| 久久久亚洲精品成人影院| 夜夜骑夜夜射夜夜干| 色5月婷婷丁香| 9色porny在线观看| 国产伦精品一区二区三区四那| 少妇的逼好多水| 国产免费又黄又爽又色| 亚洲美女视频黄频| 精品99又大又爽又粗少妇毛片| 街头女战士在线观看网站| 天堂俺去俺来也www色官网| 男人舔奶头视频| 秋霞在线观看毛片| 亚洲激情五月婷婷啪啪| 欧美精品亚洲一区二区| 亚洲电影在线观看av| 高清欧美精品videossex| 国产精品久久久久久久电影| 热re99久久国产66热| 欧美激情极品国产一区二区三区 | 国产成人午夜福利电影在线观看| 多毛熟女@视频| 午夜免费观看性视频| 一级毛片电影观看| 18+在线观看网站| 搡老乐熟女国产| 亚洲丝袜综合中文字幕| 中文精品一卡2卡3卡4更新| 亚洲丝袜综合中文字幕| 91久久精品国产一区二区三区| 日韩在线高清观看一区二区三区| 久久影院123| 欧美激情国产日韩精品一区| 人人妻人人添人人爽欧美一区卜| 国产一区二区三区综合在线观看 | 九草在线视频观看| 男男h啪啪无遮挡| 精品国产露脸久久av麻豆| 美女cb高潮喷水在线观看| 精品熟女少妇av免费看| 精品久久久精品久久久| 国产熟女欧美一区二区| 春色校园在线视频观看| 亚洲欧美一区二区三区黑人 | 99热全是精品| 自拍偷自拍亚洲精品老妇| 香蕉精品网在线| 免费观看a级毛片全部| 成人二区视频| 亚洲美女视频黄频| 免费黄频网站在线观看国产| 桃花免费在线播放| 99久久人妻综合| 97超视频在线观看视频| 国产日韩欧美亚洲二区| 亚洲av福利一区| 久久久精品免费免费高清| 国产精品一区二区在线不卡| 色5月婷婷丁香| 午夜福利视频精品| 中文字幕人妻丝袜制服| 欧美日韩av久久| 国产极品天堂在线| 亚洲成人一二三区av| 又大又黄又爽视频免费| 丁香六月天网| 啦啦啦在线观看免费高清www| 在线观看免费视频网站a站| 精品一区在线观看国产| 亚洲精品一二三| 日本av免费视频播放| 亚洲不卡免费看| 亚洲av.av天堂| 观看免费一级毛片| 国产亚洲91精品色在线| 国产成人午夜福利电影在线观看| 青青草视频在线视频观看| 国产白丝娇喘喷水9色精品|