• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Preliminary Investigation of Copper Joints Soldered with Sn58Bi

    2022-02-12 06:41:40AmaresSinghTeowSinnKhaiRajkumarDurairajandAmerAhmedQassemSaleh

    Amares Singh, Teow Sinn Khai, Rajkumar Durairaj and Amer Ahmed Qassem Saleh

    (1. Center for Advanced Materials Research and Manufacturing Processes, SEGi University, Petaling Jaya 47810, Selangor, Malaysia;2. Lee Kong Chian Faculty of Engineering and Science, University Tunku Abdul Rahman, Kajang 43000, Selangor, Malaysia)

    Abstract: In recent years, intensive studies have been carried out to find an alternative for Tin (Sn)-Lead (Pb) solder alloys with increasing demand over lower temperature solder alloys in current electronic packaging industry. High temperature operational solder alloys seem to produce drawback to other components on the printed circuit board (PCB). Low melting temperature Sn58Bi substrate as a potential replacement was investigated in this paper based on the melting properties, wettability, and shear strength. The Sn58Bi was soldered at a temperature below 200 ℃ on the Cu substrate, and the shear strength and contact angle were calculated. A peak temperature (melting temperature, TM) of 144.83 ℃ was identified. Single lap joint method was performed at a strain rate of 0.1 mm/min and an average shear strength of 23.4 MPa was found from three samples. The contact angle (wettability) was calculated to study the solder joint behaviour at reflow temperature of 170 ℃. The contact angle of the Sn58Bi was found to be 32.4 ° and considered to be desired value since the angle is less than 50 °. The low temperature soldering provides a preliminary result to allow further application on the real PCB.

    Keywords: SnBi solder; low temperature; shear strength; contact angle

    0 Introduction

    In microelectronics industries, the most commonly used solder alloy is Sn37Pb with melting temperature of 183 ℃. Due to its desirable properties, this solder alloy is used as the medium of connection within the printed circuit board (PCB). This usage of lead (Pb) solder as the attaching die accounts for almost 90% in the flip chip connection, while the other 10% usage involves Pb-free solders such as the Au/Sn or In/Sn solders. These solders are used in the flip chip to connect between the silicon (Si) chip and an FR4 substrate[1-2]. However, Pb usage has been restricted due to health and environmental concerns. The European Union (EU) has taken legal action on banning the implementation of Pb in solder alloy[3]. In soldering process, efficiency of a solder alloy is affected by its alloying process, where solder alloys such as SnPb, SnBi, and SnAgCu are a mixture of one or more elements to the base materials, Tin (Sn). In alloying process, alloying elements will undergo a diffusion process and form intermetallic compounds or serve as solid solution in the solder alloy. This alloying process was found to boost the performance of a solder alloy by enhancing some important properties by reducing the melting temperature (e.g., SnPb, SnBi), producing higher shear strength (e.g., SnZnBi), and enabling long term reliability (e.g., SnAgCu) due to excellent joint property[4].

    Currently, problem concerning high temperature soldering seems to damage other components during solder pasting. In addition, thermal distortion occurs with differences of temperature between the solder and substrate[5]. Higher process/soldering temperature causes negative impact on components performance such as thermal damage on the chip and PCB which makes them difficult to integrate within conventional processing devices[6]. This leads to unnecessary maintenance cost which is not desired by electronic industries[7]. However, sacrificing high melting soldering could be non-beneficial regarding formation of unreliable microstructure that consequently deteriorates the mechanical strength. Furthermore, mechanical properties of solder alloy could be a decisive factor as the shear strength is dependent on the solder joint which is a factor influenced by the melting temperature. Much research was performed to find a replacement for SnPb solder alloys by providing concise analysis using different solder alloys and the electronic industry still has concern on making the change. Solder alloys like Sn3.5Ag[8], Sn0.1Cu[9], and Sn9Zn[10]have been developed as potential candidates to replace the SnPb solder, but their properties negatively impact the soldering process[11]. For a solder to be applicable in the industry, it should have better or similar physical and mechanical properties corresponding to a eutectic SnPb solder. In other words, SnPb acts as a benchmark. Table 1 shows some detailed data for SnPb solder alloy. This research will provide a preliminary result based on shear strength, wettability, and melting properties of low temperature Sn58Bi soldered with Cu to form a soldered joint with low consumption of mass. The data obtained will reduce the research gap involving the study of low melting temperature solder alloys.

    Table 1 Properties of Sn, Pb, and Sn37Pb[12-13]

    1 Experimental Procedure

    The raw materials of 99.9% Sn and 99.9% Bi (Alfa Aesar) were weighted by a total composition of 20 g to prepare the Sn58Bi (wt. %). Mass of 8.4 g and 11.6 g for Sn and Bi respectively was weighted according to the eutectic percentage. Both materials were mixed together and melted in a vacuum furnace at 600 ℃ for an hour of soaking time to ensure occurrence of homogeneous mixture. Subsequently, the mixture produced SnBi solder alloy and was let to solidify under room temperature. Melting temperature was analyzed by using differentials scanning calorimetry (DSC) with heat flow maintained at 20 ℃/min from 100 ℃ to 300 ℃. Nitrogen gas was used as the atmospheric medium for the tests in order to avoid contamination and external activity on the solder alloy during the process. The DSC curve is represented by the heat flow (y-axis) and temperature (x-axis) generated that relate to the energy released or absorbed at a certain temperature, which shows the melting properties of a solder alloy.

    The SnBi solder alloy was made into a pellet shape of 5 mm × 1 mm. The dimensions of the pellets were kept small in order to comply with the miniaturization of devices. To investigate the contact angle and perform shear strength test, copper (Cu) substrates were used. The substrates were initially cleaned using ethanol and distilled water. The soldering of SnBi solder to Cu plates was done with the aid of ZnCl flux to reduce the oxidation. The soldering temperature was maintained at 170 ℃ and the time was set for 30 s to tally with the standard soldering procedure implemented in industry. The shear test specimens were prepared corresponding to the single shear lap joint method as shown in Fig.1(a) and was inserted inside a vacuum furnace for soldering process. This method allows proper soldering without exposing the specimen to the room atmosphere. After soldering, the samples were cleaned for 10 min using an ultrasonic machine with ethanol to remove dirt and debris. Five samples from each solder alloy were tested using the Universal Testing Machine (Instron 5582Q4970) as shown in Fig.1(b). In the analysis of the shear strength test, the maximum shear strength (MPa) and the maximum load (kN) at break were calculated to discuss the reliability of the solder joint. The crosshead speed of 1.3 mm/min was used to replicate the slow failure that usually occurs in the actual electronic assemblies. This is also the recommended speed by the ASTMD1002 standard. These mounted samples were cross-sectioned as shown in Fig.1(c) and the contact angles as shown in Fig.1(d) were measured using the VIS Pro software incorporated within the optical microscope.

    Fig.1 Specimens for shear test and wettability test

    2 Results and Discussion

    2.1 Shear Strength

    The shear strengths of Sn58Bi are shown in Table 2, and the average soldered area is average length times width. The average shear strength was 23.4 MPa calculated from the three tested specimens. This shear strength is considered medium-to-high shear strength in electronic industry. The shear strength was calculated using the shear strength formula:

    Table 2 Shear strength test results

    whereFis the load at break point andAis the area of the joint. According to Ref. [14], a higher surface area per unit volume is needed to improve the overall performance of specimens in term of shear strength. The shear strengths of Sn90Pb and Sn37Pb are 20.24 MPa and 23.80 MPa, respectively. In another research, Sn9Zn solder joint shear strength was reported to be ranging from 26.0 MPa to 27.5 MPa[15], which falls in agreement with sample A of the shear specimen in this research. The average shear strength result in this research can be categorized as compatible with the Pb solder alloy and even with some other Pb-free solder alloys. The increment observed in shear strength values are due to the presence of Bismuth (Bi) that prevented the diffusion process between Sn and Cu thus forming thin Intermetallic Compound (IMC) layers[16]. Without presence of Bi, the vast diffusion of Sn toward Cu will produce thick IMC layers between solder and substrate, which subsequently leads to crack. The fracture surface of each samples was also observed as shown in Fig.2. The fracture in sample A reveals brittle fracture morphology, whereas the fracture surface of the sample B and C showed a mixed brittle and ductile with presences of voids. This finding shows that IMC layer in between SnBi solder and Cu substrate was thin enough that the fracture surface was flat and even. Meanwhile, small voids were observed in both sample B and C, which clarifies that the gap or vacancy was left by the un-diffused Sn towards Cu because Bi was present. Such findings commonly exist in the joint between solder and substrate[17-18]. This research presents a novel idea on the types of fracture in the SnBi solder joint at lower soldering temperature. Furthermore, at low temperature, the reactivity of elements will be reduced to avoid enormous diffusion rate between Sn and Cu, and the clarification can be obtained with the aid of SnBi phase diagram[19].

    Fig.2 Fracture surface of all three shear specimens

    2.2 Wettability

    The contact angle was taken as a parameter to study the wettability of Sn58Bi solder on Cu substrate. Contact angle measurement is one of the factors that could be used to evaluate the wettability of a solder alloy apart from surface area, wetting time, wetting force, and surface tension. Based on three readings, an average contact angle of 32.4° was tabulated in Table 3. In Ref. [20], the contact angle of Sn3.0Ag0.7Cu on a bare Cu provided an average contact angle of 39°. In fact, many other studies show the range of contact angle is between 40° and 50°[7]. Low melting point of Sn58Bi in this study promoted easier melting of solder on the substrate, which provides wider spreading area and lower contact angle. Another reason for low contact angle is the presence of Bi that improves interfacial tension by reducing the surface tension. Similar statement was also made by Refs. [21-22]. By referencing various studies and literature, the range of a contact angle below 40° could be categorised as decent wettability properties. In addition, improvement of wetting properties will enhance the mechanical properties of this solder as well. Low contact angles will improve the shear strength capabilities of solder alloy by a huge margin, therefore the importance of obtaining low contact angle is crucial. This is reported in an early study done by Mei et al.[23]in 1996.

    Table 3 Contact angle measurement of Sn58Bi solder

    2.3 Thermal Properties

    Another important property that should be thoroughly investigated is thermal properties of the Sn58Bi solder alloy. It is one of the main concern in this research as it focuses on obtaining solder alloys with low melting temperature. The thermal properties focus on three main aspects, i.e., melting (TM), solidus (TS), and liquidus temperature (TL), and each represents its own definition. The peak temperature is the temperature when the solder is in mixture of solid and liquid phase (considered melting temperature), the solidus temperature is the point of temperature when the solder starts to melt, and the liquidus temperature is the point where the solder is in liquid form[24]. According to Ref. [25], low melting solder alloys are solder alloys with temperature less than 250 ℃.

    The result in Fig.3 shows an exothermic peak with temperature ofTM=144.83 ℃,TS= 142.30 ℃, andTL= 146.35 ℃ respectively for Sn58Bi solder alloy. The result could be concluded that the melting temperature of Sn58Bi in this research is below the eutectic temperature 139 ℃[26]. Nevertheless, the material composition of 42 wt.% Sn and 58 wt.% Bi used in this research will correspond to phases of β-Sn and Bi at this melting point. This finding is important to show that Sn and Bi do not react with each other and are presented as discrete phases at this temperature. A similar finding was pointed out in the research of Ref. [27] with these two phases present. Meanwhile, the solidus and liquidus temperature are related to microstructure formation[28]. The difference between these two temperatures are called pasty range,TR, whereTR=TL-TSand was calculated to be 4.05 ℃. A narrow pasty range points out that the solidification occurs quickly which contributes to finer grain size formation[29-30]. In this research, it is predicted to provide similar beneficial impact to the grain refinement.

    Fig.3 Thermal profile of Sn52Bi

    3 Conclusions

    This research provides a preliminary result comprising shear strength, wettability (contact angle), and thermal properties that were obtained by using low temperature Sn58Bi solder alloy. Important conclusions drawn from this research are as follows:

    1)The Sn58Bi solder alloy possessed high shear strength averaging at 23.4 MPa, which well-matched that of the traditional Sn37Pb (23.8 MPa). The presence of Bi contributed to the high shear strength achieved.

    2)Mixture of fracture morphology on the surface of sample B and C with voids suggests the fracture occurred at the IMC layer rather than at the solder side, contributing to the higher shear strength obtained.

    3)Contact angle of 32.4° calculated by the solder joint falls in the category of low contact angle solders. This result is supported by high shear strength values. Presence of Bi are predicted to block a vast diffusion process between Sn and Cu that would have thicken the IMC layer and increased the contact angle.

    4)Melting temperature of 144.83 ℃ confirms that the Sn58Bi is a low melting temperature solder. Accompanied with lower pasty range of 4.05 ℃, the prediction of finer microstructure could be made since the pasty range relates to the solidification of the grains within a soldered joint. Additionally, low temperature soldering can be done by using Sn58Bi solder alloy as the reflow temperature will be less than 200 ℃, which at the same time protects other components in the flip chip from damage.

    Taking these results into consideration, the Sn58Bi solder alloy could be recommended as a potential replacement candidate or as an alternative in the electronics industries. However, further testing in real time application should be carried out to validate and justify the beneficial effect of the Sn58Bi solder alloy. Yet, this research points out that the initial results could be a guideline to be followed. This is important as the current electronic industry is advancing towards low melting point temperature application.

    夜夜夜夜夜久久久久| 男女下面插进去视频免费观看| 欧美激情久久久久久爽电影 | 亚洲三区欧美一区| 91成年电影在线观看| 国精品久久久久久国模美| 日韩视频一区二区在线观看| 成人国产一区最新在线观看| 在线十欧美十亚洲十日本专区| e午夜精品久久久久久久| 性高湖久久久久久久久免费观看| 亚洲三区欧美一区| 国产区一区二久久| 满18在线观看网站| 成年动漫av网址| 久久精品亚洲熟妇少妇任你| 性少妇av在线| 男人操女人黄网站| av有码第一页| 在线亚洲精品国产二区图片欧美| 在线观看舔阴道视频| 久久香蕉激情| 精品国产乱码久久久久久男人| 国产又爽黄色视频| 欧美性长视频在线观看| 久久久国产一区二区| 最黄视频免费看| 51午夜福利影视在线观看| 日本黄色视频三级网站网址 | 男女下面插进去视频免费观看| 国产主播在线观看一区二区| 丝袜在线中文字幕| 亚洲一区中文字幕在线| 国产精品一区二区免费欧美| 亚洲午夜精品一区,二区,三区| 男女床上黄色一级片免费看| 国产精品香港三级国产av潘金莲| 18禁观看日本| 午夜福利影视在线免费观看| 国产人伦9x9x在线观看| 欧美日韩黄片免| 国产男女超爽视频在线观看| 大片免费播放器 马上看| 精品午夜福利视频在线观看一区 | 国产亚洲av高清不卡| 欧美成人免费av一区二区三区 | 亚洲熟女毛片儿| 中文字幕最新亚洲高清| 如日韩欧美国产精品一区二区三区| 十八禁网站免费在线| 两个人免费观看高清视频| 妹子高潮喷水视频| 大片免费播放器 马上看| 精品午夜福利视频在线观看一区 | 欧美乱码精品一区二区三区| 午夜91福利影院| 成人精品一区二区免费| www.精华液| 久久国产精品人妻蜜桃| 亚洲欧美日韩高清在线视频 | 啦啦啦免费观看视频1| 欧美日韩亚洲高清精品| 亚洲专区字幕在线| 99精品在免费线老司机午夜| 黄色丝袜av网址大全| 精品熟女少妇八av免费久了| 精品国产国语对白av| 成人特级黄色片久久久久久久 | 亚洲一区二区三区欧美精品| 国产精品 国内视频| 波多野结衣一区麻豆| 亚洲伊人久久精品综合| 麻豆av在线久日| 免费看十八禁软件| 亚洲人成77777在线视频| 国产主播在线观看一区二区| 精品亚洲成a人片在线观看| 免费看a级黄色片| 精品少妇一区二区三区视频日本电影| 不卡av一区二区三区| 天天躁日日躁夜夜躁夜夜| 国产高清国产精品国产三级| 亚洲精品乱久久久久久| 69精品国产乱码久久久| 老鸭窝网址在线观看| 精品福利永久在线观看| 国产主播在线观看一区二区| 每晚都被弄得嗷嗷叫到高潮| 999精品在线视频| 十八禁高潮呻吟视频| 日韩成人在线观看一区二区三区| 自线自在国产av| 男人舔女人的私密视频| 老熟妇仑乱视频hdxx| 五月天丁香电影| 久久青草综合色| 亚洲情色 制服丝袜| 777米奇影视久久| 一级毛片电影观看| 国产高清videossex| 十分钟在线观看高清视频www| 国产精品 国内视频| 国产精品.久久久| 日韩精品免费视频一区二区三区| 日韩欧美国产一区二区入口| 久久久精品区二区三区| 久久国产精品影院| 在线十欧美十亚洲十日本专区| 国产在视频线精品| 亚洲情色 制服丝袜| 夫妻午夜视频| 人妻久久中文字幕网| 国产欧美日韩一区二区精品| 最近最新免费中文字幕在线| 久久免费观看电影| 男女下面插进去视频免费观看| 国产成人精品在线电影| 交换朋友夫妻互换小说| 日韩三级视频一区二区三区| 女人久久www免费人成看片| 国产伦人伦偷精品视频| 青草久久国产| 久久香蕉激情| 丰满人妻熟妇乱又伦精品不卡| 亚洲欧洲精品一区二区精品久久久| 最黄视频免费看| 欧美亚洲 丝袜 人妻 在线| 国产成人一区二区三区免费视频网站| 夫妻午夜视频| 午夜91福利影院| 蜜桃国产av成人99| 丁香六月天网| 日韩精品免费视频一区二区三区| kizo精华| 人人妻人人爽人人添夜夜欢视频| 美女高潮到喷水免费观看| av超薄肉色丝袜交足视频| 欧美日韩一级在线毛片| 菩萨蛮人人尽说江南好唐韦庄| 人人澡人人妻人| 少妇 在线观看| 少妇精品久久久久久久| 黄片小视频在线播放| 90打野战视频偷拍视频| 亚洲av第一区精品v没综合| 亚洲精品中文字幕一二三四区 | 人人妻人人添人人爽欧美一区卜| 午夜福利视频精品| 777久久人妻少妇嫩草av网站| 午夜免费成人在线视频| 露出奶头的视频| 麻豆国产av国片精品| 自拍欧美九色日韩亚洲蝌蚪91| 日日摸夜夜添夜夜添小说| 91九色精品人成在线观看| 曰老女人黄片| 天天躁狠狠躁夜夜躁狠狠躁| 精品国产一区二区三区四区第35| 欧美激情 高清一区二区三区| 19禁男女啪啪无遮挡网站| 老司机影院毛片| 叶爱在线成人免费视频播放| 国产男女超爽视频在线观看| 男女下面插进去视频免费观看| 热99re8久久精品国产| 精品少妇久久久久久888优播| 亚洲熟女毛片儿| 国产精品国产av在线观看| 亚洲欧美一区二区三区黑人| 69精品国产乱码久久久| 色婷婷av一区二区三区视频| 我的亚洲天堂| 97人妻天天添夜夜摸| 999精品在线视频| 精品人妻在线不人妻| 国产精品自产拍在线观看55亚洲 | 宅男免费午夜| 国产精品一区二区在线观看99| 男女下面插进去视频免费观看| 又大又爽又粗| 操出白浆在线播放| 久久久精品94久久精品| 黑人欧美特级aaaaaa片| 黄色毛片三级朝国网站| 亚洲成人手机| 成年版毛片免费区| 黄网站色视频无遮挡免费观看| 岛国在线观看网站| 老司机靠b影院| 国产在线观看jvid| 国产在线观看jvid| 欧美黄色片欧美黄色片| 男女午夜视频在线观看| 久久亚洲精品不卡| 国产欧美亚洲国产| 极品教师在线免费播放| 国产男女超爽视频在线观看| 久久精品人人爽人人爽视色| 十八禁网站免费在线| 久久精品人人爽人人爽视色| 欧美日韩中文字幕国产精品一区二区三区 | av有码第一页| 精品久久久久久久毛片微露脸| 国产av精品麻豆| 国产精品自产拍在线观看55亚洲 | 在线观看免费视频网站a站| 日韩视频在线欧美| 午夜福利乱码中文字幕| 日韩三级视频一区二区三区| 欧美黑人欧美精品刺激| 叶爱在线成人免费视频播放| a级毛片在线看网站| av福利片在线| av网站在线播放免费| 亚洲精品国产色婷婷电影| 一级毛片精品| 手机成人av网站| 一区二区三区激情视频| 欧美+亚洲+日韩+国产| 欧美av亚洲av综合av国产av| 久久国产精品大桥未久av| 如日韩欧美国产精品一区二区三区| 日本wwww免费看| 国产高清videossex| 国产精品电影一区二区三区 | 国产区一区二久久| 国产aⅴ精品一区二区三区波| 高清欧美精品videossex| 亚洲欧美激情在线| 在线观看一区二区三区激情| 午夜福利一区二区在线看| 少妇精品久久久久久久| 国产一区二区三区综合在线观看| 极品教师在线免费播放| 欧美乱妇无乱码| 亚洲国产中文字幕在线视频| 青青草视频在线视频观看| 在线观看舔阴道视频| 成年人午夜在线观看视频| 久热爱精品视频在线9| 久久久欧美国产精品| 大型av网站在线播放| 三级毛片av免费| 国产精品一区二区免费欧美| 50天的宝宝边吃奶边哭怎么回事| 久久精品国产综合久久久| 欧美日韩精品网址| 欧美成人午夜精品| 丁香欧美五月| 一个人免费在线观看的高清视频| 1024视频免费在线观看| 亚洲国产av影院在线观看| 国产亚洲欧美精品永久| 国产精品欧美亚洲77777| 在线观看免费高清a一片| 色老头精品视频在线观看| 999久久久国产精品视频| 在线永久观看黄色视频| 免费高清在线观看日韩| 久久久久久久久久久久大奶| 久久久久久久久久久久大奶| 99热国产这里只有精品6| 一本色道久久久久久精品综合| 最近最新中文字幕大全电影3 | 在线观看舔阴道视频| 国产精品98久久久久久宅男小说| 免费在线观看影片大全网站| 亚洲国产看品久久| 日本精品一区二区三区蜜桃| 亚洲av日韩精品久久久久久密| 国产黄色免费在线视频| av又黄又爽大尺度在线免费看| 一级毛片电影观看| 亚洲欧美一区二区三区久久| 建设人人有责人人尽责人人享有的| 999久久久精品免费观看国产| 亚洲精品久久成人aⅴ小说| 欧美激情高清一区二区三区| 黄片大片在线免费观看| 国产男女内射视频| 色综合婷婷激情| 999精品在线视频| 免费黄频网站在线观看国产| 欧美日韩中文字幕国产精品一区二区三区 | 狠狠狠狠99中文字幕| 精品免费久久久久久久清纯 | 午夜福利乱码中文字幕| 国产精品九九99| 国产精品 国内视频| 精品欧美一区二区三区在线| 亚洲色图综合在线观看| 在线观看66精品国产| 在线观看一区二区三区激情| 国产欧美日韩一区二区三| 丝袜美腿诱惑在线| 国产色视频综合| 国产精品 欧美亚洲| 丝袜美足系列| 日韩中文字幕欧美一区二区| 久久99一区二区三区| 天天添夜夜摸| 免费在线观看黄色视频的| 午夜激情久久久久久久| 9191精品国产免费久久| 韩国精品一区二区三区| 国产欧美日韩精品亚洲av| 夜夜爽天天搞| 2018国产大陆天天弄谢| 女同久久另类99精品国产91| 大陆偷拍与自拍| 色婷婷av一区二区三区视频| 日韩免费高清中文字幕av| 99精品欧美一区二区三区四区| 成人国产av品久久久| www日本在线高清视频| 午夜福利视频在线观看免费| 成人免费观看视频高清| 亚洲人成电影免费在线| 精品一区二区三区av网在线观看 | 国产在线一区二区三区精| 亚洲男人天堂网一区| 亚洲欧美一区二区三区黑人| 99久久精品国产亚洲精品| 国产av国产精品国产| 国产成人欧美| 午夜福利在线免费观看网站| 日本撒尿小便嘘嘘汇集6| av国产精品久久久久影院| 老熟妇乱子伦视频在线观看| 日本a在线网址| 国产精品美女特级片免费视频播放器 | 变态另类成人亚洲欧美熟女 | 午夜福利视频在线观看免费| 成人免费观看视频高清| 免费在线观看黄色视频的| 看免费av毛片| 每晚都被弄得嗷嗷叫到高潮| 宅男免费午夜| 日韩人妻精品一区2区三区| aaaaa片日本免费| 看免费av毛片| 婷婷成人精品国产| 亚洲av日韩精品久久久久久密| 久久九九热精品免费| 成人18禁在线播放| 咕卡用的链子| 999久久久国产精品视频| 深夜精品福利| 最黄视频免费看| 高潮久久久久久久久久久不卡| 亚洲专区国产一区二区| 国产日韩欧美在线精品| 亚洲性夜色夜夜综合| 最黄视频免费看| 看免费av毛片| 12—13女人毛片做爰片一| 国产一区二区激情短视频| 男人操女人黄网站| 亚洲精品av麻豆狂野| 久久久久久人人人人人| 久久av网站| 青草久久国产| 国产99久久九九免费精品| 亚洲五月色婷婷综合| 一二三四社区在线视频社区8| 国产精品 国内视频| 欧美另类亚洲清纯唯美| www日本在线高清视频| h视频一区二区三区| 天天操日日干夜夜撸| 一级片'在线观看视频| 亚洲自偷自拍图片 自拍| 丁香六月天网| 99国产综合亚洲精品| 中文字幕人妻熟女乱码| 国产av国产精品国产| 伊人久久大香线蕉亚洲五| 亚洲av第一区精品v没综合| 日韩中文字幕视频在线看片| 亚洲自偷自拍图片 自拍| 在线观看人妻少妇| 五月开心婷婷网| 最黄视频免费看| 窝窝影院91人妻| 精品国产亚洲在线| 亚洲熟妇熟女久久| 最黄视频免费看| 久久人妻av系列| 欧美 日韩 精品 国产| 国产一区二区激情短视频| 免费人妻精品一区二区三区视频| av天堂久久9| 欧美日韩黄片免| 99精国产麻豆久久婷婷| 丰满少妇做爰视频| 悠悠久久av| 日韩视频一区二区在线观看| 精品久久蜜臀av无| 亚洲熟女毛片儿| 久久久欧美国产精品| 久久性视频一级片| 黄色毛片三级朝国网站| 女人被躁到高潮嗷嗷叫费观| 人人妻人人澡人人爽人人夜夜| 成年女人毛片免费观看观看9 | 亚洲精品国产精品久久久不卡| 超色免费av| 亚洲色图综合在线观看| 欧美精品高潮呻吟av久久| 欧美精品人与动牲交sv欧美| 国产精品欧美亚洲77777| 一区二区三区激情视频| 91精品三级在线观看| 一区在线观看完整版| 精品久久久精品久久久| 一区二区日韩欧美中文字幕| 国产精品偷伦视频观看了| 9191精品国产免费久久| 国产xxxxx性猛交| 男人操女人黄网站| 亚洲国产欧美网| avwww免费| 欧美人与性动交α欧美精品济南到| 亚洲 欧美一区二区三区| av天堂在线播放| 男女下面插进去视频免费观看| 国产成人免费观看mmmm| 亚洲av成人一区二区三| 巨乳人妻的诱惑在线观看| 久久精品亚洲av国产电影网| 男男h啪啪无遮挡| 亚洲国产毛片av蜜桃av| 久久精品成人免费网站| 丝袜美足系列| 男女无遮挡免费网站观看| 成人手机av| 精品卡一卡二卡四卡免费| 国产不卡一卡二| 两性夫妻黄色片| 午夜福利视频精品| 一区福利在线观看| 69精品国产乱码久久久| 欧美激情久久久久久爽电影 | 久久精品成人免费网站| 免费在线观看日本一区| 国产av一区二区精品久久| 成人国语在线视频| 欧美成人午夜精品| videosex国产| 久久久久精品国产欧美久久久| 纯流量卡能插随身wifi吗| av网站免费在线观看视频| 亚洲 欧美一区二区三区| 天天躁狠狠躁夜夜躁狠狠躁| 91国产中文字幕| 香蕉久久夜色| 亚洲男人天堂网一区| 大码成人一级视频| 欧美午夜高清在线| 成年版毛片免费区| 国产高清激情床上av| 99久久国产精品久久久| 久久久久久免费高清国产稀缺| 欧美日韩亚洲综合一区二区三区_| 人人妻人人添人人爽欧美一区卜| 久久国产精品男人的天堂亚洲| 免费人妻精品一区二区三区视频| 丰满少妇做爰视频| 亚洲第一青青草原| 大片电影免费在线观看免费| 大型黄色视频在线免费观看| 中国美女看黄片| 色老头精品视频在线观看| 亚洲av日韩精品久久久久久密| 亚洲成国产人片在线观看| 亚洲成人免费电影在线观看| 大型av网站在线播放| 脱女人内裤的视频| avwww免费| 亚洲伊人久久精品综合| 亚洲熟女毛片儿| cao死你这个sao货| 亚洲午夜理论影院| 亚洲,欧美精品.| 久久久久视频综合| 日韩免费av在线播放| 亚洲欧美一区二区三区黑人| 久久国产亚洲av麻豆专区| kizo精华| 色综合欧美亚洲国产小说| 97在线人人人人妻| 麻豆国产av国片精品| 黄色成人免费大全| 中文字幕人妻丝袜制服| 久久99热这里只频精品6学生| 美女午夜性视频免费| bbb黄色大片| 黄网站色视频无遮挡免费观看| 天堂中文最新版在线下载| 色综合婷婷激情| 国产又爽黄色视频| 国产成人一区二区三区免费视频网站| 日韩一区二区三区影片| 欧美日韩亚洲综合一区二区三区_| 色视频在线一区二区三区| 在线永久观看黄色视频| 成人国语在线视频| www.自偷自拍.com| 国产精品成人在线| 女同久久另类99精品国产91| 电影成人av| 久久精品亚洲熟妇少妇任你| 国产在线免费精品| 最新美女视频免费是黄的| 亚洲国产看品久久| 久久久久久亚洲精品国产蜜桃av| 亚洲国产欧美日韩在线播放| 免费看十八禁软件| 手机成人av网站| 69av精品久久久久久 | 亚洲国产看品久久| 亚洲综合色网址| 国产av一区二区精品久久| 成人影院久久| 十八禁网站网址无遮挡| 亚洲精品av麻豆狂野| 99re在线观看精品视频| 一本色道久久久久久精品综合| 日韩免费av在线播放| 男人操女人黄网站| 每晚都被弄得嗷嗷叫到高潮| 成人手机av| 999精品在线视频| 中文欧美无线码| 黄色 视频免费看| av福利片在线| 亚洲伊人色综图| 黄色片一级片一级黄色片| 午夜精品国产一区二区电影| 亚洲熟女精品中文字幕| 亚洲三区欧美一区| 午夜福利在线观看吧| 一边摸一边抽搐一进一出视频| 丝袜美腿诱惑在线| 搡老熟女国产l中国老女人| 亚洲男人天堂网一区| 搡老乐熟女国产| 欧美黑人精品巨大| 亚洲国产中文字幕在线视频| 男女无遮挡免费网站观看| 婷婷丁香在线五月| 国产精品麻豆人妻色哟哟久久| 成年女人毛片免费观看观看9 | 亚洲三区欧美一区| 亚洲一卡2卡3卡4卡5卡精品中文| 动漫黄色视频在线观看| 汤姆久久久久久久影院中文字幕| 黑人巨大精品欧美一区二区mp4| 亚洲人成电影观看| 午夜激情av网站| 国产福利在线免费观看视频| 国产在视频线精品| 极品教师在线免费播放| 亚洲av成人一区二区三| 成人亚洲精品一区在线观看| 91老司机精品| 中文字幕人妻丝袜一区二区| 久久影院123| 他把我摸到了高潮在线观看 | 日韩欧美国产一区二区入口| 99热国产这里只有精品6| 午夜视频精品福利| 国产麻豆69| av天堂在线播放| 操美女的视频在线观看| 嫩草影视91久久| 日本一区二区免费在线视频| 日韩免费av在线播放| 日韩一卡2卡3卡4卡2021年| 精品亚洲成a人片在线观看| 狂野欧美激情性xxxx| 国产精品久久久av美女十八| 老司机福利观看| 国产高清激情床上av| 在线播放国产精品三级| 午夜福利一区二区在线看| 黄色丝袜av网址大全| 另类亚洲欧美激情| 国产精品 欧美亚洲| 欧美午夜高清在线| 国产精品一区二区在线不卡| 免费在线观看完整版高清| 一区在线观看完整版| 天天躁夜夜躁狠狠躁躁| 十分钟在线观看高清视频www| videos熟女内射| 婷婷丁香在线五月| 一进一出好大好爽视频| 亚洲情色 制服丝袜| 国产精品九九99| 一级毛片精品| 国产成人精品在线电影| 亚洲午夜理论影院| 中文字幕另类日韩欧美亚洲嫩草| 中文字幕精品免费在线观看视频| 日本a在线网址| 欧美日韩av久久| 亚洲人成电影观看| 热re99久久精品国产66热6| av福利片在线| 十八禁高潮呻吟视频| 大码成人一级视频| 在线永久观看黄色视频| 50天的宝宝边吃奶边哭怎么回事| 国产三级黄色录像|