• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Determination of the surface states from the ultrafast electronic states in a thermoelectric material

    2022-02-24 09:38:08TongyaoWu吳桐堯HongyuanWang王洪遠YuanyuanYang楊媛媛ShaofengDuan段紹峰ChaozhiHuang黃超之TianweiTang唐天威YanfengGuo郭艷峰WeidongLuo羅衛(wèi)東andWentaoZhang張文濤
    Chinese Physics B 2022年2期
    關(guān)鍵詞:衛(wèi)東

    Tongyao Wu(吳桐堯), Hongyuan Wang(王洪遠), Yuanyuan Yang(楊媛媛),Shaofeng Duan(段紹峰), Chaozhi Huang(黃超之), Tianwei Tang(唐天威),Yanfeng Guo(郭艷峰), Weidong Luo(羅衛(wèi)東), and Wentao Zhang(張文濤),?

    1Key Laboratory of Artificial Structures and Quantum Control(Ministry of Education),Shenyang National Laboratory for Materials Science,School of Physics and Astronomy,Shanghai Jiao Tong University,Shanghai 200240,China

    2School of Physical Science and Technology,ShanghaiTech University,Shanghai 201210,China

    3Institute of Natural Sciences,Shanghai Jiao Tong University,Shanghai 200240,China

    We reveal the electronic structure in YbCd2Sb2, a thermoelectric material, by angle-resolved photoemission spectroscopy(ARPES)and time-resolved ARPES(trARPES).Specifically, three bulk bands at the vicinity of the Fermi level are evidenced near the Brillouin zone center, consistent with the density functional theory (DFT) calculation.It is interesting that the spin-unpolarized bulk bands respond unexpectedly to right- and left-handed circularly polarized probe.In addition, a hole band of surface states, which is not sensitive to the polarization of the probe beam and is not expected from the DFT calculation,is identified.We find that the non-equilibrium quasiparticle recovery rate is much smaller in the surface states than that of the bulk states.Our results demonstrate that the surface states can be distinguished from the bulk ones from a view of time scale in the nonequilibrium physics.

    Keywords: electronic band structure,YbCd2Sb2,surface states,time-and angle-resolved photoemission spectroscopy

    Angle-resolved photoemission spectroscopy (ARPES) is a powerful tool to measure the band structure in condensed matters directly.[1]Combined with pump-probe techniques,the technique of ARPES is extended to time realm, called the time-resolved ARPES (trARPES), with the function of measuring the ultrafast electronic dynamics, and has been widely used in probing the unoccupied states,ultrafast superconducting gap, ultrafast many-body effects, and so on.[1,2]In ARPES experiments, single crystal samples are usually cleaved in ultrahigh vacuum to get clean surfaces to ensure that the photo-emitted electrons bring the information about the electronic states in the bulk.However,due to the broken of the translational periodicity normal to the surface,[3,4]reconstruction of the surface,[5]or topological states,[6]there are usually two-dimensional surface states at the cleaved surface that can be probed by ARPES experiments.The surface states are usually determined by photon-energy-dependent ARPES measurements to track the dispersionless electronic structure perpendicular to the cleaved surface.[7]Such photon energy dependent measurements are usually conducted with synchrotron light source,of which the photon energy can be tuned continuously.

    However, it is usually hard to identify the dispersionless surface states on the lab-based ARPES system, for the photon energy is fixed or can only be tuned in a narrow range,such as the laser light source and the noble gas discharge lamp.Since the ultrafast evolution of the non-equilibrium electronic states strongly depends on the many-body effects of electron–electron scattering,electron–phonon coupling,and so on,[8–10]the surface states can be potentially differentiated from the bulk ones by trARPES from the point of view of the decay rate due to the different energy dissipation channels of the photoexcited non-equilibrium electrons.

    We applied the above idea on a thermoelectric material,YbCd2Sb2, which is a Zintl phase compound with direct and reversible conversion of heat and electricity.[11–13]It has a hexagonal lattice structure (Fig.1(a))[14]and a hexagonal reciprocal lattice (Fig.1(b)), similar to its europium isostructural compound EuCd2As2which is a Weyl semimetal.[15]So far,there is no experimental and theoretical study of the band structure of YbCd2Sb2;the study of such Yb-,Cd-or Sb-based Zintl isostructural materials is incomplete.The direct measurement of the band structure would be helpful in the theoretical explanation and prediction of its electrical,thermal and optical properties.

    In this paper we present a comprehensive trARPES study of the band structure of YbCd2Sb2,where we determined the band structure of YbCd2Sb2by ARPES measurement and density functional theory (DFT) calculation.[17,18]We differentiated a band originated at the surface from the bulk energy bands based on the comparison of the ARPES results and the DFT results.Also,we observed a remarkable difference in the decay lifetime of the photoexcited nonequilibrium quasiparticles between the surface and bulk bands, which suggests a new means to distinguish them by ultrafast detection.In addition,circular dichroistic ARPES measurements also present a distinct photoemission response between the surface and bulk states.

    In our trARPES experiments,[16]an infrared pump laser pulse with photon energyhν = 1.77 eV, the pulse duration of 30 fs, and a repetition rate of 500 kHz, drives the sample into a non-equilibrium state.The electrons are subsequently photoemitted by an ultraviolet probe laser pulse(6.05 eV)and are captured by a hemispherical analyzer in an ARPES setup.The overall time resolution is 113 fs and the energy resolution is 16.3 meV in the measurements.The regular ARPES measurements were conducted using the helium lamp light source(21.2 eV) and the 6.05 eV laser, and the circular dichroism ARPES measurements were taken with the 6.05 eV laser.The YbCd2Sb2single crystals were grown by the flux method and cleaved under ultrahigh vacuum condition with a pressure below 3.5×10?11Torr.The lattice orientation was determined by the Laue back-diffraction, and the ARPES data were collected along the Γ–Kdirection.First-principles DFT calculations were performed using the Viennaab initiosimulation package (VASP) code.[19,20]The projector augmented wave(PAW)potentials were used to describe the core electrons.A plane-wave cutoff energy of 380 eV and ak-mesh of 6×6×3 were used for the atomic coordinates optimization and electron wave-function calculation.The Dudarev approach of the simplified LSDA+Uwas used to include the on-site Coulomb interaction,in which(U?J)is a tunable parameter.

    Figure 1(c) shows the DFT calculated as well as the experimental band structure measured using the helium lamp.The value(U?J)of the Yb-f-orbit in the DFT calculation is set as 4.8 eV to make the two high-density-of-states (DOS)locate at ?1.2 eV and ?2.5 eV, as indicated by the experimental result.HigherUvalue means stronger band repulsion that the splitting of the two high-DOS regions is larger, and vice versa.Using the same parameters, we sketch the calculated band structure atkz=near the Fermi energy in Fig.1(d) (solid blue lines).We note that the photoemission experiment with probe photon energy of 6.05 eV measures the electronic states atkz=.The measured photoemission spectrum in Fig.1(d) clearly shows three bands, labeled as bands #1, #2 and #3, consistent with the calculation(Figs.1(c)–1(d)).In addition,an additional energy band(band#4)near the Fermi energy can be resolved in the experimental data shown in Fig.1(d) (guided by the yellow dashed lines).The above bands can also be identified in the constant energy mappings at the Fermi level(bands#1 and#4, Fig.1(e))and at the binding energy ?0.25 eV(band#2.Fig.1(f)).The loss of spectra weight away from the high symmetry momentum is possibly due to the photoemission matrix element effect.

    Fig.1.Calculated and experimentally measured band structures of YbCd2Sb2.(a)Schematic of the primary cell of YbCd2Sb2.(b)The first Brillouin zone and the high symmetry points(Γ,A,K,H,M,L). P is a point between Γ and A..(c)The calculated(solid blue lines)and measured band structures by 21.2 eV photon.(d)The band structure in the vicinity of the Fermi level about Γ,at kz==0.3. kx is along Γ–K.Three bulk bands are marked as 1,2 and 3,and the data was taken by p-polarized 6.05 eV laser.(e)–(f)The photoemission constant energy contour at the Fermi energy(e)and at E ?EF=?0.25 eV(f).The fourth band can be resolved between bands 1 and 2,marked as band#4.Dashed lines are guides to the eyes.

    Since there is no additional band feature from the calculation apart from bands#1–3,the band#4 is possibly a surface band no matter what the origin is.Due to different energy dissipation channels between the surface and bulk,with ultrafast photon pump, the recovery time of the non-equilibrium electronic states at the surface is very possibly different from that in the bulk.Figures 2(a)–2(c)show the time-resolved spectra when the pump light is turned on.The delay time Δtequals zero when the pump and the probe pulses overlap in time.Before the arrival of the pump pulse (Fig.2(a)), the photoemission spectra is just the same as that of the equilibrium result shown in Fig.1(d).At a delay time of 0.2 ps, the band #4 extends to about 0.2 eV above the Fermi energy.In contrast,the band#1 extends to merely tens of meV due to the thermal effect of hot electrons.The missing of unoccupied states at higher energy in band#1 is possibly due to the relatively short lifetime of the non-equilibrium quasiparticles and cannot be resolved from a time resolution of 113 fs.At the delay time of 2 ps,the bulk band#1 is almost fully recovered to its equilibrium state while the band#4 is slightly weakened near the band top, indicating that the lifetime of the non-equilibrium quasiparticles in the band #4 is much longer than that in the band#1.The integrated photoemission intensities in windows(denoted by the boxes of corresponding colors in Fig.2(e))for bands#1 and#4 as a function of the delay time are shown in Fig.2(d),from which the recovery rate of band#1(1.75 ps?1)is about 2.5 times faster than that of band#4(0.7 ps?1),and no significant fluence dependence was found in the fluence range we measured.We note that the energy of the integration window for band #4 is much higher than that of band #1, for no clear unoccupied states in band #1 are resolved at the same energy as that in band #4.However, even at much lower energy,the rate of non-equilibrium qausiparticle recovery of the band#1 is much faster than that of the band#4.This is quite abnormal because high energy states usually decay faster(the decay rate growing with energy in an exponential fashion)due to additional energy transfer channel from electron–electron interaction,indicating that the lifetime of the non-equilibrium quasiparticle of the bulk band (band #1) should be far more than 2.5 times faster than that of the surface states of band#4.Such a slow recovery of excited states in band #4 probably can be attributed to less energy dissipation channels from many-body effects at the surface.This is also consistent with previous reports that the non-equilibrium quasiparticle recovery rate in a surface state is quite long in other material.[21]

    Fig.2.The trARPES measurement.(a)–(c)The photoemission images before(a)and after(b), (c)the pumping.(d)The intensity of the non-equilibrium quasiparticles in the dashed boxes in(e)(denoted by corresponding color)as a function of delay time.Solid curves are exponential fittings to the experimental data.(e)A zoomed-in measurement of the unoccupied states near the Fermi energy at the decay time δt=0.2 ps.The pump fluence is 110μJ/cm2.

    From the band structure calculation, the bulk bands strongly disperse perpendicular to the sample surface (Γ–A,kz), giving blurred photoemission spectra due tokzmomentum resolution, as the bands #1–3 shown in Fig.1(d).Thus,the well-defined unoccupied band structure of band#4 for an energy resolution of 16.3 meV strongly suggests its 2D behavior from the surface.The standout of the band #4 is due to much slower recovery rate from the surface than that from the bulk.The band#4 cannot be well resolved in the equilibrium data shown in Fig.1(d)possibly due to much lower density of states from the surface than that from the bulk.

    The band #4 is not a nontrivial topological surface band which is spin polarized due to the strong spin–orbit coupling.Circular dichroism ARPES measurement,[22–24]a commonlyused indirect method to check the spin-polarization of electronic states, was conducted on the sample after ultrafast photo-excitation.Figure 3 shows the measured band #4 using left-handed and right-handed circularly polarized probe,respectively.No photoemission intensity asymmetry around the high symmetry point(Γ)is found for both of the two photon chirality,different from the asymmetry surface band in the nontrivial topological insulator Bi2Se3.[22–24]The absence of the circular dichroism indicates that the band #4 is not spin polarized and the measured unoccupied energy band is not a Dirac dispersion with the cone at about 0.2 eV.Instead, the band #4 is more likely a regular hole surface state with band top at aboutE?EF=0.2 eV.

    Fig.3.Time-resolved photoemission images of the band#4 measured by circularly polarized light.(a)The probe light is left-handed.(b)The probe light is right-handed.The pump fluence is 150μJ/cm2.

    However, the neighboring bulk bands #1 and#2, though not spin-polarized as well, react quite differently from band#4 to circularly polarized light.This interesting anomaly is summarized in Fig.4.We find that the photoemission intensity reverses for the negative and positivekxwhen alternating the probe polarization.For example, when probed by lefthanded light (Fig.4(a)), the photoemission intensity in band#2 is stronger in region (kx< 0,ky= 0) and weaker in region (kx>0,ky=0), but when probed by right-handed light(Fig.4(b)), the intensity becomes weaker in region (kx<0,ky=0)and stronger in(kx>0,ky=0).Circular dichroism results of band#1 show similar intensity reversion behavior.To make it more clear, we show the constant energy mapping at the Fermi level(Figs.4(c)and 4(d),corresponding to band#1)and at ?0.22 eV (Figs.4(e) and 4(f), corresponding to band#2).In Figs.4(g) and 4(h) we summarize the photoemission response of these two bands to the polarization of the probe by representing the outer band #1 by the solid-line hexagons and the inner band#2 by the dashed-line hexagons.It is quite complicated and even does not show apparent symmetry in the momentum space.

    The circular dichroism effect in the photoemission intensity is usually attributed to the spin polarization of the energy band in the topological insulator, Weyl semimetal, and any other material with strong spin–orbit-coupling system.It seems from Fig.4 that bands#1 and#2 are strongly spin polarized.However, in our DFT calculation, we did not find any spin-polarization in any bulk bands in YbCd2Sb2even though the spin–orbit coupling was accounted,since the spin–orbit coupling is weak and no magnetic moment was identified in this material so far.We attribute the observed circular dichroism phenomenon to the experimental geometric effects in the photoemission process.The matrix element, related to the geometric factors like the incident angle and the rotational angle,[25]may contribute to the non-zero circular dichroism intensity, although we did not figure out how the matrix element in the photoemisson process gives such a complex circular dichroism pattern as we schematized in Figs.4(g) and 4(h).

    In those circular dichroism ARPES measurements, little attention has been paid to the effect of experimental geometry.Our result is a direct experimental evidence that unpolarized bands can also be selectively excited by circularly polarized probe, raising a question that the existence of the circular dichroism effect does not necessarily suggest the band’s spin polarization.Similar abnormal circular dichroism was also identified in a non-spin polarized material,[26]and it possibly can be understood by the effects of experimental geometry[27]or attributed to the importance of assessing structural issues.[28]Further theoretical study is necessary to clarify such abnormal circular dichroism effects in the photoemission process.

    Fig.4.The circular dichroism measurement results.The photoemission results at different ky with different photon chirality(left-handed polarized probe for (a) and right-handed for (b)).(c)–(f) Constant energy mappings at different binding energies(0 eV in(c)and(d),?0.22 eV in(e)and(f))with different photon chirality(left-handed polarized probe for (c) and (e), right-handed for (d) and (f)).(g)–(h), A schematic to show how bands#1 and#2 response to circularly polarized light.Red and green represent higher and lower counts,respectively.

    The presence of circular dichroism effects in the bulk bands but absent in the surface state band#4 further suggests that the the surface state is not sensitive to the experimental geometry in the photoemission measurement.Thus, the circular dichroism effect is probably still a reasonable method to characterize the spin-polarization in the surface states,as it is widely used in the literature.

    In summary,we measured and calculated the band structure of YbCd2Sb2.We found three bulk bands in the vicinity of the Fermi level,consistent with the DFT calculation,and an additional band with surface behavior.We found distinct recovery lifetime of non-equilibrium quasiparticle in the surface states from that in the bulk bands,suggesting a new method to identify the surface state from the bulk rather than measuring thekzdispersion by tuning the probe photon energy.In addition,we found complex circular dichroism effect in YbCd2Sb2which is not a strong spin–orbit-coupling material,indicating that the circular dichroism effect should be considered carefully and the experimental geometry must be counted in justifying the spin polarized band.We hope our results would stimulate interests from theorists to work in this direction to resolve the problem.

    Acknowledgements

    W.T.Z.acknowledges support from the National Natural Science Foundation of China(Grant No.11974243)and additional support from a Shanghai talent program.W.L.acknowledges support from the National Natural Science Foundation of China(Grant No.11521404).Y.F.G.acknowledges the support by the Natural Science Foundation of Shanghai, China(Grant No.17ZR1443300).

    猜你喜歡
    衛(wèi)東
    Nanosecond laser preheating effect on ablation morphology and plasma emission in collinear dual-pulse laser-induced breakdown spectroscopy
    以問導(dǎo)學(xué),在轉(zhuǎn)換中理解概念
    非新生兒破傷風(fēng)的治療進展
    《雍和宮》
    攝影與攝像(2020年3期)2020-09-10 07:22:44
    油畫 苗女
    南風(fēng)(2020年11期)2020-08-04 04:55:24
    祝衛(wèi)東
    愛打噴嚏的小河馬
    致衛(wèi)東先生(信札)
    作品(2017年6期)2017-06-19 19:37:06
    Experimental study of flow field in interference area between impeller and guide vane of axial flow pump*
    種心情
    波多野结衣巨乳人妻| 真人一进一出gif抽搐免费| 亚洲精品国产一区二区精华液| 国产成人精品久久二区二区免费| 成人国产一区最新在线观看| 久久久久久久午夜电影| 国产麻豆69| 可以在线观看毛片的网站| 日韩中文字幕欧美一区二区| 美女高潮喷水抽搐中文字幕| 亚洲人成电影观看| 亚洲欧美日韩高清在线视频| 亚洲精品国产区一区二| 长腿黑丝高跟| 一区在线观看完整版| 欧美久久黑人一区二区| 9热在线视频观看99| 日韩成人在线观看一区二区三区| 国产一区二区三区在线臀色熟女| x7x7x7水蜜桃| av电影中文网址| 伊人久久大香线蕉亚洲五| 亚洲精品美女久久av网站| 国产精华一区二区三区| 高潮久久久久久久久久久不卡| 国产视频一区二区在线看| 国产高清激情床上av| 国产成人精品久久二区二区91| 亚洲一区高清亚洲精品| 天天一区二区日本电影三级 | 国产单亲对白刺激| 色老头精品视频在线观看| 91成人精品电影| videosex国产| 亚洲一区高清亚洲精品| 老熟妇乱子伦视频在线观看| 国产欧美日韩一区二区三| 亚洲黑人精品在线| 亚洲精品国产色婷婷电影| 人人澡人人妻人| 一二三四在线观看免费中文在| 久久狼人影院| 中国美女看黄片| √禁漫天堂资源中文www| 激情在线观看视频在线高清| 久热这里只有精品99| 亚洲一码二码三码区别大吗| 日本在线视频免费播放| 亚洲精品一卡2卡三卡4卡5卡| 亚洲国产精品999在线| 极品教师在线免费播放| 亚洲avbb在线观看| 在线观看免费视频日本深夜| 久久精品影院6| 这个男人来自地球电影免费观看| 9色porny在线观看| 国产一区二区三区视频了| 国产精品二区激情视频| 美女 人体艺术 gogo| 丁香六月欧美| 久久国产乱子伦精品免费另类| 日韩欧美免费精品| 美女扒开内裤让男人捅视频| 曰老女人黄片| 国产成年人精品一区二区| 久久九九热精品免费| 久久午夜综合久久蜜桃| 亚洲全国av大片| 国产三级黄色录像| 首页视频小说图片口味搜索| 日韩国内少妇激情av| 啦啦啦免费观看视频1| 日日干狠狠操夜夜爽| 久久久久国产一级毛片高清牌| 日韩国内少妇激情av| 日本欧美视频一区| 一个人观看的视频www高清免费观看 | 亚洲中文日韩欧美视频| 999久久久国产精品视频| 女生性感内裤真人,穿戴方法视频| 操出白浆在线播放| 搞女人的毛片| 国产xxxxx性猛交| 国产精品久久久久久人妻精品电影| 老司机福利观看| 9热在线视频观看99| 两个人免费观看高清视频| 老鸭窝网址在线观看| www.精华液| 亚洲五月色婷婷综合| 1024香蕉在线观看| 99在线视频只有这里精品首页| 成人欧美大片| 亚洲自拍偷在线| 国产高清有码在线观看视频 | 亚洲av熟女| 精品久久久久久成人av| 久久精品91蜜桃| 亚洲av成人av| 亚洲成国产人片在线观看| 超碰成人久久| 欧美激情 高清一区二区三区| 久久九九热精品免费| 可以在线观看毛片的网站| 黑人巨大精品欧美一区二区蜜桃| 丝袜美腿诱惑在线| 91麻豆av在线| 一区二区三区激情视频| 黄片小视频在线播放| 好男人在线观看高清免费视频 | 亚洲熟女毛片儿| 国产精品免费一区二区三区在线| 国产极品粉嫩免费观看在线| 咕卡用的链子| 男女做爰动态图高潮gif福利片 | 黑人巨大精品欧美一区二区mp4| av视频免费观看在线观看| 黄片大片在线免费观看| 亚洲国产日韩欧美精品在线观看 | 免费看美女性在线毛片视频| 亚洲第一电影网av| 精品电影一区二区在线| 99国产综合亚洲精品| 精品日产1卡2卡| 麻豆成人av在线观看| 免费在线观看完整版高清| 给我免费播放毛片高清在线观看| 中文字幕av电影在线播放| 免费看a级黄色片| 国产高清有码在线观看视频 | 色精品久久人妻99蜜桃| 真人做人爱边吃奶动态| 午夜福利欧美成人| 亚洲五月婷婷丁香| 国产成人免费无遮挡视频| 亚洲少妇的诱惑av| 国产成人影院久久av| 欧美一级a爱片免费观看看 | 欧美一区二区精品小视频在线| 大陆偷拍与自拍| 大码成人一级视频| 丝袜在线中文字幕| 亚洲一码二码三码区别大吗| 日日夜夜操网爽| 99国产极品粉嫩在线观看| а√天堂www在线а√下载| 日本在线视频免费播放| 自线自在国产av| 亚洲欧美一区二区三区黑人| 午夜免费鲁丝| 精品国产一区二区三区四区第35| 久9热在线精品视频| 女人爽到高潮嗷嗷叫在线视频| 久久狼人影院| 一区在线观看完整版| 日日夜夜操网爽| 女人高潮潮喷娇喘18禁视频| 老鸭窝网址在线观看| 精品久久久久久久久久免费视频| 国产亚洲精品第一综合不卡| 一区二区三区精品91| 丝袜美足系列| 国产精品久久久久久精品电影 | 人人澡人人妻人| 黑人巨大精品欧美一区二区蜜桃| 久久久久国内视频| 香蕉久久夜色| 亚洲成av片中文字幕在线观看| 99久久精品国产亚洲精品| 丝袜在线中文字幕| 大型av网站在线播放| 国产精品一区二区免费欧美| 亚洲自拍偷在线| 一边摸一边抽搐一进一小说| 成人永久免费在线观看视频| 久久精品影院6| 亚洲一区高清亚洲精品| 黄色 视频免费看| 香蕉丝袜av| 成人18禁在线播放| 此物有八面人人有两片| 午夜免费激情av| 亚洲av片天天在线观看| 国产一卡二卡三卡精品| 久久草成人影院| 日韩中文字幕欧美一区二区| 90打野战视频偷拍视频| 伦理电影免费视频| 欧美av亚洲av综合av国产av| 好男人在线观看高清免费视频 | 亚洲国产精品sss在线观看| 日韩大码丰满熟妇| 99国产精品一区二区三区| 欧美黄色片欧美黄色片| 欧美另类亚洲清纯唯美| av中文乱码字幕在线| 老鸭窝网址在线观看| 日日爽夜夜爽网站| 他把我摸到了高潮在线观看| 国产精品秋霞免费鲁丝片| 国产精品99久久99久久久不卡| 女生性感内裤真人,穿戴方法视频| 成人三级做爰电影| 99国产极品粉嫩在线观看| 夜夜爽天天搞| 国产亚洲精品一区二区www| 一级a爱片免费观看的视频| 日韩大码丰满熟妇| 少妇熟女aⅴ在线视频| 国产精品一区二区三区四区久久 | 中文字幕色久视频| 色哟哟哟哟哟哟| 欧美日韩乱码在线| 中文字幕久久专区| 欧美在线黄色| 欧美色欧美亚洲另类二区 | 人人妻人人澡人人看| 欧美 亚洲 国产 日韩一| 日韩欧美一区二区三区在线观看| 国产亚洲欧美98| 在线观看免费视频日本深夜| 亚洲av熟女| 日日爽夜夜爽网站| 亚洲第一青青草原| 亚洲男人的天堂狠狠| ponron亚洲| 久久久久久久久久久久大奶| 国产免费男女视频| 91成年电影在线观看| 正在播放国产对白刺激| 日本五十路高清| 日韩大码丰满熟妇| 成年版毛片免费区| 欧美激情高清一区二区三区| 中文字幕av电影在线播放| 在线观看免费视频网站a站| 国产极品粉嫩免费观看在线| 国产99白浆流出| 日日干狠狠操夜夜爽| 日日爽夜夜爽网站| 国产免费av片在线观看野外av| 亚洲欧美激情综合另类| ponron亚洲| 亚洲五月天丁香| 久久久久久久久中文| 久热这里只有精品99| 老司机午夜十八禁免费视频| 国产成人欧美| 在线观看免费日韩欧美大片| 一级a爱视频在线免费观看| 免费高清在线观看日韩| 国产精品电影一区二区三区| 国产私拍福利视频在线观看| 国产精品久久电影中文字幕| 天天躁狠狠躁夜夜躁狠狠躁| 99精品久久久久人妻精品| 九色亚洲精品在线播放| 高清黄色对白视频在线免费看| 国产精品野战在线观看| 久久天堂一区二区三区四区| 欧美中文综合在线视频| 亚洲少妇的诱惑av| 国产成人一区二区三区免费视频网站| 国产成人欧美| 两性夫妻黄色片| 老熟妇乱子伦视频在线观看| 日本a在线网址| 日日爽夜夜爽网站| 亚洲精品美女久久久久99蜜臀| 成人三级做爰电影| 人人妻,人人澡人人爽秒播| 91国产中文字幕| 国产精品国产高清国产av| 亚洲av电影在线进入| 精品一区二区三区av网在线观看| 国产av一区二区精品久久| 亚洲成a人片在线一区二区| 亚洲精品国产区一区二| 亚洲五月婷婷丁香| 欧美成人午夜精品| 18美女黄网站色大片免费观看| 一本大道久久a久久精品| 国产三级黄色录像| 亚洲色图综合在线观看| 久久精品影院6| 伦理电影免费视频| 国产免费av片在线观看野外av| 首页视频小说图片口味搜索| 伊人久久大香线蕉亚洲五| 黄片大片在线免费观看| 久久香蕉精品热| cao死你这个sao货| 亚洲最大成人中文| 免费看美女性在线毛片视频| 亚洲午夜理论影院| 亚洲精品粉嫩美女一区| 亚洲情色 制服丝袜| av在线播放免费不卡| 极品人妻少妇av视频| 黄网站色视频无遮挡免费观看| 少妇裸体淫交视频免费看高清 | 可以在线观看的亚洲视频| 女同久久另类99精品国产91| 国产精品久久视频播放| 黄色成人免费大全| 久久精品91无色码中文字幕| 亚洲欧美精品综合一区二区三区| 人成视频在线观看免费观看| 91九色精品人成在线观看| 国产午夜精品久久久久久| 9色porny在线观看| 国产免费av片在线观看野外av| 欧美一级毛片孕妇| 美女免费视频网站| 欧美一级毛片孕妇| 国产一区在线观看成人免费| 欧美成人免费av一区二区三区| 亚洲av成人不卡在线观看播放网| 女警被强在线播放| 久久久久久免费高清国产稀缺| 狠狠狠狠99中文字幕| netflix在线观看网站| 国产一区二区在线av高清观看| 亚洲天堂国产精品一区在线| 国产一卡二卡三卡精品| √禁漫天堂资源中文www| 久久国产精品男人的天堂亚洲| 操美女的视频在线观看| 国产亚洲精品第一综合不卡| 国产97色在线日韩免费| 色在线成人网| 少妇的丰满在线观看| 国产男靠女视频免费网站| 欧美日韩一级在线毛片| 午夜福利高清视频| 别揉我奶头~嗯~啊~动态视频| 又紧又爽又黄一区二区| 国产精品久久视频播放| 黑人巨大精品欧美一区二区mp4| 一个人观看的视频www高清免费观看 | 成人特级黄色片久久久久久久| 亚洲精华国产精华精| 国产精品国产高清国产av| 51午夜福利影视在线观看| 美国免费a级毛片| 国产精品自产拍在线观看55亚洲| 精品卡一卡二卡四卡免费| av有码第一页| 色综合婷婷激情| 国产91精品成人一区二区三区| www.熟女人妻精品国产| 久久天堂一区二区三区四区| 欧美久久黑人一区二区| 国产欧美日韩精品亚洲av| 夜夜躁狠狠躁天天躁| 免费在线观看完整版高清| 久久午夜综合久久蜜桃| 欧美黑人欧美精品刺激| 99精品在免费线老司机午夜| 啦啦啦 在线观看视频| 久久青草综合色| 亚洲,欧美精品.| 久久久久精品国产欧美久久久| 久久婷婷人人爽人人干人人爱 | 亚洲精品美女久久久久99蜜臀| 久久久久久久久免费视频了| 亚洲久久久国产精品| 亚洲在线自拍视频| 欧美激情极品国产一区二区三区| 成人欧美大片| 精品久久久久久久毛片微露脸| 色综合婷婷激情| 90打野战视频偷拍视频| av电影中文网址| 日韩欧美免费精品| 岛国在线观看网站| av网站免费在线观看视频| 国产乱人伦免费视频| 母亲3免费完整高清在线观看| 欧美日韩瑟瑟在线播放| 亚洲五月天丁香| 侵犯人妻中文字幕一二三四区| 母亲3免费完整高清在线观看| 午夜激情av网站| av网站免费在线观看视频| 精品福利观看| 99riav亚洲国产免费| 亚洲中文字幕日韩| 99香蕉大伊视频| 纯流量卡能插随身wifi吗| 别揉我奶头~嗯~啊~动态视频| 纯流量卡能插随身wifi吗| 女警被强在线播放| 欧美日本亚洲视频在线播放| 成熟少妇高潮喷水视频| 欧美黑人精品巨大| 精品第一国产精品| 19禁男女啪啪无遮挡网站| 一级毛片高清免费大全| 免费看美女性在线毛片视频| 成人国产综合亚洲| www.www免费av| 亚洲成人免费电影在线观看| 国产熟女午夜一区二区三区| 久久久久亚洲av毛片大全| 99久久精品国产亚洲精品| 亚洲自拍偷在线| 精品午夜福利视频在线观看一区| av欧美777| 国产精品永久免费网站| 免费在线观看完整版高清| 精品国产乱子伦一区二区三区| 国产一区二区三区综合在线观看| 亚洲av成人一区二区三| 国产亚洲精品久久久久5区| 欧美日韩瑟瑟在线播放| 在线观看午夜福利视频| 999精品在线视频| 日本一区二区免费在线视频| 精品久久久久久,| 亚洲av电影不卡..在线观看| 国产精品,欧美在线| 91老司机精品| 美女高潮到喷水免费观看| 黑人操中国人逼视频| 性色av乱码一区二区三区2| 亚洲av五月六月丁香网| 久久久久九九精品影院| 少妇粗大呻吟视频| 欧美丝袜亚洲另类 | 国产精品 欧美亚洲| 宅男免费午夜| 久久 成人 亚洲| 黑丝袜美女国产一区| 亚洲一区二区三区不卡视频| 久久久久久久久久久久大奶| 欧美日韩黄片免| 国产欧美日韩综合在线一区二区| 波多野结衣av一区二区av| 亚洲男人的天堂狠狠| 国产91精品成人一区二区三区| 日韩大尺度精品在线看网址 | 激情在线观看视频在线高清| 一区二区三区精品91| 一进一出抽搐gif免费好疼| 国内精品久久久久久久电影| 一a级毛片在线观看| 日韩欧美国产在线观看| av有码第一页| 天天一区二区日本电影三级 | 999久久久国产精品视频| 国产区一区二久久| svipshipincom国产片| 色综合亚洲欧美另类图片| 50天的宝宝边吃奶边哭怎么回事| 露出奶头的视频| 在线十欧美十亚洲十日本专区| 久久亚洲真实| 老司机靠b影院| 国内精品久久久久久久电影| 国产精品香港三级国产av潘金莲| 亚洲在线自拍视频| 国产一区二区三区在线臀色熟女| 激情在线观看视频在线高清| 国产av又大| av天堂在线播放| 校园春色视频在线观看| 国产精品一区二区三区四区久久 | 久久伊人香网站| 麻豆久久精品国产亚洲av| 国产真人三级小视频在线观看| av福利片在线| 少妇粗大呻吟视频| 一级作爱视频免费观看| 午夜免费鲁丝| 大码成人一级视频| ponron亚洲| 禁无遮挡网站| 国产一区二区三区视频了| 18美女黄网站色大片免费观看| 91精品国产国语对白视频| 亚洲第一青青草原| 午夜成年电影在线免费观看| 女人高潮潮喷娇喘18禁视频| 18禁黄网站禁片午夜丰满| 老汉色∧v一级毛片| 欧美在线一区亚洲| 国产免费男女视频| 叶爱在线成人免费视频播放| 免费一级毛片在线播放高清视频 | 精品国产一区二区久久| 一区二区三区高清视频在线| 视频在线观看一区二区三区| 97人妻天天添夜夜摸| 叶爱在线成人免费视频播放| netflix在线观看网站| 亚洲人成77777在线视频| 日日爽夜夜爽网站| 黄色视频不卡| 怎么达到女性高潮| 午夜免费观看网址| 中文字幕最新亚洲高清| 99热只有精品国产| 欧美乱码精品一区二区三区| 免费看十八禁软件| 亚洲伊人色综图| 国产精品久久电影中文字幕| 19禁男女啪啪无遮挡网站| 亚洲va日本ⅴa欧美va伊人久久| 一边摸一边抽搐一进一小说| 97碰自拍视频| 成人18禁在线播放| 午夜福利免费观看在线| 亚洲欧美精品综合一区二区三区| 人人妻人人澡人人看| 午夜a级毛片| 亚洲 欧美一区二区三区| 亚洲精品中文字幕一二三四区| 在线观看www视频免费| 国产区一区二久久| 精品乱码久久久久久99久播| 香蕉久久夜色| 午夜福利视频1000在线观看 | 大码成人一级视频| 国产精品香港三级国产av潘金莲| 精品一区二区三区四区五区乱码| av电影中文网址| 午夜福利高清视频| 真人一进一出gif抽搐免费| 麻豆久久精品国产亚洲av| 国产熟女午夜一区二区三区| 丝袜在线中文字幕| 精品欧美国产一区二区三| 国产成人欧美| 亚洲人成电影免费在线| 欧美一区二区精品小视频在线| 久99久视频精品免费| 亚洲 国产 在线| 欧美人与性动交α欧美精品济南到| 成人av一区二区三区在线看| 一进一出抽搐动态| 波多野结衣高清无吗| 最新在线观看一区二区三区| 国产精品久久久av美女十八| 大码成人一级视频| 久热这里只有精品99| 最新美女视频免费是黄的| 欧美日本中文国产一区发布| 久久青草综合色| 亚洲狠狠婷婷综合久久图片| 久久精品亚洲精品国产色婷小说| 欧美成人性av电影在线观看| 777久久人妻少妇嫩草av网站| 高清毛片免费观看视频网站| 国语自产精品视频在线第100页| 十八禁人妻一区二区| 婷婷精品国产亚洲av在线| 日韩欧美国产在线观看| 丝袜美腿诱惑在线| 国产一区二区三区视频了| 欧美一级毛片孕妇| 国产一区二区激情短视频| 国语自产精品视频在线第100页| 三级毛片av免费| 国产欧美日韩一区二区三| 女人爽到高潮嗷嗷叫在线视频| 久久久久九九精品影院| 美女大奶头视频| 国产精品电影一区二区三区| 夜夜爽天天搞| 日本五十路高清| 久久人人爽av亚洲精品天堂| 久久人妻熟女aⅴ| 亚洲中文字幕日韩| 久久久久国产一级毛片高清牌| 国产黄a三级三级三级人| 手机成人av网站| 精品国产一区二区久久| 国产精品免费一区二区三区在线| 老司机深夜福利视频在线观看| 午夜精品在线福利| 男女下面进入的视频免费午夜 | 中文字幕久久专区| 夜夜爽天天搞| 女人高潮潮喷娇喘18禁视频| 人人澡人人妻人| 久久久久久久精品吃奶| 日韩精品青青久久久久久| 制服人妻中文乱码| 少妇裸体淫交视频免费看高清 | 国产亚洲欧美精品永久| 久久天堂一区二区三区四区| 天堂影院成人在线观看| 激情在线观看视频在线高清| www.www免费av| 黑人巨大精品欧美一区二区蜜桃| 校园春色视频在线观看| 人人妻人人爽人人添夜夜欢视频| 亚洲色图综合在线观看| 99国产综合亚洲精品| 在线观看66精品国产| 可以在线观看的亚洲视频| 美女大奶头视频| av天堂久久9| 亚洲人成77777在线视频| 欧美不卡视频在线免费观看 | 999久久久国产精品视频| 91麻豆av在线| 99热只有精品国产| 久久久久久久久中文| 亚洲国产欧美一区二区综合| 亚洲国产欧美日韩在线播放| 欧美丝袜亚洲另类 | 亚洲国产精品sss在线观看| 黄色丝袜av网址大全|