• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    High linearity AlGaN/GaN HEMT with double-Vth coupling for millimeter-wave applications

    2022-02-24 08:59:08PengfeiWang王鵬飛MinhanMi宓珉瀚MengZhang張濛JiejieZhu祝杰杰YuweiZhou周雨威JielongLiu劉捷龍SijiaLiu劉思佳LingYang楊凌BinHou侯斌XiaohuaMa馬曉華andYueHao郝躍
    Chinese Physics B 2022年2期
    關(guān)鍵詞:楊凌

    Pengfei Wang(王鵬飛) Minhan Mi(宓珉瀚) Meng Zhang(張濛) Jiejie Zhu(祝杰杰) Yuwei Zhou(周雨威)Jielong Liu(劉捷龍) Sijia Liu(劉思佳) Ling Yang(楊凌) Bin Hou(侯斌)Xiaohua Ma(馬曉華) and Yue Hao(郝躍)

    1Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices,School of Microelectronics,Xidian University,Xi’an 710071,China2School of Advanced Materials and Nanotechnology,Xidian University,Xi’an 710071,China3Xidian University Guangzhou Institute of Technology,Guangzhou 510555,China

    We demonstrated an AlGaN/GaN high electron mobility transistor (HEMT) namely double-Vth coupling HEMT(DVC-HEMT) fabricated by connecting different threshold voltage (Vth) values including the slant recess element and planar element in parallel along the gate width with N2O plasma treatment on the gate region. The comparative studies of DVC-HEMT and Fin-like HEMT fabricated on the same wafer show significantly improved linearity of transconductance(Gm)and radio frequency(RF)output signal characteristics in DVC-HEMT.The fabricated device shows the transconductance plateau larger than 7 V,which yields a flattened fT/fmax-gate bias dependence.At the operating frequency of 30 GHz,the peak power-added efficiency(PAE)of 41%accompanied by the power density(Pout)of 5.3 W/mm. Furthermore,the proposed architecture also features an exceptional linearity performance with 1-dB compression point(P1 dB)of 28 dBm,whereas that of the Fin-like HEMT is 25.2 dBm. The device demonstrated in this article has great potential to be a new paradigm for millimeter-wave application where high linearity is essential.

    Keywords: AlGaN/GaN,linearity,1-dB compression point,millimeter-wave application

    1. Introduction

    The surging demand for the Internet of things (IoT)has promoted the development of modern wireless communication technologies.[1–3]High data transfer rate and spectrum efficiency have becoming significant index parameters for modern mobile communication equipment in power amplifiers (PAs), which imposes higher linearity requirements on PAs.[4,5]Gallium nitride (GaN)-based high-electron mobility transistors (GaN HEMTs) have been the most promising devices for PAs in telecommunication applications due to superior material properties.[6,7]However, the conventional AlGaN/GaN HEMT suffers from nonlinearities with a bell-shaped transconductance (Gm) profile, which may be attributed to several physical origins including (i) self-heating effects,[8](ii) parasitic capacitance,[9](iii) source resistance nonlinearity,[10–12]and (iv) electron saturation velocity.[13,14]Several approaches have been employed to address theGmroll-off at high drain current level.[15–19]Choi[20]obtained a composite device withGmplateau>6 V and OIP3/Pdcis 8.2 dB at 30 GHz by optimizing the fin width and number of fins along the gate direction. Sohel[21]has reported the polarization-graded transistors by employing a threedimensional electron gas channel (3DEG) with OIP3/Pdcof 13.3 dB at 10 GHz.

    Additionally,we have recently proposed a novel architecture with transconductance plateau>5.6 V by tailoring a flatGmprofile.[22]Such structures have been proven to be able to effectively suppress theGmroll-off at high drain current and thus enhance the linearity. However, the off-state current induced by etching is deteriorated about 2 orders compared with conventional planar HEMT, which severely impedes device reliability and deteriorates power efficiency.[23]It has been found that the plasma treatment such as N2O can effectively suppress the leakage current.[24–26]

    In this work, we optimized the structure reported in our previous work[22]by connecting differentVthvalues including the slant recess element and planar element in parallel along the gate width with N2O plasma treatment on the gate region. The architecture of such scheme is named as double-Vthcoupling-HEMT(DVC-HEMT).In comparison with Fin-like HEMT, the linearity of DC and RF characteristics has been significantly promoted for DVC-HEMT.The fabricated DVCHEMT shows a gate voltage swing (GVS) of the transconductance plateau larger than 7 V and a constantfT/fmaxof 40 GHz/60 GHz over a wide gate voltage range. Due to the thin oxide layer formed by N2O treatment, the DVC-HEMT demonstrates an on/off ratio of over 108, associated with a maximum current collapse (CC) of as low as 3.2%. At theoperating frequency of 30 GHz, the peak power-added efficiency(PAE)of 41%accompanied by the power density(Pout)of 5.3 W/mm atVd=20 V is obtained by the DVC-HEMT,as well as that of Fin-like HEMT is 34% accompanied by 4 W/mm atVd= 2 V. Furthermore, the proposed architecture also features an exceptional linearity performance with 1-dB compression point(P1dB)of 28 dBm at 30 GHz,whereas that of the Fin-like HEMT is 25.2 dBm. Therefore,the DVCHEMT is believed to be an attractive alternative approach for millimeter-wave application requiring high linearity and high efficiency.

    2. Device structure and fabrication

    The devices in this work were fabricated on an Al-GaN/GaN heterostructure grown on SiC substructure by metalorganic chemical vapor deposition (MOCVD). Figure 1 shows the schematic of the devices. Its epilayers include a 1.3-μm GaN buffer layer, a 1-nm AlN interlayer, and a 24-nm AlGaN barrier. The measured two-dimensional electron gas (2DEG) mobility and density are 2096 cm2·V?1·s?1and 1.04×1013cm?2,respectively.

    Fig. 1. The structure diagram of (a) Fin-like HEMT and (b) DVC HEMT;(c)the TEM micrograph of the surface plasma treatment formed by oxide on AlGaN barrier;(d)process flow for the fabricated DVC-HEMT.

    Four different devices including a convention planar HEMT(the inset 1 in Fig.2(b)),recess-gate HEMT(the inset 2 in Fig.2(b)),Fin-like HEMT(as shown in Fig.1(a)),and the DVC-HEMT(as shown in Fig.1(b))were fabricated together for comparison.Device fabrication started with the source and the drain Ohmic contact formation using Ti/Al/Ni/Au evaporation process followed by rapid annealing at 850°C for 50 s in ambient N2. After the device’s electrical isolation was formed through nitrogen ion implantation,an Ohmic contact resistance of 0.36 Ω·mm was achieved and verified using transmission-line measurement (TLM). A 120-nm SiN layer was deposited by plasma-enhanced chemical vapor deposition(PECVD), and electron beam lithography (EBL) was used to define the gate foot. For the detailed information of planar HEMT,recess-gate HEMT and Fin-like HEMT is described in our previous work.[22]

    Fig.2. Comparison of(a)transfer characteristics and(b)Schottky characteristics among planar HEMT, recess-gate HEMT, and Fin-like HEMT. Inset:cross section of 1 the planar HEMT and 2 gate-recess HEMT.

    Significantly,for the DVC-HEMT as shown in Fig.2(b),after removing the SiN in the gate region, a second EBL lithography was employed to define slant recess. Since SiN served as a hard mask during the Cl2-based etching process,the periodic slant recess features the same length as the gate foot. After that, the gate region was treated by N2O plasma.The N2O plasma treatment was carried out in the PECVD system. The chamber pressure was 600 mTorr (1 Torr =1.33322×102Pa),the flow rate of N2O was 80 sccm,the ambient temperature was 250°C,the plasma power was 200 W,and the treatment time was 30 min. This process is aimed to form a layer of oxide instead of deposition or thermal growth using additional process. The thickness of the oxide was estimated to be around 3 nm by using the transmission electron microscopy (TEM) image as shown in Fig. 1(c). Finally, a gate cap based on Ni/Au/Ni metal stacks was deposited using electron beam evaporation. The process flow for DVC-HEMT fabrication is shown in Fig.1(d). For a direct comparison,all devices have the same gate length (Lg) of 200 nm, a source drain distance (Lsd) of 3 μm. In particularly, the etch depth(HR) of recess-gate HEMT (the inset 2 in Fig. 2(b)) and Finlike HEMT is 7.5 nm.

    3. Results and discussion

    The DC measurement of the fabricated devices are measured by Keithley 4200 semiconductor analyzer. Figure 2(a)shows the comparison of transfer characteristics among planar HEMT, recess-gate HEMT, and Fin-like HEMT. It could be notably observed that the GVS(the difference in gate voltage corresponding to 80%of the peakGm)of Fin-like HEMT is significantly improved in comparison with that of planar HEMT and recess-gate HEMT.The flatterGmprofile of Finlike HEMT implies that the architecture can effectively inhibitGmroll-off at high drain current. However, as shown in Fig. 2(b), the off-state leakage current of planar HEMT is at the order of 10?4mA/mm,whereas,that of Fin-like HEMT and recess-gate HEMT is up to 10?2mA/mm. The deterioration of leakage current is mainly attributed to the dry etching which may result in the interface scattering[27]and the increment of tunneling current.[28]

    In order to comparatively investigate the DC characteristics of DVC-HEMT,we selected the Fin-like HEMT as reference. As shown in Fig.3(a),due to a thin oxide layer formed on the gate region of DVC-HEMT,the gate leakage current at least 4 orders of magnitude lower than that of Fin-like HEMT,leading to an ultralow off-state current of 9.3×10?6mA/mm accompanied by an on/off ratio of over 108. Interestingly, a higher RF linearity performance will be manifested for HEMT when the first- and second-order derivatives of transconductance is close to zero,[20]which means that it is key to reduce the derivative characteristics for fabricating high linearity device. Figure 3(b)compares the transconductance(Gm)and it is derivative characteristics (G′mandG′′m) of the two kinds of devices.It could be noted that the peak transconductance(Gmmax)is 201 mS/mm for DVC-HEMT and 205 mS/mm for Finlike HEMT, respectively. The slightly reduction of the peakGmis attributed to the increased gate-to-channel separation for DVC-HEMT. However, as seen from in Fig. 3(b), the DVCHEMT displays dramatically more constantGmprofile with GVS of 7 V,in contrast,that of Fin-like HEMT is 5.7 V.Thus,the enhanced GVS of DVC-HEMT leads to a lowerG′mof 0.25 S/mm·V accompanied by anG′′mof 0.5 S/mm·V2,which are evidently improved by 0.08 S/mm·V and 0.4 S/mm·V2compared to those of Fin-like HEMT, respectively. That is to say,the DVC-HEMT shows significant improvement in the transitive region from the subthreshold to the peak value. In the linearly increasing region, DVC-HEMT exhibits the flattestGmprofile,thereby suppressing undesirable harmonic elements. The results imply that DVC-HEMT improve theGmlinearity effectively and have great advantages in device-level linearization.

    Figure 3(c)shows the Schottky characteristics of the two kinds of devices,it could be observed that the gate current of DVC-HEMT is at least 4 orders of magnitude lower than that of Fin-like HEMT atVg=?8 V, and 3 orders of magnitude lower than that of Fin-like HEMT atVg=2 V,which furtherly validates the above observations from transfer characteristics in Fig.3(a). In short,the physical central idea of DVC-HEMT is“double-Vthcoupling”technology,which integrates the double elements with different gate-overdrive(VG–Vth)quiescent bias voltages in parallel along the gate width to suppress the premature roll-off ofGm. Meanwhile, accounting for the insertion of 3-nm oxide gate insulator between gate-to-channel,the DVC-HEMT exhibits a flattenedGmprofile and decreased gate leakage current,which should result in lower levels of the RF distortions and enhance the output power and efficiency of AlGaN/GaN HEMT at the elevated power levels.[29,30]

    Fig.3. Comparison of(a)transfer characteristics(log),(b)transconductance(Gm)and high order transconductance( and ),and(c)Schottky characteristics between Fin-like HEMT and DVC-HEMT.

    In addition to the improved DC characteristics, the current collapse (CC) of HEMT, severely limits the maximum output powers and deteriorates the device linearity, thus, the CC of DVC-HEMT was also calculated by the pulsed measurement. The pulsed measurements were performed by using the pulse of 500 ns in width and 1 ms in period(as shown in Fig. 4) to investigate the current dispersion of the device. At the bias point(VGSQ,VDSQ)=(?8 V,0 V),there is a potential difference between gate and drain,so the electrons in the gate electrode could be captured by the trap state. Therefore, the bias point(VGSQ,VDSQ)=(?8 V,0 V)is selected to evaluate the trap state and avoid the self-heating effect. Figure 4 shows that an 8.8% drain current (Id) reduction of Fin-like HEMT(as shown in Fig.4(b))happens atVGS=2 V andVDS=10 V while that of the DVC-HEMT(as shown in Fig.4(a))reduces by 3.2% at the same bias condition. Furthermore, the CC of DVC-HEMT is 5.0%at(VGSQ,VDSQ)=(8 V,20 V)while that of Fin-like HEMT is 11.2% at (VGSQ,VDSQ)=(8 V, 20 V),The results indicate that the N2O plasma pre-treatment can essentially suppress the trap state-related carrier trapping and thus contribute to the RF efficiency.[30]

    Fig. 4. Double-pulse characteristics of (a) DVC-HEMT and (b) Fin-like HEMT.

    As shown in Fig.5(a),the maximum current–gain cutoff frequency(fT)and the maximum power gain cutoff frequency(fmax) of the DVC-HEMT are 40 GHz and 60 GHz, respectively. Due to increased gate-to-channel separation and lowerGmpeak for DVC-HEMT, the peakfTandfmaxare slightly lower than those of Fin-like HEMT.However,as demonstrated in Fig.5(b),fTandfmaxyield a flatter curve over a wider range of gate bias,which is associated with the increasedGmflatness of DVC-HEMT. Based on good agreement between theGmand small signal profile, we conclude that the modulation ofGmcharacteristics is advantages to improvefT/fmaxlinearity of DVC-HEMT compared to Fin-like HEMT.

    To corroborate the device power characteristics and their effect on the millimeter-wave application performance,power measurement of HEMT at 30 GHz was performed in continuous wave using an on-wafer load pull system.The load and the source impendence were tuned for the optimum PAE, so that the power linear gain was lower than the small signal gain.Figures 6(a)and 6(b)illustrate the output power density(Pout),the power gain (Gain), and the PAE as a function of the input power (Pin) for the DVC-HEMT and Fin-like HEMT, respectively, both of which are characterized at deep-class AB operation atVd=20 V. Due to the excellent pinch-off characteristics, minimized gate current and suppressed CC,aPoutof 5.3 W/mm and a peak PAE of 41% are notably observed from Fig.6(a),whereas,those of Fin-like HEMT as shown in Fig.6(b)are 4 W/mm and 34%,respectively.Furthermore,the DVC-HEMT device exhibits a more flattened gain curve with the compression between the linear gain and associated gain is as low as 0.8 dB,as well as,for Fin-like HEMT,the gain compression is up to 2.7 dB.Due to the improvement of gain compression, aP1dBof 28 dBm is obtained by the DVC-HEMT,in contrast, Fin-like HEMT shows aP1dBof 25.2 dBm, indicating the smaller distortion of RF linearity in DVC-HEMT.The improvement of RF linearity performance is mainly attributed to the flatterGmprofile,which indicates that the proposed architecture has an obvious potentiality in the high linearity millimeter-wave application.

    Fig.5. (a)Small signal characteristics of DVC-HEMT and Fin-like HEMT.(b) Gate voltage dependence of fT and fmax for DVC-HEMT, Fin-like HEMT,and planar HEMT at Vd=6 V.

    Fig.6. Comparison of output power characteristics after a load-pull at frequency of 30 GHz and Vd=20 V:(a)DVC-HEMT and(b)Fin-like HEMT.

    4. Conclusion

    This work presents a novel device namely DVC-HEMT obtained by integrating differentVthvalues including the slant recess element and planar element in parallel along the gate width with N2O plasma treatment on the gate region, to produce a device with high linearity performance in millimeterwave application. The fabricated DVC-HEMT exhibits a steadyGmandfT/fmaxplate curve with GVS of 7 V and a constantfT/fmaxof 40 GHz/60 GHz. Furtherly, it also features an exceptional linearity performance withP1dBof 28 dBm at frequency=30 GHz,Vd=20 V whereas that of the Fin-like HEMT is 25.2 dBm at same bias condition. The proposed architecture has an obvious potentiality in millimeter-wave application requiring good linearity and high efficiency.

    Acknowledgments

    Project supported by the National Key Research and Development Program of China(Grant No.2020YFB1804902),the Fundamental Research Funds for the Central Universities,the Innovation Fund of Xidian University,the National Natural Science Foundation of China(Grant No.61904135),the China Postdoctoral Science Foundation (Grant Nos. 2018M640957 and BX20200262), and the Research and Development Plan of Key Fields in Guangzhou(Grant No.202103020002).

    猜你喜歡
    楊凌
    一場馬拉松激活一座城
    金秋(2023年20期)2024-01-19 02:38:38
    楊凌金海生物技術(shù)有限公司
    陜西楊凌成立彩色小麥團隊
    陜西楊凌:打響麥田“保衛(wèi)戰(zhàn)”
    楊凌推出穩(wěn)農(nóng)助農(nóng)“定心丸”
    解碼楊凌:不老的農(nóng)業(yè)
    當代陜西(2020年14期)2021-01-08 09:30:32
    第二十七屆中國楊凌農(nóng)業(yè)高新科技成果博覽會
    陜西楊凌:打造線上線下融合智慧展會
    楊凌深耕服務(wù)“田園”
    當代陜西(2019年12期)2019-07-12 09:12:08
    楊凌農(nóng)科 讓普通口糧變“地下黃金”
    国产成人欧美| 老熟妇乱子伦视频在线观看 | 欧美精品一区二区免费开放| 视频区欧美日本亚洲| 亚洲成人免费av在线播放| 亚洲自偷自拍图片 自拍| 久久国产精品人妻蜜桃| 亚洲avbb在线观看| 欧美精品一区二区免费开放| 亚洲九九香蕉| kizo精华| 韩国精品一区二区三区| 国产亚洲av高清不卡| 91精品伊人久久大香线蕉| 午夜久久久在线观看| 99久久精品国产亚洲精品| 最近最新中文字幕大全免费视频| 无遮挡黄片免费观看| 制服诱惑二区| 亚洲中文av在线| 精品国产一区二区三区四区第35| 亚洲色图综合在线观看| 中国美女看黄片| 精品少妇黑人巨大在线播放| avwww免费| 免费黄频网站在线观看国产| 国产高清视频在线播放一区 | 最近中文字幕2019免费版| 欧美日本中文国产一区发布| 国产精品麻豆人妻色哟哟久久| 国产亚洲av高清不卡| 国产老妇伦熟女老妇高清| 中文字幕精品免费在线观看视频| 久久国产亚洲av麻豆专区| 黑人猛操日本美女一级片| 色综合欧美亚洲国产小说| 国产麻豆69| a级毛片在线看网站| 久久中文字幕一级| 在线天堂中文资源库| 在线观看免费视频网站a站| 国产精品久久久av美女十八| 亚洲精品一区蜜桃| 超碰97精品在线观看| 国产精品免费视频内射| 曰老女人黄片| 欧美激情久久久久久爽电影 | 国产91精品成人一区二区三区 | 久久人人97超碰香蕉20202| 亚洲成人免费电影在线观看| 999精品在线视频| 91精品伊人久久大香线蕉| 午夜成年电影在线免费观看| 日本vs欧美在线观看视频| 国产黄色免费在线视频| 久久99一区二区三区| 满18在线观看网站| 亚洲av日韩精品久久久久久密| 亚洲中文av在线| 国产欧美亚洲国产| 1024香蕉在线观看| 另类亚洲欧美激情| 国产真人三级小视频在线观看| 日韩制服丝袜自拍偷拍| 亚洲国产欧美日韩在线播放| 久久精品久久久久久噜噜老黄| 亚洲欧美精品自产自拍| 蜜桃在线观看..| 亚洲 欧美一区二区三区| 久久久久久久久免费视频了| 精品国产乱子伦一区二区三区 | 美女中出高潮动态图| 天堂俺去俺来也www色官网| 老司机影院成人| 色老头精品视频在线观看| 午夜激情av网站| 大陆偷拍与自拍| 成人免费观看视频高清| 啦啦啦 在线观看视频| 一本一本久久a久久精品综合妖精| 欧美激情 高清一区二区三区| 午夜福利一区二区在线看| 日韩精品免费视频一区二区三区| 天天影视国产精品| 91成人精品电影| 午夜视频精品福利| 久久久久久久大尺度免费视频| 亚洲国产成人一精品久久久| 黄网站色视频无遮挡免费观看| 日韩一区二区三区影片| 黄网站色视频无遮挡免费观看| 啦啦啦啦在线视频资源| 老司机在亚洲福利影院| 免费在线观看视频国产中文字幕亚洲 | 亚洲中文日韩欧美视频| 久久青草综合色| 男女下面插进去视频免费观看| 人人妻人人澡人人爽人人夜夜| 欧美黄色片欧美黄色片| 18禁国产床啪视频网站| 久久毛片免费看一区二区三区| 久久午夜综合久久蜜桃| 别揉我奶头~嗯~啊~动态视频 | 丝袜美足系列| 精品高清国产在线一区| 精品少妇内射三级| av电影中文网址| 日韩免费高清中文字幕av| 日韩免费高清中文字幕av| 国产精品久久久久成人av| 国产成人a∨麻豆精品| 国产成人精品久久二区二区免费| 丁香六月欧美| 热re99久久国产66热| 亚洲国产欧美网| 又黄又粗又硬又大视频| 777久久人妻少妇嫩草av网站| 少妇 在线观看| 动漫黄色视频在线观看| 亚洲中文字幕日韩| 动漫黄色视频在线观看| 国产成人欧美| 精品人妻一区二区三区麻豆| 免费少妇av软件| 久久毛片免费看一区二区三区| 黄片小视频在线播放| 日韩欧美一区二区三区在线观看 | 啦啦啦 在线观看视频| 91成年电影在线观看| 俄罗斯特黄特色一大片| 高清黄色对白视频在线免费看| 精品福利永久在线观看| 后天国语完整版免费观看| 99热国产这里只有精品6| 国产精品秋霞免费鲁丝片| 国产亚洲午夜精品一区二区久久| 亚洲国产中文字幕在线视频| 青春草亚洲视频在线观看| 精品一区二区三区av网在线观看 | 成年人黄色毛片网站| 久久久国产成人免费| 亚洲av男天堂| 亚洲欧洲日产国产| 91老司机精品| 亚洲精品国产av成人精品| 水蜜桃什么品种好| 婷婷色av中文字幕| 丁香六月天网| 久久精品aⅴ一区二区三区四区| 男女床上黄色一级片免费看| 亚洲成人免费电影在线观看| 欧美日韩亚洲国产一区二区在线观看 | 免费在线观看完整版高清| 久久精品国产亚洲av香蕉五月 | 国产日韩一区二区三区精品不卡| 日日夜夜操网爽| 一本久久精品| 色老头精品视频在线观看| 午夜两性在线视频| 午夜免费成人在线视频| h视频一区二区三区| 19禁男女啪啪无遮挡网站| 天堂中文最新版在线下载| 久久久久国内视频| 视频区图区小说| 男女高潮啪啪啪动态图| 精品少妇内射三级| 狂野欧美激情性bbbbbb| 一区二区三区激情视频| 极品少妇高潮喷水抽搐| 久久精品aⅴ一区二区三区四区| 大香蕉久久网| 男女免费视频国产| 99国产精品一区二区蜜桃av | 亚洲欧美激情在线| 久久久久久久大尺度免费视频| 精品人妻1区二区| 国产精品久久久人人做人人爽| videosex国产| 国产成人精品无人区| tocl精华| 自拍欧美九色日韩亚洲蝌蚪91| 欧美少妇被猛烈插入视频| 国产1区2区3区精品| 亚洲精品国产av成人精品| 亚洲成人免费电影在线观看| 黑人巨大精品欧美一区二区蜜桃| 1024香蕉在线观看| 午夜福利在线免费观看网站| 美女大奶头黄色视频| 国产欧美日韩综合在线一区二区| 首页视频小说图片口味搜索| 50天的宝宝边吃奶边哭怎么回事| 99久久99久久久精品蜜桃| 亚洲精品成人av观看孕妇| 国产欧美日韩一区二区三区在线| 巨乳人妻的诱惑在线观看| 日本精品一区二区三区蜜桃| 国产精品自产拍在线观看55亚洲 | 欧美国产精品va在线观看不卡| 亚洲精品第二区| 久久久久久人人人人人| 日韩电影二区| 国产在线视频一区二区| 亚洲九九香蕉| 一区在线观看完整版| 美女脱内裤让男人舔精品视频| 午夜福利在线免费观看网站| 如日韩欧美国产精品一区二区三区| 成人黄色视频免费在线看| 热99re8久久精品国产| 久久久久国产一级毛片高清牌| 人人澡人人妻人| 亚洲欧美清纯卡通| 精品少妇一区二区三区视频日本电影| 少妇粗大呻吟视频| 精品视频人人做人人爽| 国产不卡av网站在线观看| 午夜福利在线免费观看网站| 国产精品久久久久久人妻精品电影 | 日韩视频在线欧美| 老司机影院毛片| 男人操女人黄网站| 自拍欧美九色日韩亚洲蝌蚪91| 精品一区在线观看国产| 亚洲av片天天在线观看| 亚洲三区欧美一区| 亚洲精品国产av蜜桃| 日韩精品免费视频一区二区三区| 久久久水蜜桃国产精品网| 啪啪无遮挡十八禁网站| av福利片在线| 男女国产视频网站| 一区二区三区乱码不卡18| 日韩欧美国产一区二区入口| 国产成人免费无遮挡视频| 两性午夜刺激爽爽歪歪视频在线观看 | 动漫黄色视频在线观看| 免费在线观看影片大全网站| 国产野战对白在线观看| 国产一卡二卡三卡精品| 久久人妻熟女aⅴ| 久久精品久久久久久噜噜老黄| 成年女人毛片免费观看观看9 | 老汉色∧v一级毛片| 国产成人系列免费观看| 欧美日本中文国产一区发布| 69av精品久久久久久 | 麻豆av在线久日| bbb黄色大片| 91老司机精品| 亚洲午夜精品一区,二区,三区| 激情视频va一区二区三区| 无遮挡黄片免费观看| 国产一区二区激情短视频 | 人妻人人澡人人爽人人| 一区二区三区激情视频| 国产真人三级小视频在线观看| 国产在线免费精品| 欧美亚洲 丝袜 人妻 在线| 国产区一区二久久| 日日爽夜夜爽网站| 一边摸一边做爽爽视频免费| 日本五十路高清| 黄色视频不卡| 国产黄频视频在线观看| 亚洲综合色网址| 丝袜美足系列| 999精品在线视频| 黄片小视频在线播放| 男女免费视频国产| 日本撒尿小便嘘嘘汇集6| 亚洲精品av麻豆狂野| 久久久精品区二区三区| 欧美变态另类bdsm刘玥| cao死你这个sao货| 欧美黄色淫秽网站| 精品国产国语对白av| 狠狠精品人妻久久久久久综合| 中文字幕人妻丝袜一区二区| 中国美女看黄片| 欧美另类亚洲清纯唯美| 国产亚洲精品一区二区www | 免费人妻精品一区二区三区视频| 亚洲综合色网址| 曰老女人黄片| 久久久国产欧美日韩av| 日韩熟女老妇一区二区性免费视频| 免费高清在线观看视频在线观看| 2018国产大陆天天弄谢| 咕卡用的链子| 欧美+亚洲+日韩+国产| 久久久久精品人妻al黑| 国产精品偷伦视频观看了| 免费av中文字幕在线| 亚洲精品一卡2卡三卡4卡5卡 | 成人亚洲精品一区在线观看| 国产极品粉嫩免费观看在线| 亚洲情色 制服丝袜| 国产精品99久久99久久久不卡| 日本欧美视频一区| 国产男女超爽视频在线观看| 亚洲色图 男人天堂 中文字幕| 免费av中文字幕在线| 久久精品亚洲熟妇少妇任你| 女人高潮潮喷娇喘18禁视频| 性高湖久久久久久久久免费观看| 女警被强在线播放| 在线观看免费高清a一片| 纯流量卡能插随身wifi吗| 国产欧美亚洲国产| 最黄视频免费看| 中文字幕高清在线视频| 成人国产一区最新在线观看| 19禁男女啪啪无遮挡网站| 免费在线观看黄色视频的| 日日夜夜操网爽| 黄色 视频免费看| 99re6热这里在线精品视频| 久久精品亚洲av国产电影网| 搡老乐熟女国产| 国产精品一二三区在线看| 国产主播在线观看一区二区| 亚洲七黄色美女视频| 两人在一起打扑克的视频| 国产1区2区3区精品| 国产成人系列免费观看| 老司机影院毛片| 一本色道久久久久久精品综合| 精品卡一卡二卡四卡免费| 亚洲精品一区蜜桃| 国产精品自产拍在线观看55亚洲 | 成人av一区二区三区在线看 | 中国国产av一级| 水蜜桃什么品种好| kizo精华| 桃红色精品国产亚洲av| 中国国产av一级| 国产精品一二三区在线看| 欧美黑人欧美精品刺激| 国产精品偷伦视频观看了| 中国国产av一级| 不卡一级毛片| 国产欧美亚洲国产| 99久久国产精品久久久| 精品福利观看| av视频免费观看在线观看| 中文字幕另类日韩欧美亚洲嫩草| 欧美一级毛片孕妇| 国产精品99久久99久久久不卡| 久久精品国产综合久久久| 黄色 视频免费看| 国产欧美亚洲国产| e午夜精品久久久久久久| 在线十欧美十亚洲十日本专区| 一区福利在线观看| 交换朋友夫妻互换小说| 久久ye,这里只有精品| 一级a爱视频在线免费观看| 91成人精品电影| 18禁国产床啪视频网站| 亚洲国产日韩一区二区| av视频免费观看在线观看| 欧美日韩黄片免| 日韩免费高清中文字幕av| 黑人操中国人逼视频| 亚洲精品中文字幕在线视频| 国产一卡二卡三卡精品| 国产精品 国内视频| 免费av中文字幕在线| 日韩一区二区三区影片| 亚洲久久久国产精品| 麻豆国产av国片精品| 亚洲成人手机| 久久国产精品男人的天堂亚洲| 日本a在线网址| 高清在线国产一区| 亚洲精品国产区一区二| 欧美老熟妇乱子伦牲交| 免费在线观看黄色视频的| 黑人操中国人逼视频| 国产xxxxx性猛交| 国产精品成人在线| 99国产精品99久久久久| 日本欧美视频一区| 久久久久久久久久久久大奶| 国产一区二区 视频在线| 日韩制服丝袜自拍偷拍| 91av网站免费观看| 国产男人的电影天堂91| 亚洲成人免费电影在线观看| 欧美日韩中文字幕国产精品一区二区三区 | 国产免费av片在线观看野外av| 成人免费观看视频高清| 一本色道久久久久久精品综合| www日本在线高清视频| 免费少妇av软件| 十八禁人妻一区二区| 丁香六月欧美| 久久国产精品男人的天堂亚洲| 1024视频免费在线观看| 亚洲 欧美一区二区三区| 国产野战对白在线观看| 色精品久久人妻99蜜桃| 一级毛片精品| 国产xxxxx性猛交| 国产色视频综合| 亚洲欧美一区二区三区久久| 国产精品香港三级国产av潘金莲| 两性夫妻黄色片| 丰满少妇做爰视频| 欧美黑人精品巨大| 欧美人与性动交α欧美精品济南到| 日韩免费高清中文字幕av| av视频免费观看在线观看| 波多野结衣一区麻豆| 欧美日韩国产mv在线观看视频| 日本欧美视频一区| 亚洲美女黄色视频免费看| 在线观看免费高清a一片| av在线老鸭窝| 十八禁人妻一区二区| 欧美日韩国产mv在线观看视频| 成年动漫av网址| 国产av又大| 精品久久久精品久久久| 午夜福利乱码中文字幕| 一区在线观看完整版| 亚洲va日本ⅴa欧美va伊人久久 | 老司机影院毛片| 欧美中文综合在线视频| 久久久久久免费高清国产稀缺| 啦啦啦 在线观看视频| 亚洲综合色网址| 亚洲欧美日韩另类电影网站| 女性生殖器流出的白浆| 午夜成年电影在线免费观看| 热99久久久久精品小说推荐| 亚洲一码二码三码区别大吗| 免费av中文字幕在线| 日本五十路高清| 汤姆久久久久久久影院中文字幕| 丝袜美足系列| 精品国产一区二区三区四区第35| 午夜精品国产一区二区电影| 国产一卡二卡三卡精品| 国产一区二区在线观看av| 亚洲欧美激情在线| 黄频高清免费视频| 亚洲 欧美一区二区三区| 欧美黑人精品巨大| 国产麻豆69| 亚洲三区欧美一区| 国产伦人伦偷精品视频| 看免费av毛片| 精品一品国产午夜福利视频| 日韩一卡2卡3卡4卡2021年| 亚洲三区欧美一区| 欧美激情高清一区二区三区| 日本av手机在线免费观看| 亚洲成人免费av在线播放| 桃红色精品国产亚洲av| 两性午夜刺激爽爽歪歪视频在线观看 | cao死你这个sao货| 丁香六月欧美| 国产精品国产av在线观看| 国产精品亚洲av一区麻豆| 老司机靠b影院| 纵有疾风起免费观看全集完整版| 91精品国产国语对白视频| 久久亚洲精品不卡| 成人国产av品久久久| 视频区欧美日本亚洲| 色视频在线一区二区三区| 欧美日本中文国产一区发布| 在线观看免费高清a一片| 天天添夜夜摸| 欧美日韩av久久| 91国产中文字幕| 好男人电影高清在线观看| 爱豆传媒免费全集在线观看| 国产欧美日韩一区二区三 | 少妇精品久久久久久久| 久久久久精品国产欧美久久久 | 欧美国产精品一级二级三级| 国产在线视频一区二区| 中文字幕精品免费在线观看视频| 视频在线观看一区二区三区| 狠狠精品人妻久久久久久综合| 一本—道久久a久久精品蜜桃钙片| 亚洲精品久久成人aⅴ小说| 成人18禁高潮啪啪吃奶动态图| 国产精品.久久久| av不卡在线播放| 最近最新免费中文字幕在线| 另类精品久久| 女人精品久久久久毛片| 国产欧美日韩一区二区三 | 亚洲第一青青草原| 亚洲av片天天在线观看| 国产福利在线免费观看视频| 亚洲精品中文字幕在线视频| 最新在线观看一区二区三区| 热99久久久久精品小说推荐| 91精品伊人久久大香线蕉| 男女免费视频国产| 亚洲精品中文字幕在线视频| 成人国语在线视频| 久久中文看片网| 色播在线永久视频| 最近最新免费中文字幕在线| 男人舔女人的私密视频| 国产精品免费大片| 十八禁网站免费在线| 亚洲欧美清纯卡通| 嫁个100分男人电影在线观看| 亚洲av成人不卡在线观看播放网 | 亚洲av美国av| 国产亚洲精品一区二区www | 欧美xxⅹ黑人| 999久久久精品免费观看国产| 桃花免费在线播放| 欧美老熟妇乱子伦牲交| 丰满少妇做爰视频| 十八禁人妻一区二区| 国产在线一区二区三区精| 国产男女内射视频| 大香蕉久久网| 97人妻天天添夜夜摸| 最黄视频免费看| 精品一区二区三卡| 亚洲 欧美一区二区三区| 亚洲欧美一区二区三区黑人| 久久久久久免费高清国产稀缺| 十分钟在线观看高清视频www| 91麻豆精品激情在线观看国产 | 日韩大码丰满熟妇| 日本五十路高清| 久久ye,这里只有精品| 人人妻人人澡人人爽人人夜夜| 国产精品99久久99久久久不卡| 久久精品久久久久久噜噜老黄| 日韩精品免费视频一区二区三区| 国产av国产精品国产| 纵有疾风起免费观看全集完整版| 久久久久久人人人人人| 美女扒开内裤让男人捅视频| 五月开心婷婷网| 曰老女人黄片| 黄色片一级片一级黄色片| 午夜免费观看性视频| 真人做人爱边吃奶动态| 最近最新免费中文字幕在线| 老熟女久久久| 搡老乐熟女国产| 丝袜美腿诱惑在线| 999久久久精品免费观看国产| 一本色道久久久久久精品综合| 深夜精品福利| 老司机影院成人| 欧美人与性动交α欧美精品济南到| 国产成人系列免费观看| xxxhd国产人妻xxx| 亚洲黑人精品在线| 丝瓜视频免费看黄片| 国产高清videossex| 捣出白浆h1v1| 欧美日韩精品网址| 精品国产一区二区久久| 国产av一区二区精品久久| 亚洲av成人一区二区三| 嫁个100分男人电影在线观看| 免费黄频网站在线观看国产| 亚洲欧美日韩高清在线视频 | av又黄又爽大尺度在线免费看| 国产在线视频一区二区| 欧美激情久久久久久爽电影 | 啦啦啦在线免费观看视频4| 欧美在线一区亚洲| 好男人电影高清在线观看| 高清在线国产一区| 欧美日韩亚洲综合一区二区三区_| 亚洲精品在线美女| 午夜激情久久久久久久| 久久精品人人爽人人爽视色| 麻豆乱淫一区二区| 亚洲成国产人片在线观看| 捣出白浆h1v1| 国产精品1区2区在线观看. | 视频区欧美日本亚洲| 亚洲精品成人av观看孕妇| 成人国语在线视频| 欧美日本中文国产一区发布| 国产精品一区二区精品视频观看| 亚洲国产av新网站| 人妻一区二区av| 国产老妇伦熟女老妇高清| 别揉我奶头~嗯~啊~动态视频 | 亚洲色图综合在线观看| 最近最新免费中文字幕在线| 国产亚洲精品第一综合不卡| 精品少妇久久久久久888优播| 伊人亚洲综合成人网| 亚洲少妇的诱惑av| 高潮久久久久久久久久久不卡| 欧美精品人与动牲交sv欧美| 午夜免费成人在线视频| 黄片播放在线免费| 精品福利永久在线观看| 女人高潮潮喷娇喘18禁视频| 亚洲欧美日韩高清在线视频 | 免费久久久久久久精品成人欧美视频| 国产精品一区二区在线观看99| 性色av一级| 午夜久久久在线观看|