• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of Porous Copper Pore Density on Joint Interface: Microstructure and Mechanical Analysis

    2022-02-12 06:25:58NurAmirahMohdZahriFarazilaYusofYukioMiyashitaTadashiArigaMdAbdulHaseebandNazatulLianaSukiman

    Nur Amirah Mohd Zahri, Farazila Yusof, Yukio Miyashita, Tadashi Ariga, A. S. Md. Abdul Haseeb and Nazatul Liana Sukiman

    (1.Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia;2. Department of Mechanical Engineering, Faculty of Engineering and Advanced Manufacturing & Material Processing(AMMP Centre), University of Malaya, Kuala Lumpur 50603, Malaysia; 3. Department of Mechanical Engineering,Nagaoka University of Technology, Nagaoka 940-2188, Japan; 4. Department of Metallurgical Engineering, TokaiUniversity, Hiratsuka 259-1292, Japan; 5. Department of Mechanical Engineering, Faculty of Engineering andCentre of Advanced Materials (CAM), University of Malaya, Kuala Lumpur 50603, Malaysia)

    Abstract: The effect of the pore density of porous copper (Cu) on brazed Cu/porous Cu was investigated. A filler with a composition of Cu-9.0Sn-7.0Ni-6.0P (Sn: Tin; Ni: Nickel; P: Phosphorus) and porous Cu with pore densities of 15 pores per inch (PPI), 25 PPI, and 50 PPI were employed. The joint strength of Cu/porous Cu was evaluated with shear tests at different brazing temperatures. Characterizations of the joint interface and fractured surface were achieved with scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD). The micro-hardness test of Cu/porous Cu joint interface showed a high hardness value (HV) for 50 PPI porous Cu. This result was in line with its low shear strength. It was proved that the joint strength of Cu/porous Cu is dependent on the pore density of the porous Cu structure and brittle phases of Cu3P and Ni3P in the brazed interface.

    Keywords: porous metal; brazing; interface microstructure; shear fracture

    0 Introduction

    Porous metal has been widely employed in thermal applications such as heat exchanger[1-2], heat sink[3], engine combustion in electronics, aircraft, and automotive systems[4]. Porous metal is an integral part of cooling systems due to its high surface area where heat can be transferred efficiently within a small volume of porous metal[5].

    Previous research on porous metal heat exchanger examined the consequences of different materials and their pore densities[6-7]. The main focus of these research was the performance of the heat exchangers in terms of their heat transfer ability, pressure drop efficiency, optimization, and modeling[8]. However, there is a considerable gap in the study of brazed joint morphology and mechanical properties between metal and porous metal. Usually, the design of a heat exchanger is optimized for its performance and cost without considering the joining properties of the heat exchanger. Lunsford[9]presented a guideline on the design processing of brazed aluminium (Al) heat exchanger. The author also stated that the technology of brazed heat exchanger had not been fully capitalized. In addition, the performance of a heat exchanger can be influenced by its joining properties. Boomsma et al.[10]reported that flawed brazing might impinge the heat transfer behavior due to the flow resistance near the wall.

    The primary purpose of metal/porous metal joining is to study the morphology and mechanical properties of the brazed joint. Normally, porous metal is sandwiched between solid metals that act as a substrate. This sandwich arrangement provides a sturdy structure. Current study has selected Cu as a material for substrate (top and base) and porous metal while amorphous Cu-based was chosen as a filler metal. Cu is generally known for its high-temperature resistance and as an excellent conductor of heat and electricity.Porous Cu regains a favor back to be utilized in the heat exchanger due to its lightweight. Apart from that, inadequate research on brazed Cu compared with brazed Al has increased the urgency of the study of the former[11]. On the other hand, amorphous filler metal can be produced by rapid solidification through roller machine to yield foil filler metal[12]. The flexibility of foil allows the brazed cross-section to be filled easily without leaving behind a significant brazed gap. Amorphous Cu-9.0Sn-7.0Ni-6.0P is an excellent candidate to braze Cu/porous Cu due to its high chemical homogeneity, good wettability, free flux, and better flexibility[13]. The inclusion of Sn in the filler metal reduces its melting point. Both Ni and P can enhance its corrosion resistance while play a role as dissolvent[12]. This paper investigated the failure of Cu and porous Cu brazed joint from the perspective of shear fracture and joining interface.

    1 Experiment Setup

    Porous Cu with pore densities of 15 pores per inch (PPI), 25 PPI, and 50 PPI were supplied by the manufacturer of Duranice Applied Materials (Dalian, China). The microscopic images of the porous Cu were characterised using a digital microscope (Keyence, Osaka, Japan). Cu was purchased from C & W Hardware (Kuala Lumpur, Malaysia). Amorphous Cu-9.0Sn-7.0Ni-6.0P (VZ 2250) was obtained from Vacuumschmelze GMBH & Co. Kg. (Hanau, Germany) to join Cu and porous Cu. The joining was performed in a brazing furnace in an atmosphere of argon (Ar2) gas. Cu was ground with silicon carbide (SiC) abrasive papers (Pace Technologies, Arizona, USA) before being brazed in the laboratory furnace VMK-Vacuum instrument (Linn High Therm, Eschenfelden, Germany). The specimen was arranged in a sandwich configuration as shown in Fig.1(a). Brazing was performed at temperatures of 660 ℃, 680 ℃, 700 ℃, and 720 ℃ according to the manufacturer’s suggestion and references from previous studies with a holding time of 5 min and a heating rate of 5 ℃/min[11,14]. The brazed Cu/VZ 2250/porous Cu/VZ 2250/Cu with different Cu pore densities were ground with 600, 800, and 1200 grade SiC abrasive papers to obtain a cross-section of the brazed joint. The specimens were polished with 3 μm and 1 μm diamond suspensions (Buehler, Illinois, United States) followed by etching with copper etchant solution (Reveal Technologies Enterprise, Selangor, Malaysia). The etchant solution contained 3% hydrogen peroxide and 30% ammonia.

    Fig.1 Experiment on Cu/porous Cu/Cu specimens

    The shear test was performed in room temperature with Instron Universal Testing Machine 3369 with the maximum capacity of the load cell of 50 kN equipped with Bluehill 2.0 software (Instron Inc., Norwood, USA) as shown in Fig.1(b). The test was carried out under displacement control mode at a cross-head speed of 1 mm/min. Vickers Microhardness test was conducted using DUH-211s Shimadzu Dynamic Ultra Microhardness Tester (Shimadzu Corp., Tokyo, Japan). The microhardness measurements were made with an indentation load of 100 mN at the rate of 10 mN/s for 5 s. Each specimen was tested with three different samples to ensure the validity of data. The microstructures of the brazed and fractured surfaces from the shear test (Fig.1(c)) were captured with scanning electron microscope (SEM). The model of the employed SEM was Jeol JSM 6360A (Tokyo, Japan). Examinations of elemental contents were conducted with energy dispersive X-ray spectroscopy (EDX) of the model Jeol JED-2300. X-ray diffraction (XRD) with a 2θrange of 20°-90° was performed on the fractured surfaces from the shear test with Lab X, XRD-6100, Shimadzu (Kyoto, Japan). The phase determination was analysed using X’Pert Highscore with Inorganic Crystal Structure Database (ICSD).

    2 Results and Discussion

    2.1 Shear Strength Characteristic of Cu/VZ 2250/Porous Cu

    Fig.2 Brazed joint strength of Cu/VZ 2250/porous Cu at brazing temperatures of 660 ℃, 680 ℃, 700 ℃, and 720 ℃ for porous Cu with pore densities of 15 PPI, 25 PPI, and 50 PPI

    The brazed joint strength of Cu/porous Cu decreased when the brazing temperature was further increased above 680 ℃. At brazing temperature of 660 ℃, the heat was sufficient to promote excellent bonding. However, increasing the brazing temperature compromised the strength of porous Cu due to the fragility of its interconnected branches. This intrinsic factor caused the decline of theσmaxof Cu/porous Cu joint as the brazing temperature was increased.

    Additionally, the results proved thatσmaxwould be reduced with the increase of pore density of porous Cu. 50 PPI porous Cu had more pores than its 15 PPI counterpart since the former had a higher pore density than the latter. Even though the pore size of 50 PPI porous Cu was smaller, it had a high number of cell walls that were interconnected with small diameter branches as displayed in Fig.3. This structure gave off a large surface area for contact between Cu and porous Cu. However, this large surface area for 50 PPI porous Cu was not a decisive factor to form a strong bond due to the small size of the interconnected branches. In addition, the lowσmaxof 50 PPI porous Cu compared with that of 15 PPI porous Cu are more susceptible to be influenced by the hollow structure of porous Cu interconnected branches. The molten filler had to spread out and fill in more hollow space for 50 PPI porous Cu interconnected branches. This phenomenon was a factor thatσmaxdecreased with increasing pore density of porous Cu. Previous studies demonstrated a similar pattern in the relationship between shear strength and pore density. Wan et al.[17]conducted a shear test on porous metal fiber sintered sheet (PMFSS) with different porosities. The increasing porosity of PMFSS from 70% to 90% led to a significant drop in its shear strength from 7.7 MPa to 0.9 MPa.

    Fig.3 Digital microscope image of porous Cu and cross-section of porous Cu interconnected branch

    2.2 Interfacial Behaviour of Brazed Cu/VZ 2250/Porous Cu

    Fig.4 shows backscattered electron (BSE) micrographs of Cu/VZ 2250/porous Cu (15 PPI, 25 PPI, and 50 PPI) joints that were bonded at brazing temperature of 660 ℃. The filler region was successfully formed at the brazed interface between Cu and porous Cu. However, imperfect brazed interface was spotted for Cu/50 PPI porous Cu which could be attributed to the structure of porous Cu interconnected branches. The filler can be spotted in the BSE image of Cu/50 PPI porous Cu, and it was found to be scattered on the diffusion layer and porous Cu surface. The dissolution of the interconnected branches of 50 PPI porous Cu can take place at a higher brazing temperature which affects the brazed joint[18].

    (a) 15 PPI (b) 25 PPI (c) 50 PPI

    During brazing, the molten VZ 2250 migrated into Cu and porous Cu at an elevated temperature. This process led to the formation of IMC through interfacial reaction. EDX and XRD analysis were carried out to investigate the presence of IMC in the brazed joint. The XRD peak pattern of Cu (ICSD with PDF No. 98-062-7113), Cu3P (ICSD with PDF No. 98-062-8629), Ni3P (ICSD with PDF No. 98-064-6109), and Cu6Sn5(ICSD with PDF No.98-010-6530) are visible in Fig.5. The Cu has become a dominant peak as all Cu peaks appeared at 2 Theta of 43.33°, 50.46°, 74.15°, and 89.97°, which is the same as those in the XRD peak pattern list of Cu. The presence of Cu can be traced from the Cu substrate and VZ 2250. Next, the solely individual of Cu6Sn5peak was detected at 2 Theta of 44.84°, which is stronger than all of the overlapped peaks of Cu6Sn5. On the other hand, the individual peaks of Ni3P and Cu3P were not observable due to overlapping with other phases. However, EDX mapping analysis proved the existence of Cu3P and Ni3P. Ni and P were found to be concentrated at the filler region for all porous Cu. This EDX reading corroborated the Cu3P and peak Ni3P from the XRD results.

    Fig.5 XRD pattern of Cu/VZ 2250/porous Cu fractured surface with different porous Cu pore densities of 15 PPI, 25 PPI, and 50 PPI

    The filler region of brazed Cu/porous Cu seam with VZ 2250 contained high P concentration at points of 1, 2, 3, and 8 (Table 1) as displayed in Fig.6. P has excellent solubility in porous Cu which caused the formation of Cu3P phase[19]. Cu3P and Ni3P are commonly identified as a brittle phase and from the mapping analysis P and Ni were concentrated in the filler region, while Sn was bound near the cavities from the mapping analysis. During the brazing process, the low melting point and active element of Sn tended to diffuse out from VZ 2250 filler and flow into a porous Cu. The reaction between Sn and Cu was the basis for the Cu6Sn5liquid phase, which tended to diffuse around cavities.

    (a) 15 PPI (b) 25 PPI (c) 50 PPI

    Table 1 Atomic percentage of elements from EDX analysis for Fig.6

    2.3 Fractured Surface of Cu/VZ 2250/Porous Cu

    The fractured surfaces of Cu/VZ 2250/porous Cu/Cu joint bound at 660 ℃ with 15 PPI, 25 PPI, and 50 PPI porous Cu were analysed. Fig.7(a-c) and Fig.7(d-f) show their macroscopic and microscopic images, respectively, from the top view of the fractured surface of Cu/VZ 2250/porous Cu. Fig.7(a-c) and inset of Fig.7 (d-f) prove that the surface became rougher with a greater proliferation of patch marks as the PPI of the porous Cu was increased. The 50 PPI porous Cu tended to break at interconnected branch region instead of in the middle of the brazed interface. The smaller size of 50 PPI porous Cu interconnected branch contributed to shear fracture taking place at interconnected branch region.

    Fig.7 Macroscopic (a-c) and microscopic (d-f) fractured surface of Cu/VZ 2250/porous Cu from the top view

    The side view of the fractured specimen from the shear test (Fig.8) shows that the crack was initiated at the filler region and then followed by the diffusion region of the brazed interface. The brazed interface at the filler region implies that the filler region has a low resistance towards crack initiation. The crack was found to propagate along the brazed interface of the P and Ni. The noticeable P and Ni elements in mapping analysis of shear-fracture (Fig.9) conformed the brazed interface failed at the filler region and diffusion region. However, it is worth noting that the filler region and diffusion region on the side view fracture specimens (Fig.8) cannot be specified as the brazed interface between Cu and porous Cu. It may be a filler region and diffusion region on the porous Cu interconnected branch because of the ability of AF to diffuse into porous Cu. This can be proved by the discovery of the phosphide and nickel phases in mapping analysis (Fig.9) on the patch mark (interconnected branch).

    (a)15 PPI (b)25 PPI (c)50 PPI

    (a)15 PPI (b)25 PPI (c)50 PPI

    The indentation marks and hardness value (HV) for Cu/VZ 2250/porous Cu are shown in Fig.10. According to Fig.10(d), the HV for diffusion region was lower than filler region. This evidence was in accordance with the crack initiation at the filler region followed by the crack propagation at the diffusion region. Besides, the HV increased with increasing PPI porous Cu for each region (diffusion region and filler region) due to the smaller interconnected branches of porous Cu. This result was in line with the recorded lower shear strength for high pore density of porous Cu. The diffused area between Cu and porous Cu reflected similar HV due to the migration of IMC into the area. This similarity of HV was reported by Lutfi et al.[19]for brazed Cu/Cu. However, the HV in filler region was distinct due to the structural differences between porous Cu and solid Cu because the size of the porous Cu interconnected branches still played a crucial role even though the filler may have covered its surface.

    Note: Diffusion region of porous Cu interface: Point 1, 4, 7; Filler region of Cu/porous Cu joint interface: Point 2, 5, 8; Diffusion region of Cu substrate interface: Point 3, 6 & 9

    3 Conclusions

    This study showed the characteristics of brazed Cu/porous Cu joint with VZ 2250 filler metal. The strength of the brazed joint was evaluated from the shear and micro-hardness tests. In addition, the fractured surface and microstructure around the interface joint were analysed. The maximum shear strength for Cu/porous Cu was recorded at brazing temperature of 660 ℃ for all PPI porous Cu. An increase in the brazing temperature compromised the shear strength due to the formation of large microstructure and failure of porous Cu interconnected branch. The brittle phases of Cu3P and Ni3P were discovered at the filler region, while Cu6Sn5was bound near the cavities. The high pore density porous Cu was discovered to leave more patch mark on Cu after shear test compared with low pore density of porous Cu. Porous Cu with higher pore density experienced fracture with more brittle cleavage and lower shear strength. Finally, the filler region reflected an increasing HV as the pore density was increased due to the structure of porous Cu interconnected branches. Overall, the results showed that porous Cu with lower pore density had better performance in terms of joint strength.

    欧美另类一区| 在线观看三级黄色| 女人久久www免费人成看片| 免费看光身美女| 性高湖久久久久久久久免费观看| 亚洲国产高清在线一区二区三| 欧美日韩综合久久久久久| 成年美女黄网站色视频大全免费 | 我要看日韩黄色一级片| 超碰av人人做人人爽久久| 男人舔奶头视频| 国产精品国产三级国产专区5o| 51国产日韩欧美| 丝袜脚勾引网站| 在线免费观看不下载黄p国产| 狂野欧美激情性bbbbbb| 亚洲四区av| 六月丁香七月| 毛片女人毛片| 国产亚洲精品久久久com| 久久ye,这里只有精品| 精品一区在线观看国产| 男女边吃奶边做爰视频| 亚洲精品国产成人久久av| a级毛片免费高清观看在线播放| 国产亚洲91精品色在线| 七月丁香在线播放| 精品一品国产午夜福利视频| 国产精品久久久久久精品电影小说 | av又黄又爽大尺度在线免费看| 国产国拍精品亚洲av在线观看| 国产精品国产三级国产av玫瑰| 久久久久久伊人网av| 有码 亚洲区| 噜噜噜噜噜久久久久久91| 免费大片18禁| 久久97久久精品| 18禁裸乳无遮挡免费网站照片| 亚洲欧美清纯卡通| 简卡轻食公司| 秋霞在线观看毛片| 亚洲精品456在线播放app| 免费在线观看成人毛片| 建设人人有责人人尽责人人享有的 | 精品一区二区三区视频在线| 国产淫片久久久久久久久| 久久精品夜色国产| 51国产日韩欧美| 欧美3d第一页| 成年免费大片在线观看| 精品99又大又爽又粗少妇毛片| 亚洲精品乱码久久久v下载方式| 老女人水多毛片| 中文字幕久久专区| 日韩成人伦理影院| 久久久久久久久久成人| 国产在线免费精品| 波野结衣二区三区在线| 我的老师免费观看完整版| 只有这里有精品99| 草草在线视频免费看| 啦啦啦在线观看免费高清www| 欧美少妇被猛烈插入视频| 狂野欧美激情性xxxx在线观看| 国产综合精华液| 国产精品久久久久久av不卡| 日韩免费高清中文字幕av| 人妻少妇偷人精品九色| 久久99热6这里只有精品| 亚洲不卡免费看| 一级毛片aaaaaa免费看小| 久久久欧美国产精品| 日本黄色日本黄色录像| 国产在线免费精品| 高清黄色对白视频在线免费看 | 国产永久视频网站| 日本av免费视频播放| 国产精品秋霞免费鲁丝片| 99久久中文字幕三级久久日本| 色哟哟·www| 超碰av人人做人人爽久久| 亚洲高清免费不卡视频| 精品人妻熟女av久视频| 亚洲成人一二三区av| 国产爽快片一区二区三区| 观看免费一级毛片| 国产欧美日韩精品一区二区| 国产成人一区二区在线| 免费大片黄手机在线观看| 国产精品99久久久久久久久| 亚洲av日韩在线播放| 中文字幕av成人在线电影| 日韩不卡一区二区三区视频在线| 高清av免费在线| 综合色丁香网| 国精品久久久久久国模美| 春色校园在线视频观看| 成年免费大片在线观看| 久久久久久久亚洲中文字幕| 国产精品不卡视频一区二区| 亚洲中文av在线| 男的添女的下面高潮视频| 国产精品成人在线| 十分钟在线观看高清视频www | 亚洲一区二区三区欧美精品| 日韩中字成人| 中国三级夫妇交换| 欧美性感艳星| 男男h啪啪无遮挡| 久久久久国产精品人妻一区二区| 99久久人妻综合| 男女无遮挡免费网站观看| 日日摸夜夜添夜夜添av毛片| 国产男女超爽视频在线观看| 亚洲精品aⅴ在线观看| 久久99精品国语久久久| 高清日韩中文字幕在线| 精品99又大又爽又粗少妇毛片| 日本爱情动作片www.在线观看| 国产精品嫩草影院av在线观看| 少妇熟女欧美另类| 干丝袜人妻中文字幕| 国内揄拍国产精品人妻在线| 成人免费观看视频高清| 国产日韩欧美亚洲二区| 久久国产精品男人的天堂亚洲 | 国产伦理片在线播放av一区| 欧美日韩综合久久久久久| 日本色播在线视频| 亚洲国产精品一区三区| 免费观看的影片在线观看| 日本黄色片子视频| 国产日韩欧美亚洲二区| 国产精品99久久久久久久久| 男女免费视频国产| av国产免费在线观看| 亚洲欧洲日产国产| 国产av国产精品国产| 99久国产av精品国产电影| 超碰97精品在线观看| 日韩电影二区| 国产精品.久久久| 男女边摸边吃奶| 国产精品人妻久久久影院| 一区二区三区四区激情视频| 亚洲一区中文字幕在线| 国产高清视频在线播放一区 | 亚洲成人免费av在线播放| 久久精品国产亚洲av涩爱| 最近最新中文字幕大全免费视频 | 999精品在线视频| 美女午夜性视频免费| 国产一区二区三区综合在线观看| 国产成人精品久久久久久| 亚洲人成电影免费在线| www.熟女人妻精品国产| 真人做人爱边吃奶动态| 亚洲精品在线美女| 波多野结衣av一区二区av| 亚洲第一青青草原| 免费观看人在逋| 青草久久国产| 69精品国产乱码久久久| 国产亚洲午夜精品一区二区久久| 少妇猛男粗大的猛烈进出视频| 97人妻天天添夜夜摸| 久久精品国产a三级三级三级| 久久av网站| 成人亚洲欧美一区二区av| 丝袜人妻中文字幕| 精品一区二区三区四区五区乱码 | 国产亚洲欧美精品永久| 久久久久精品国产欧美久久久 | 一区在线观看完整版| 中文精品一卡2卡3卡4更新| 好男人视频免费观看在线| 热re99久久精品国产66热6| 亚洲欧美色中文字幕在线| 色94色欧美一区二区| 国产精品一国产av| 黑人猛操日本美女一级片| 老司机深夜福利视频在线观看 | 精品视频人人做人人爽| 成在线人永久免费视频| 日韩伦理黄色片| 亚洲av电影在线观看一区二区三区| 老司机亚洲免费影院| 国产在线一区二区三区精| 久久久久精品人妻al黑| 亚洲人成电影观看| 美女扒开内裤让男人捅视频| 天天躁日日躁夜夜躁夜夜| 丝瓜视频免费看黄片| 99re6热这里在线精品视频| 又大又爽又粗| 欧美国产精品一级二级三级| 老司机深夜福利视频在线观看 | 国产在线一区二区三区精| 99国产精品免费福利视频| 视频在线观看一区二区三区| 91麻豆av在线| 欧美 亚洲 国产 日韩一| av在线老鸭窝| 免费高清在线观看日韩| 国产色视频综合| 久久影院123| 久久久久国产精品人妻一区二区| av欧美777| 国产成人精品久久二区二区91| 国产成人免费观看mmmm| 久久 成人 亚洲| 热re99久久精品国产66热6| 国产又色又爽无遮挡免| 天天操日日干夜夜撸| 日韩大片免费观看网站| 丰满少妇做爰视频| 欧美+亚洲+日韩+国产| 欧美黑人欧美精品刺激| 香蕉国产在线看| 午夜久久久在线观看| 日本欧美国产在线视频| 久久久国产欧美日韩av| 国产精品.久久久| 99热网站在线观看| av国产久精品久网站免费入址| 99久久人妻综合| 90打野战视频偷拍视频| 视频区图区小说| 99久久99久久久精品蜜桃| 天天躁夜夜躁狠狠躁躁| 亚洲av日韩精品久久久久久密 | 中文字幕av电影在线播放| 久久人人97超碰香蕉20202| 婷婷成人精品国产| 午夜福利一区二区在线看| 亚洲欧美精品自产自拍| 成年女人毛片免费观看观看9 | 欧美乱码精品一区二区三区| 国产爽快片一区二区三区| 国产欧美日韩一区二区三 | 麻豆乱淫一区二区| 赤兔流量卡办理| 麻豆av在线久日| 国产一区二区在线观看av| 国产男人的电影天堂91| 国产精品av久久久久免费| 王馨瑶露胸无遮挡在线观看| 日本a在线网址| 国产高清视频在线播放一区 | 青青草视频在线视频观看| 午夜福利影视在线免费观看| 极品少妇高潮喷水抽搐| 老司机影院毛片| 桃花免费在线播放| 99国产精品一区二区三区| 亚洲成人免费av在线播放| 你懂的网址亚洲精品在线观看| 大码成人一级视频| 手机成人av网站| 蜜桃在线观看..| 久久九九热精品免费| 高潮久久久久久久久久久不卡| 999精品在线视频| 欧美日本中文国产一区发布| 国产熟女午夜一区二区三区| 真人做人爱边吃奶动态| 亚洲国产精品国产精品| 久久久国产精品麻豆| 精品久久久久久电影网| 精品国产国语对白av| 男女午夜视频在线观看| 亚洲人成77777在线视频| 99热网站在线观看| 一本久久精品| 久久久国产欧美日韩av| 欧美精品人与动牲交sv欧美| 国产视频首页在线观看| 国产精品国产三级国产专区5o| 亚洲,欧美精品.| 中文字幕人妻熟女乱码| 咕卡用的链子| av线在线观看网站| 性色av乱码一区二区三区2| 日韩av免费高清视频| 少妇 在线观看| 欧美黑人欧美精品刺激| 99热国产这里只有精品6| 欧美日韩国产mv在线观看视频| 国产一区有黄有色的免费视频| 最近最新中文字幕大全免费视频 | 欧美精品高潮呻吟av久久| 纵有疾风起免费观看全集完整版| 欧美国产精品一级二级三级| 国产精品久久久久久精品古装| 亚洲中文av在线| av片东京热男人的天堂| 国产老妇伦熟女老妇高清| av视频免费观看在线观看| 久久九九热精品免费| 黄色a级毛片大全视频| 韩国精品一区二区三区| 欧美日韩亚洲综合一区二区三区_| 日韩大片免费观看网站| 九色亚洲精品在线播放| 蜜桃在线观看..| 欧美日韩福利视频一区二区| 无限看片的www在线观看| 亚洲精品久久成人aⅴ小说| 两性夫妻黄色片| 一级毛片我不卡| 精品人妻在线不人妻| 波多野结衣一区麻豆| 中文字幕高清在线视频| 国产在线观看jvid| 汤姆久久久久久久影院中文字幕| 久久精品久久精品一区二区三区| 亚洲图色成人| 男女下面插进去视频免费观看| 免费久久久久久久精品成人欧美视频| 日韩 亚洲 欧美在线| 一本一本久久a久久精品综合妖精| 国产极品粉嫩免费观看在线| 丰满少妇做爰视频| 国产精品香港三级国产av潘金莲 | 亚洲精品一卡2卡三卡4卡5卡 | 国产野战对白在线观看| 大型av网站在线播放| 精品一区二区三区av网在线观看 | 久久性视频一级片| 美女福利国产在线| 国产精品久久久av美女十八| 这个男人来自地球电影免费观看| 91精品国产国语对白视频| 久久久国产欧美日韩av| 天天躁夜夜躁狠狠久久av| 国产成人免费无遮挡视频| 久久久国产欧美日韩av| 嫁个100分男人电影在线观看 | 欧美日韩综合久久久久久| 大码成人一级视频| 久久国产精品影院| 久久毛片免费看一区二区三区| 国产精品偷伦视频观看了| av国产久精品久网站免费入址| 日本欧美视频一区| 欧美亚洲 丝袜 人妻 在线| 亚洲成人手机| 精品一品国产午夜福利视频| 成年人黄色毛片网站| 婷婷色综合www| 国产91精品成人一区二区三区 | 搡老岳熟女国产| 亚洲天堂av无毛| 中文乱码字字幕精品一区二区三区| 欧美黄色片欧美黄色片| 亚洲成人免费电影在线观看 | 国产一区二区在线观看av| 精品一区二区三区四区五区乱码 | 亚洲图色成人| 电影成人av| 久久人人爽av亚洲精品天堂| 日本五十路高清| 欧美精品人与动牲交sv欧美| 久久99热这里只频精品6学生| 午夜福利视频在线观看免费| 亚洲精品自拍成人| 一区二区三区四区激情视频| 精品国产一区二区三区四区第35| 麻豆国产av国片精品| 国产精品久久久久成人av| 国产91精品成人一区二区三区 | a级片在线免费高清观看视频| 久久久精品国产亚洲av高清涩受| 男人爽女人下面视频在线观看| 十八禁网站网址无遮挡| 婷婷丁香在线五月| 黄色 视频免费看| 在线看a的网站| 日日爽夜夜爽网站| 精品视频人人做人人爽| 免费观看a级毛片全部| 国产精品久久久久久精品电影小说| 在线天堂中文资源库| 国产精品三级大全| 男人舔女人的私密视频| 天天躁夜夜躁狠狠久久av| 精品卡一卡二卡四卡免费| 在线观看免费视频网站a站| 日本一区二区免费在线视频| 欧美精品亚洲一区二区| 在线天堂中文资源库| www.精华液| 久久精品国产a三级三级三级| 亚洲av国产av综合av卡| av国产久精品久网站免费入址| kizo精华| 爱豆传媒免费全集在线观看| 婷婷成人精品国产| 母亲3免费完整高清在线观看| 国产免费视频播放在线视频| h视频一区二区三区| 久久精品久久久久久噜噜老黄| 国产精品99久久99久久久不卡| 亚洲成色77777| 天堂8中文在线网| 精品国产一区二区三区四区第35| 免费在线观看黄色视频的| 狂野欧美激情性bbbbbb| 大陆偷拍与自拍| 久久国产精品人妻蜜桃| 97在线人人人人妻| 国产成人影院久久av| www日本在线高清视频| 女人久久www免费人成看片| 欧美另类一区| 亚洲欧美色中文字幕在线| 日本色播在线视频| 狂野欧美激情性bbbbbb| 天天添夜夜摸| 黄片播放在线免费| 亚洲国产看品久久| 国产一区二区在线观看av| 亚洲精品中文字幕在线视频| 久久免费观看电影| 夜夜骑夜夜射夜夜干| 亚洲国产日韩一区二区| √禁漫天堂资源中文www| 精品人妻1区二区| 男人操女人黄网站| 国产精品一区二区精品视频观看| 老司机影院毛片| 免费在线观看日本一区| 国产精品麻豆人妻色哟哟久久| 69精品国产乱码久久久| 亚洲欧美激情在线| 国产伦人伦偷精品视频| 日日爽夜夜爽网站| 久久av网站| 99国产综合亚洲精品| 青青草视频在线视频观看| 国产一区有黄有色的免费视频| 一区在线观看完整版| 精品少妇一区二区三区视频日本电影| 欧美激情高清一区二区三区| 啦啦啦在线免费观看视频4| av视频免费观看在线观看| 一本色道久久久久久精品综合| 国产高清视频在线播放一区 | 麻豆国产av国片精品| 国产视频一区二区在线看| 男女免费视频国产| 亚洲中文日韩欧美视频| 男女床上黄色一级片免费看| 丰满人妻熟妇乱又伦精品不卡| 一个人免费看片子| 女警被强在线播放| 免费看av在线观看网站| 婷婷色麻豆天堂久久| 久久久久网色| 欧美日韩综合久久久久久| 啦啦啦在线免费观看视频4| 午夜福利,免费看| 欧美精品av麻豆av| 青春草视频在线免费观看| 亚洲成国产人片在线观看| 国产在线一区二区三区精| 99香蕉大伊视频| 久久久精品区二区三区| 免费看十八禁软件| 手机成人av网站| 国产成人精品久久久久久| 王馨瑶露胸无遮挡在线观看| 亚洲国产日韩一区二区| 久久综合国产亚洲精品| 国产精品久久久人人做人人爽| 亚洲国产欧美在线一区| 好男人电影高清在线观看| 超色免费av| 水蜜桃什么品种好| 亚洲欧美精品自产自拍| 人妻人人澡人人爽人人| 午夜福利免费观看在线| 日日摸夜夜添夜夜爱| 99re6热这里在线精品视频| 丰满迷人的少妇在线观看| 国产av一区二区精品久久| 午夜久久久在线观看| 免费少妇av软件| 桃花免费在线播放| av在线app专区| 日韩制服骚丝袜av| 成年av动漫网址| 黄色片一级片一级黄色片| 亚洲精品国产区一区二| 久久性视频一级片| 热re99久久精品国产66热6| 嫁个100分男人电影在线观看 | 男的添女的下面高潮视频| 欧美国产精品va在线观看不卡| 精品国产一区二区三区久久久樱花| 午夜日韩欧美国产| 女人久久www免费人成看片| 高清不卡的av网站| 老汉色av国产亚洲站长工具| 国产精品一区二区免费欧美 | 老汉色av国产亚洲站长工具| 在线观看国产h片| 人妻 亚洲 视频| www.精华液| 午夜福利乱码中文字幕| 777米奇影视久久| 国产日韩欧美在线精品| 国产精品人妻久久久影院| 亚洲第一av免费看| 一本—道久久a久久精品蜜桃钙片| 亚洲 国产 在线| 18禁黄网站禁片午夜丰满| 日韩中文字幕欧美一区二区 | 在线观看免费高清a一片| 亚洲第一青青草原| 桃花免费在线播放| 国产无遮挡羞羞视频在线观看| 如日韩欧美国产精品一区二区三区| 啦啦啦啦在线视频资源| 一区二区三区精品91| 国产亚洲一区二区精品| 丝袜人妻中文字幕| 亚洲中文字幕日韩| 国产一区二区三区av在线| 一边摸一边做爽爽视频免费| 欧美亚洲 丝袜 人妻 在线| 亚洲三区欧美一区| 久久性视频一级片| 亚洲精品中文字幕在线视频| 婷婷色麻豆天堂久久| 97人妻天天添夜夜摸| 欧美精品人与动牲交sv欧美| 手机成人av网站| 亚洲七黄色美女视频| 在现免费观看毛片| 国产亚洲精品久久久久5区| 精品久久久精品久久久| 女人久久www免费人成看片| 免费在线观看日本一区| 99国产精品免费福利视频| 制服人妻中文乱码| kizo精华| 欧美大码av| 国产伦理片在线播放av一区| 伦理电影免费视频| 两个人免费观看高清视频| 午夜久久久在线观看| 成年动漫av网址| 一本色道久久久久久精品综合| 丁香六月天网| 狂野欧美激情性xxxx| 国产精品麻豆人妻色哟哟久久| 十分钟在线观看高清视频www| 丁香六月天网| 亚洲成国产人片在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 欧美黄色淫秽网站| 亚洲第一av免费看| 又粗又硬又长又爽又黄的视频| 久久国产精品男人的天堂亚洲| 啦啦啦在线观看免费高清www| 国产精品香港三级国产av潘金莲 | 国产精品麻豆人妻色哟哟久久| 首页视频小说图片口味搜索 | 亚洲国产av新网站| 久久人人97超碰香蕉20202| 少妇人妻 视频| 涩涩av久久男人的天堂| 各种免费的搞黄视频| 日韩视频在线欧美| 欧美另类一区| 国产91精品成人一区二区三区 | 亚洲国产精品国产精品| 亚洲av男天堂| 国产日韩欧美在线精品| 欧美国产精品一级二级三级| kizo精华| 日日摸夜夜添夜夜爱| 美女脱内裤让男人舔精品视频| 老司机亚洲免费影院| 麻豆av在线久日| 亚洲欧美激情在线| 国产极品粉嫩免费观看在线| 亚洲成人免费av在线播放| 欧美日韩亚洲国产一区二区在线观看 | 国产精品成人在线| 精品国产超薄肉色丝袜足j| 国产成人av教育| 丁香六月天网| 国产精品 欧美亚洲| 男女床上黄色一级片免费看| 久久国产亚洲av麻豆专区| 51午夜福利影视在线观看| 亚洲欧美日韩另类电影网站| 久9热在线精品视频| 国产亚洲精品第一综合不卡| 一级片'在线观看视频| 国产伦理片在线播放av一区| 午夜福利视频精品| 男女免费视频国产| 亚洲欧美激情在线| bbb黄色大片| 日韩 欧美 亚洲 中文字幕| 伦理电影免费视频| 19禁男女啪啪无遮挡网站| 久久精品国产综合久久久| 亚洲av日韩在线播放| 国产精品一二三区在线看| bbb黄色大片| 日韩 欧美 亚洲 中文字幕|