• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Subgradient Extragradient Methods for Equilibrium Problems and Fixed Point Problems in Hilbert Space

    2022-02-12 06:40:58LuluYinandHongweiLiu

    Lulu Yin and Hongwei Liu

    (School of Mathematics and Statistics, Xidian University, Xi′an 710126, China)

    Abstract: Inspired by inertial methods and extragradient algorithms, two algorithms were proposed to investigate fixed point problem of quasinonexpansive mapping and pseudomonotone equilibrium problem in this study. In order to enhance the speed of the convergence and reduce computational cost, the algorithms used a new step size and a cutting hyperplane. The first algorithm was proved to be weak convergence, while the second algorithm used a modified version of Halpern iteration to obtain strong convergence. Finally, numerical experiments on several specific problems and comparisons with other algorithms verified the superiority of the proposed algorithms.

    Keywords: subgradient extragradient methods; inertial methods; pseudomonotone equilibrium problems; fixed point problems; Lipschitz-type condition

    0 Introduction

    (1)

    which is also called Ky Fan inequality[1]. Here, its disaggregation is denoted by EP(X,f).Interestingly, fixed point problem, Nash equilibrium problem, variational inequality, optimization problem, and many other models can be transformed into EP[2-4]. In recent years, numerous measures of seeking the approximate solution of problem (1) have been discussed[5-12].

    A common measure is extragradient method[7-8], which tackles two strongly convex programming models in every iteration. Evaluation of the subprograms of the algorithm may be extremely expensive for involute structure of bifunctions and/or feasible sets. In recent years, there is a vast amount of literature concerning the study and improvement of this algorithm, among which Refs. [9-13] are representative. To combat this drawback, Van Hieu[10]put forward an modified way to settle fixed point problem and equilibrium problem by using Halpern iteration method and subgradient extragradient, and established the strong convergence result. It is clear that the second strongly convex programming problems is performed in half space. Furthermore, to speed up the convergence of the algorithm, Rehman et al.[14]recently designed a new algorithm by applying the inertial technique[15-17], and obtained the weak convergence results under appropriate assumptions.

    Motivated and inspired by the several above-mentioned advantages in Refs.[10] and [14], this paper introduces two new algorithms to analyze fixed point problem with quasinonexpansive mapping and pseudomonotone equilibrium problem. Moreover, the weak convergence results of one algorithm and the strong convergence results of another algorithm were obtained. Among the two proposed algorithms, the new step size avoids Lipschitz constants of bifunction. The experimental results reflect the numerical behavior.

    The paper is structured as follows. Some preliminary information is reviewed in Section 1. Section 2 is the research of the convergence results. The similar application to variational inequalities is elaborated in Section 3. Eventually, two experiments of Section 4 show that the proposed algorithms possess perfect efficiency.

    1 Preliminaries

    In this paper, several notations and lemmas were introduced for later use. Stipulates+=max{0,s},s-=max{0,-s}, ?s∈R.Presume thata,b,c∈Handτ∈Rare known. Then

    ‖τb+(1-τ)c‖2=τ‖b‖2+(1-τ)‖c‖2-

    τ(1-τ)‖c-b‖2

    (2)

    2〈b-c,b-a〉=‖b-c‖2+‖a-b‖2-

    ‖c-a‖2

    (3)

    Evidently,the projectionPXpossesses the following feature:

    c=PXb? 〈b-c,a-c〉≤0, ?a∈X

    Definition1.1Bifunctionf:H×H→Ris

    ? Pseudomonotone inX:

    f(b,c)≥0 ?f(c,b)≤0, ?a,b∈X

    ? Lipschitz-type condition inX:

    Further, givenc∈Xand functionh:X→(-∞,∞], its subdifferential is described by

    ?h(c)={ξ∈H:h(b)-h(c)≥

    〈ξ,b-c〉, ?b∈X}

    and its normal cone ofXis

    NX(c)={η∈H∶〈η,b-c〉≤0,b∈X}

    Lemma1.1[18]Supposeh:X→(-∞,+∞] is subdifferentiable, lower hemicontinuous, and convex. Suppose that there is a point onXthat makeshcontinuous, orhis finite at some interior point onX.Thenc*=arg min{h(c):c∈X} is equivalent to 0∈?h(c*)+NX(c*).

    Definition1.2Fix (T)≠? andT:H→Hare known, then

    1)Tis known as quasi-nonexpansive:

    ?a∈H,b∈Fix(T),‖Ta-b‖≤‖a-b‖

    2)T-Iis known as demiclosed at zero:

    ?{cn}?H, s.t.cn?z,

    Tcn-cn→0 ?c∈Fix(T)

    The information of the proximal operator is recalled which is the basic tool for the proposed algorithm. Assume that a functionh:H→(-∞,∞] is lower hemicontinuous, proper, and convex. Givenλ>0 andc∈H, the proximal operator ofhis described as

    Then a crucial attribute of proximal operators is recommended.

    Lemma1.2[19]Letc∈H,b∈X, andλ>0.Then

    (4)

    Lemma1.3(Peter-Paul inequality) Givenε>0 anda1,a2∈R, the following property holds:

    (5)

    Lemma1.4(Opial) Given progression {cn}?H, supposecn?c.Then

    (6)

    Lemma1.5[16]Sequences {?n}, {αn}, and {ιn} in [0,+∞) satisfy

    Suppose that real numberαexists and has 0≤αn≤α<1, ?n∈N.Thus, the following can be obtained:

    2 Algorithms and Convergence Analysis

    Two methods are proposed and studied in this section. To prove the algorithm’s convergence, the following assumptions are proposed.

    Condition (A):

    (A1)fis pseudomonotone overX;

    (A2)f(z,·) has convexity and subdifferentiability overXfor anyz∈H;

    (A4)fhas Lipschitz-type condition overHwithl1,l2>0.

    Remark2.1It is explicit when Condition (A) is satisfied. The EP(f) of problem (1) is convex and closed[7, 10]. In addition, Fix(T)?His also convex and closed under the condition thatTis quasi-nonexpansive[21]. Moreover, the symbolΛ=EP(X,f)∩Fix(T) is taken for convenience.

    2.1 Weak Convergence

    First,inspired by the works of Ref.[14], the algorithm’s weak convergence is derived. In addition, the algorithm’s step size is specially selected, which makes it unnecessary for the algorithm to know Lipschitz constants in advance. The first algorithm has the following form:

    Algorithm2.1

    Step1Assume thatxn-1andxnare known. Compute

    wn=xn+αn(xn-xn-1)

    Step2Selectvn∈?2f(wn,yn) such that

    wn-λnvn-yn∈NX(yn)

    Compute

    where

    Tn={x∈H:〈wn-λnvn-yn,yn-x〉≥0}

    Step3Definexn+1=(1-βn)wn+βnTznand

    λn+1=

    Ifwn=yn=xn+1, then stop,wn∈Λ.

    Taken: =n+1 and revert to Step 1.

    Remark2.2It is easy to confirm the existence ofvnandX?Tnfrom Algorithm 2.1. Please refer to Ref.[22] for detailed proof.

    Remark2.3The existence of the parameterμin Algorithm 2.1 is necessary for the subsequent proof that the proposed algorithm is convergent.

    ProofWhen

    f(wn,zn)-f(wn,yn)-f(yn,zn)>0

    the Lipschitz condition offis engendered:

    Using the above inequality and induction, it is obvious that the following expression can be derived:

    Takingsn+1=λn+1-λn, definition of {λn} leads to

    (7)

    (8)

    Now, a lemma is introduced to pave the way for proof of convergence result.

    λn(f(yn,z)-f(yn,zn))≥

    〈wn-zn,z-zn〉, ?z∈Tn

    (9)

    (10)

    (11)

    Using the concept of the subdifferential,zn∈Tn?Handvn∈?2f(wn,yn), the following expression is derived:

    f(wn,zn)-f(wn,yn)≥〈vn,zn-yn〉

    (12)

    Owing to the given form ofTn, it is found that

    〈wn-λnvn-yn,zn-yn〉≤ 0

    Hence, there is

    λn(f(wn,zn)-f(wn,yn))≥〈yn-wn,yn-zn〉

    (13)

    Applying inequalities (11) and (13) yields

    2λn(f(wn,zn)-f(wn,yn)-f(yn,zn))≥2〈yn-

    (14)

    Through the representation ofλn, the following is achieved:

    (15)

    Lemma2.3Algorithm 2.1 formulates progressions {xn}, {wn}, and {yn}.Suppose

    If the sequence {xnk} tox″∈His weakly convergent, thenx″∈Λ.

    ProofApparently, there iswnk?x″,ynk?x″,znk?x″, andx″∈X.From the relation of Eq.(8), the following expression is deduced:

    λnk(f(ynk,z)-f(ynk,znk))≥

    〈wnk-znk,z-znk〉, ?z∈Tn

    (16)

    The Lipschitz-type condition offonXyields

    λnkf(ynk,znk)≥λnk(f(wnk,znk)-f(wnk,ynk)) -

    λnkl1‖ynk-wnk‖2-λnkl2‖ynk-znk‖2

    (17)

    According to inequalities (13) and (17), the following expression can be obtained:

    λnkf(ynk,znk)≥〈wnk-ynk,znk-ynk〉-

    λnkl1‖ynk-wnk‖2-λnkl2‖ynk-znk‖2

    (18)

    Combining inequalities (17) and (18), andX?Tn, it can be deduced for allz∈Xthat

    l1‖ynk-wnk‖2-l2‖ynk-znk‖2

    Taking the limit in the last inequality and using

    f(x″,z)≥0, ?z∈Xis deduced from the assumption (A3). In other words,x″∈EP(X,f).Moreover, sinceznk?x″ and demiclosedness of zero ofI-T,x″∈Fix(T) is discovered. Then,x″∈Λ.

    (19)

    By invoking quasi-nonexpansion ofT,βn≤1/2 andxn+1=(1-βn)wn+βnTzn, the following expression is obtained:

    (20)

    Furthermore,by utilizing the definition ofwnand inequality (2), it is derived

    (21)

    and

    2αn〈xn-1-xn,xn-xn+1〉≥‖xn-xn+1‖2+

    ‖xn-1-xn‖)=(1-αn)‖xn-xn+1‖2-

    (22)

    Applying inequalities (20), (22), and Eq. (21), the following expression can be deduced:

    (1-αn)‖xn-xn+1‖2

    (23)

    The non-decreasing property of {αn} leads to

    αn)‖xn-xn+1‖2+2αn‖xn-1-xn‖2

    (24)

    Let

    2αn‖xn-1-xn‖2

    then (23) is equivalent to

    ιn+1-ιn≤(2αn+1-1+αn)‖xn-xn+1‖2

    (25)

    2αn+1-1+αn≤3α-1<0

    In inequality (25), -?=3α-1 leads to

    0≥-?‖xn-xn+1‖2≥ιn+1-ιn

    (26)

    In other words, progression {ιn} does not increase. Moreover, utilizing the form ofιn, the following expression is deduced:

    (27)

    Also,considering the form ofιn+1, the following formula is obtained:

    (28)

    Hence, inequalities (27) and (28) indicate that

    (29)

    By making use of inequalities (26) and (29), there is

    (30)

    Setk→∞ from inequality (30), the following expression is derived:

    (31)

    which indicates

    (32)

    By usingαn≤α, there is

    ‖wn-xn+1‖≤‖xn-xn+1‖+αn‖xn-1-xn‖≤

    ‖xn-xn+1‖+α‖xn-1-xn‖

    (33)

    Therefore, by Eq.(32) and inequality (33), the following expression is obtained:

    (34)

    Combining Eqs.(32) and (34) yields

    ‖wn-xn+1‖)=0

    So

    (35)

    From expression (22), forn≥N, the following expression is obtained:

    (36)

    By inequality(31) and (36), and invoking Lemma 1.5, there is

    ‖xn-x′‖2→σ

    (37)

    Eq.(35) leads to

    ‖wn-x′‖2→σ

    (38)

    Because of the relationship provided in inequality (20), the following is obtained:

    which means

    (39)

    Exploiting Lemma 2.2, the following expression is derived:

    Therefore,

    (40)

    Lemma 2.2 is invoked to obtain

    The last expression implies that

    So it is found that

    there is

    (41)

    Applying Lemma 1.4, it is deduced that

    (42)

    There is a contradiction in Eq.(42). As a result,xn?x″.Given

    there isyn?x″ andzn?x″.

    2.2 Strong Convergence

    In this framework, inspired by Refs.[10], [12] and [23], Algorithm 2.1 was improved by using the modified version of Halpern iteration. To study the algorithhm’s strong convergence, some assumptions are added.

    Condition (B):

    (B2)γn∈[a,b]?(0,1);

    Next, the form of algorithm is described in detail.

    Algorithm2.2

    Step2Takewn=xn-αn(xn-1-xn) and calculate

    Step3Pickvn∈?2f(wn,yn) such thatwn-λnvn-yn∈NX(yn)

    compute

    where

    Tn={x∈H|〈wn-λnvn-yn,yn-x〉≥0}

    Step4Formulate

    xn+1=γnT(βnx0+(1-βn)zn)+(1-γn)xn

    and

    λn+1=

    Taken: =n+1 and transfer to Step 1.

    Remark2.2Apparently, it holds that

    Actually, the following expression can be easily obtained:

    αn‖xn-xn-1‖≤εn

    From the above formula and hypothesis (B3), it is directly deduced that

    ProofPlease refer to Refs.[12] and [22] for the detailed proof of the theorem.

    3 Research on Variational Inequalities

    (43)

    where VI(X,F) represents the disaggregation of problem (43). HereFis called

    ? pseudo-monotone overX:

    〈F(d),e-d〉≥0?〈F(e),e-d〉≥0, ?d,e∈X

    ?L-Lipschitz continuous overX:

    ?L>0, s.t. ‖F(xiàn)(d)-F(e)‖≤L‖d-e‖, ?d,e∈X

    Make the following presumptions about VIP:

    (B1)Fis pseudo-monotone overX;

    (B2)Fis weakly sequentially continuous overXfor any progression {zn}∶{zn} weakly converging toz, which means {F(zn)} weakly converges toF(z).

    (B3)FpossessL-Lipschitz successive overX.

    Similarly,znin the proposed algorithms reduces to

    zn=PTn(wn-λnF(yn))

    Firstly, the following conclusions are obtained by observing the proof about Algorithm 2 for Ref. [23].

    dn=xn-αn(xn-1-xn)

    yn=PX(dn-λnF(dn))

    zn=PTn(dn-λnF(yn))

    Tn={x∈H|〈λnF(dn)+yn-dn,yn-x〉≤0}

    xn+1=(1-βn)dn+βnTzn

    Then progression {xn} weakly converges to a certain spot of Fix(T)∩VI(X,F).

    Then, a strong convergence schemeis presented. Its proof is similar to that in Ref.[24] and is thus omitted.

    dn=xn-αn(xn-1-xn)

    yn=PX(dn-λnF(wn))

    zn=PTn(dn-λnF(yn))

    Tn={x∈H|〈λnF(dn)+yn-dn,yn-x〉≤0}

    xn+1=(1-γn)zn+γnT((1-βn)zn+βnx0)

    λn+1=

    Then progression {xn} strongly converges to a dotx′, wherex′∈PFix(T)∩VI(X,F)(x0).

    Remark3.1For convenience, the algorithms proposed by Theorem 3.1 and Theorem 3.2 are denoted as Algorithm 3.1 and Algorithm 3.2, respectively. They are direct applications of Algorithm 2.1 and Algorithm 2.2 to variational inequalities. Moreover, it is worth noting that the formula of calculating shadow onto a closed convex setTn[25]is stated as

    wheree=wn-λnF(wn)-ynandx=yn.

    4 Numerical Experiments

    The proposed algorithms are compared with other algorithms in numerical experiments, and their effectiveness is illustrated in this section. For Algorithm 2.1 and Algorithm 3.1, takeμ=0.6,λ1=0.12,αn=0.32,βn=0.5, andpn=1/(n+1)10.For all the tests, record the number of iterations (Iter.) and calculation time (Time) implemented in the passing seconds. Particularly, ‖xn-xn+1‖≤εandε=10-3are adopted as terminate principle.

    ProblemIThe first experiment is focused on equilibrium problem.f:H×H→Ris known and makef(y,z)=〈z-y,Ky+Mz+d〉 hold. Each item ofd∈Rmis casually created from [-5, 5]. It holds thatMandK-Mare symmetric positive semi-definite matrices ofm×m.The practicable set is

    X={x∈Rm:-2≤xi≤2,i=1,…,m}

    Table 1 Numerical results of problem I with starting dot (1,1,...,1)

    In conclusion, compared with Algorithm 3.1 of Ref.[27] and Algorithm 4.3 of Ref.[28], this algorithm has better performance.

    Table 2 Numerical results of problem II with starting dot (1,1,...,1)

    5 Conclusions

    With regard to the fixed point problem and equilibrium problem, two new algorithms were proposed. Under appropriate circumstances, the convergence of algorithms was discussed. In particular, the variational inequalities were also studied. The performance of the proposed algorithms was demonstrated by observing the numerical results, which shows that the algorithms are effective.

    免费看a级黄色片| 亚洲av美国av| 一级毛片高清免费大全| 法律面前人人平等表现在哪些方面| 草草在线视频免费看| 久久狼人影院| 悠悠久久av| 精品不卡国产一区二区三区| 亚洲成人免费电影在线观看| 黄色 视频免费看| 精品一区二区三区视频在线观看免费| 热re99久久国产66热| 国产精品野战在线观看| 超碰成人久久| 亚洲专区字幕在线| 变态另类成人亚洲欧美熟女| 久久久久亚洲av毛片大全| 久久精品国产清高在天天线| 美女高潮到喷水免费观看| а√天堂www在线а√下载| 国产极品粉嫩免费观看在线| 两人在一起打扑克的视频| 欧洲精品卡2卡3卡4卡5卡区| 久久久久久久久免费视频了| 99久久精品国产亚洲精品| 国产片内射在线| 免费观看精品视频网站| 婷婷精品国产亚洲av| 最好的美女福利视频网| 黄片小视频在线播放| 亚洲无线在线观看| a在线观看视频网站| 国产v大片淫在线免费观看| 一级毛片精品| 中文字幕av电影在线播放| 亚洲国产欧美网| 日韩国内少妇激情av| 999精品在线视频| 亚洲成人精品中文字幕电影| 在线天堂中文资源库| 最近最新中文字幕大全免费视频| 国产欧美日韩一区二区精品| 正在播放国产对白刺激| 亚洲最大成人中文| 欧美一区二区精品小视频在线| 亚洲自拍偷在线| 中文字幕人妻丝袜一区二区| 国产伦人伦偷精品视频| 青草久久国产| 午夜精品在线福利| 亚洲狠狠婷婷综合久久图片| 这个男人来自地球电影免费观看| 嫁个100分男人电影在线观看| 国产麻豆成人av免费视频| 亚洲国产中文字幕在线视频| 黄色a级毛片大全视频| 欧美乱码精品一区二区三区| 一级a爱视频在线免费观看| 亚洲中文字幕日韩| 亚洲成人精品中文字幕电影| 十八禁网站免费在线| 18禁美女被吸乳视频| 久9热在线精品视频| 精品久久蜜臀av无| 麻豆国产av国片精品| www.www免费av| 大香蕉久久成人网| 最近最新免费中文字幕在线| 一区二区三区精品91| bbb黄色大片| 成年免费大片在线观看| 中文字幕精品亚洲无线码一区 | a级毛片a级免费在线| 国产高清有码在线观看视频 | 精品电影一区二区在线| 日韩欧美 国产精品| 18禁美女被吸乳视频| 亚洲精品国产区一区二| 婷婷六月久久综合丁香| 一个人免费在线观看的高清视频| 欧美黄色片欧美黄色片| 18禁国产床啪视频网站| 久久婷婷人人爽人人干人人爱| 丰满的人妻完整版| 成人亚洲精品一区在线观看| 国产成人精品无人区| 日韩大码丰满熟妇| 免费在线观看亚洲国产| 亚洲成国产人片在线观看| 法律面前人人平等表现在哪些方面| 欧美久久黑人一区二区| 国产熟女xx| 91字幕亚洲| 在线永久观看黄色视频| 叶爱在线成人免费视频播放| 90打野战视频偷拍视频| 成人永久免费在线观看视频| 可以免费在线观看a视频的电影网站| 男女那种视频在线观看| 黑人操中国人逼视频| 国产精品国产高清国产av| 老熟妇仑乱视频hdxx| 色在线成人网| 久久婷婷人人爽人人干人人爱| 精品国产一区二区三区四区第35| 亚洲成人国产一区在线观看| 丁香欧美五月| 99精品欧美一区二区三区四区| 91成年电影在线观看| 中亚洲国语对白在线视频| 日韩一卡2卡3卡4卡2021年| 亚洲一区高清亚洲精品| 国产精品电影一区二区三区| 欧美激情久久久久久爽电影| 黄网站色视频无遮挡免费观看| 亚洲 国产 在线| 欧美黄色片欧美黄色片| 亚洲人成77777在线视频| 国产精品精品国产色婷婷| 后天国语完整版免费观看| 国产区一区二久久| 观看免费一级毛片| 亚洲色图av天堂| 亚洲 国产 在线| 日韩欧美三级三区| 色播亚洲综合网| 国产精品美女特级片免费视频播放器 | 亚洲精品粉嫩美女一区| 19禁男女啪啪无遮挡网站| 亚洲国产欧美一区二区综合| 麻豆成人午夜福利视频| 精品久久蜜臀av无| 热99re8久久精品国产| 在线播放国产精品三级| 9191精品国产免费久久| 婷婷亚洲欧美| 成人国产一区最新在线观看| 久久99热这里只有精品18| 中文字幕另类日韩欧美亚洲嫩草| av视频在线观看入口| 国产精品自产拍在线观看55亚洲| 99在线人妻在线中文字幕| 免费女性裸体啪啪无遮挡网站| 黄色视频,在线免费观看| 亚洲欧美一区二区三区黑人| 国产精品日韩av在线免费观看| 久久久久久大精品| 又大又爽又粗| 欧美成狂野欧美在线观看| 精品无人区乱码1区二区| 日日夜夜操网爽| 黄网站色视频无遮挡免费观看| 日韩精品青青久久久久久| 久久精品人妻少妇| 国产成人系列免费观看| 亚洲欧美日韩无卡精品| 欧美+亚洲+日韩+国产| 国产高清激情床上av| 男女之事视频高清在线观看| 男人操女人黄网站| 桃色一区二区三区在线观看| 一级毛片精品| 中文亚洲av片在线观看爽| 一进一出抽搐gif免费好疼| 国产亚洲av嫩草精品影院| 亚洲国产精品999在线| 免费高清视频大片| 久久精品成人免费网站| 少妇的丰满在线观看| 久久久精品国产亚洲av高清涩受| www.熟女人妻精品国产| 亚洲av片天天在线观看| 成人国产一区最新在线观看| 国产欧美日韩精品亚洲av| 两个人视频免费观看高清| 久久精品国产99精品国产亚洲性色| 九色国产91popny在线| 亚洲国产精品合色在线| av在线播放免费不卡| 桃红色精品国产亚洲av| 亚洲专区字幕在线| 老汉色av国产亚洲站长工具| 久久午夜亚洲精品久久| 亚洲va日本ⅴa欧美va伊人久久| 亚洲成人精品中文字幕电影| 欧美人与性动交α欧美精品济南到| 亚洲av片天天在线观看| 亚洲av美国av| 美女扒开内裤让男人捅视频| 好男人电影高清在线观看| 一夜夜www| 国产片内射在线| 久久精品91蜜桃| 黄色视频,在线免费观看| 欧洲精品卡2卡3卡4卡5卡区| 2021天堂中文幕一二区在线观 | 日韩欧美国产在线观看| 欧美日本亚洲视频在线播放| 国产av又大| 91九色精品人成在线观看| 国产免费av片在线观看野外av| 大香蕉久久成人网| 亚洲专区字幕在线| 久久香蕉国产精品| 最新美女视频免费是黄的| 亚洲 国产 在线| 老鸭窝网址在线观看| 成人18禁高潮啪啪吃奶动态图| 久久婷婷成人综合色麻豆| 国产伦人伦偷精品视频| 亚洲精品av麻豆狂野| 国产野战对白在线观看| 99久久无色码亚洲精品果冻| 成人一区二区视频在线观看| 少妇被粗大的猛进出69影院| 三级毛片av免费| 精品福利观看| 久久香蕉国产精品| 欧美大码av| 91成人精品电影| 欧美在线一区亚洲| 久久久久久久久中文| 欧美黑人精品巨大| 亚洲一区高清亚洲精品| 午夜福利高清视频| 亚洲精品久久国产高清桃花| 老司机深夜福利视频在线观看| 久热这里只有精品99| 日本一区二区免费在线视频| 动漫黄色视频在线观看| 日本a在线网址| 免费在线观看日本一区| 日韩欧美一区视频在线观看| 在线观看免费午夜福利视频| 欧美精品亚洲一区二区| 国产精品日韩av在线免费观看| 成人三级做爰电影| 国产精品影院久久| 久久久国产成人免费| 亚洲国产精品合色在线| 国产精品av久久久久免费| 亚洲第一电影网av| 亚洲国产看品久久| 男人操女人黄网站| 国产精品99久久99久久久不卡| 国产av不卡久久| 精品久久蜜臀av无| 自线自在国产av| 国产成人精品无人区| 中文字幕久久专区| 1024香蕉在线观看| 日韩一卡2卡3卡4卡2021年| 国产精品1区2区在线观看.| 欧美性猛交黑人性爽| 亚洲第一电影网av| 日韩精品免费视频一区二区三区| 国产成人av教育| 亚洲五月色婷婷综合| 国产三级黄色录像| 人人澡人人妻人| 人人妻人人澡欧美一区二区| 青草久久国产| 午夜激情av网站| 日韩三级视频一区二区三区| xxx96com| 国产免费av片在线观看野外av| 无人区码免费观看不卡| 黄色 视频免费看| 国产黄色小视频在线观看| 久久青草综合色| 久久精品国产亚洲av香蕉五月| 国产真实乱freesex| 国产精品98久久久久久宅男小说| 黑丝袜美女国产一区| 亚洲欧美日韩高清在线视频| 国产91精品成人一区二区三区| 女警被强在线播放| 国产高清视频在线播放一区| 色播亚洲综合网| 日韩欧美国产在线观看| 18禁黄网站禁片免费观看直播| 91国产中文字幕| 亚洲中文日韩欧美视频| av有码第一页| 日韩欧美在线二视频| 精品久久久久久,| 麻豆成人午夜福利视频| 亚洲精品国产区一区二| 国产色视频综合| 亚洲国产精品合色在线| 亚洲精品中文字幕一二三四区| 啦啦啦观看免费观看视频高清| 最好的美女福利视频网| 在线看三级毛片| 少妇粗大呻吟视频| 午夜福利在线观看吧| 久久精品国产综合久久久| 一区二区三区高清视频在线| 午夜福利欧美成人| 国产精品久久久久久人妻精品电影| 黄色片一级片一级黄色片| 亚洲中文日韩欧美视频| 美女免费视频网站| 高清毛片免费观看视频网站| 午夜免费鲁丝| 亚洲美女黄片视频| 日韩高清综合在线| 国产99久久九九免费精品| 亚洲国产毛片av蜜桃av| 国内毛片毛片毛片毛片毛片| 十分钟在线观看高清视频www| 韩国av一区二区三区四区| 国产蜜桃级精品一区二区三区| 桃红色精品国产亚洲av| 亚洲午夜理论影院| 国产av一区二区精品久久| 日韩大码丰满熟妇| 99国产精品99久久久久| 色在线成人网| 国产成人影院久久av| 精品高清国产在线一区| 啦啦啦免费观看视频1| 青草久久国产| 亚洲av电影不卡..在线观看| 99久久国产精品久久久| 国产av一区在线观看免费| 动漫黄色视频在线观看| 久久香蕉国产精品| 亚洲成a人片在线一区二区| 国产精品99久久99久久久不卡| 人妻丰满熟妇av一区二区三区| 黄色 视频免费看| 国产一区二区激情短视频| 国产极品粉嫩免费观看在线| 亚洲avbb在线观看| 国产一级毛片七仙女欲春2 | 婷婷精品国产亚洲av在线| 极品教师在线免费播放| 精品久久久久久成人av| 日韩精品青青久久久久久| 一本一本综合久久| 又黄又粗又硬又大视频| 日本 av在线| 色精品久久人妻99蜜桃| 一卡2卡三卡四卡精品乱码亚洲| 亚洲va日本ⅴa欧美va伊人久久| 黄片小视频在线播放| 在线av久久热| 国产精品免费视频内射| 国产一区二区在线av高清观看| 欧美黄色淫秽网站| 久久国产精品影院| 国产亚洲欧美在线一区二区| 成人国语在线视频| 一区二区三区国产精品乱码| 欧美黑人精品巨大| 三级毛片av免费| 久热爱精品视频在线9| 美女高潮到喷水免费观看| 美女 人体艺术 gogo| 不卡av一区二区三区| 国内揄拍国产精品人妻在线 | 亚洲人成网站高清观看| 国产精品影院久久| 亚洲成av人片免费观看| 丁香六月欧美| 国产蜜桃级精品一区二区三区| 可以在线观看的亚洲视频| 亚洲国产精品合色在线| 亚洲精品粉嫩美女一区| www.熟女人妻精品国产| 亚洲精品在线美女| 一边摸一边抽搐一进一小说| 亚洲人成网站在线播放欧美日韩| 亚洲aⅴ乱码一区二区在线播放 | 美女大奶头视频| 亚洲免费av在线视频| 色在线成人网| 欧美色欧美亚洲另类二区| 亚洲精品在线观看二区| 首页视频小说图片口味搜索| 精品国产一区二区三区四区第35| 成年免费大片在线观看| 亚洲国产精品999在线| 精品久久蜜臀av无| 无遮挡黄片免费观看| 桃色一区二区三区在线观看| www日本黄色视频网| 婷婷丁香在线五月| 久热这里只有精品99| 国产片内射在线| 国产又爽黄色视频| 一卡2卡三卡四卡精品乱码亚洲| 日韩成人在线观看一区二区三区| 狂野欧美激情性xxxx| 人人妻,人人澡人人爽秒播| 免费在线观看黄色视频的| 身体一侧抽搐| 午夜老司机福利片| 精品久久久久久,| 可以免费在线观看a视频的电影网站| 神马国产精品三级电影在线观看 | 黄片播放在线免费| 欧美黑人欧美精品刺激| 50天的宝宝边吃奶边哭怎么回事| 天堂动漫精品| 波多野结衣巨乳人妻| 黑丝袜美女国产一区| 国产成+人综合+亚洲专区| 久久精品国产亚洲av高清一级| 亚洲自偷自拍图片 自拍| 亚洲精品中文字幕一二三四区| 欧美乱色亚洲激情| 日韩av在线大香蕉| 亚洲电影在线观看av| 久9热在线精品视频| 亚洲 国产 在线| 两人在一起打扑克的视频| 久久人人精品亚洲av| 婷婷丁香在线五月| 国产一卡二卡三卡精品| 国产激情欧美一区二区| 黄色视频,在线免费观看| 两性午夜刺激爽爽歪歪视频在线观看 | 久久久国产精品麻豆| 精品久久久久久久人妻蜜臀av| 黄色视频不卡| 中文资源天堂在线| 国产高清有码在线观看视频 | 老司机在亚洲福利影院| 一区二区三区精品91| 精品不卡国产一区二区三区| 日本免费a在线| 国产成人av激情在线播放| 亚洲国产精品sss在线观看| 人人妻人人澡人人看| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美一区二区精品小视频在线| 亚洲av第一区精品v没综合| 国产精品一区二区免费欧美| 亚洲第一av免费看| 在线观看免费午夜福利视频| 一边摸一边做爽爽视频免费| 少妇裸体淫交视频免费看高清 | 免费在线观看黄色视频的| 日韩精品中文字幕看吧| 国产精品国产高清国产av| 在线看三级毛片| 在线观看免费视频日本深夜| 女性生殖器流出的白浆| 丰满人妻熟妇乱又伦精品不卡| 亚洲熟女毛片儿| 日日干狠狠操夜夜爽| 日日夜夜操网爽| 日韩欧美一区视频在线观看| 精品无人区乱码1区二区| 欧美一区二区精品小视频在线| 夜夜爽天天搞| 国产激情偷乱视频一区二区| 美女大奶头视频| 国产视频内射| 亚洲精品在线观看二区| 99久久精品国产亚洲精品| 999久久久精品免费观看国产| 国产精品精品国产色婷婷| 精品国产国语对白av| 亚洲男人天堂网一区| 国产成人欧美在线观看| 欧美日本亚洲视频在线播放| 美女 人体艺术 gogo| 一进一出抽搐gif免费好疼| 国产熟女午夜一区二区三区| 欧美日韩精品网址| 少妇裸体淫交视频免费看高清 | 后天国语完整版免费观看| 欧美成人午夜精品| 日本a在线网址| 亚洲国产欧美网| 国产精品久久久人人做人人爽| 可以免费在线观看a视频的电影网站| 日韩精品青青久久久久久| 操出白浆在线播放| 欧美一区二区精品小视频在线| 黄片大片在线免费观看| 久久国产精品影院| 亚洲精品久久国产高清桃花| 国产精品亚洲一级av第二区| 中亚洲国语对白在线视频| 在线观看免费视频日本深夜| 中国美女看黄片| 国产av一区在线观看免费| 亚洲电影在线观看av| 中亚洲国语对白在线视频| 欧美激情久久久久久爽电影| 久久亚洲真实| 精品国产亚洲在线| 国产精品美女特级片免费视频播放器 | 脱女人内裤的视频| 视频区欧美日本亚洲| 黄色毛片三级朝国网站| 国产精品,欧美在线| 制服人妻中文乱码| 搡老岳熟女国产| 欧美日韩亚洲国产一区二区在线观看| 精品久久久久久,| 久久久久久亚洲精品国产蜜桃av| 好男人电影高清在线观看| 亚洲人成电影免费在线| 欧美又色又爽又黄视频| 在线看三级毛片| 日韩成人在线观看一区二区三区| 成人午夜高清在线视频 | 亚洲激情在线av| 国产亚洲欧美精品永久| 日韩欧美国产一区二区入口| 啪啪无遮挡十八禁网站| 久久精品国产综合久久久| 亚洲成人国产一区在线观看| 校园春色视频在线观看| 99re在线观看精品视频| 可以在线观看的亚洲视频| 欧美性长视频在线观看| 满18在线观看网站| 成人国语在线视频| 欧美性长视频在线观看| 国产精品九九99| 精品国产乱子伦一区二区三区| 黄色女人牲交| 久久久国产成人精品二区| 精品电影一区二区在线| tocl精华| 精品国产超薄肉色丝袜足j| 午夜福利在线观看吧| 亚洲人成网站在线播放欧美日韩| 亚洲精品久久国产高清桃花| 亚洲人成网站在线播放欧美日韩| 久久天躁狠狠躁夜夜2o2o| 久热爱精品视频在线9| 最近最新免费中文字幕在线| 少妇 在线观看| 亚洲一区二区三区色噜噜| 狠狠狠狠99中文字幕| 一本大道久久a久久精品| 午夜a级毛片| 在线播放国产精品三级| 黄片小视频在线播放| 免费在线观看成人毛片| 国产亚洲精品第一综合不卡| 99热6这里只有精品| 国产高清视频在线播放一区| 午夜精品久久久久久毛片777| 午夜日韩欧美国产| 国产免费男女视频| 无遮挡黄片免费观看| 国产亚洲欧美精品永久| 日本 av在线| 国产精品永久免费网站| 18禁黄网站禁片免费观看直播| 亚洲成国产人片在线观看| 国产在线观看jvid| 国产区一区二久久| 成人三级黄色视频| 亚洲免费av在线视频| 国产又爽黄色视频| 精品久久蜜臀av无| 波多野结衣av一区二区av| 日本撒尿小便嘘嘘汇集6| 精品久久久久久,| 亚洲男人的天堂狠狠| 他把我摸到了高潮在线观看| 精品久久久久久久久久免费视频| 亚洲,欧美精品.| 国产精品永久免费网站| 国产一卡二卡三卡精品| 免费在线观看日本一区| 88av欧美| 久久国产精品人妻蜜桃| 黄片小视频在线播放| 国产精品 欧美亚洲| 欧美在线黄色| 在线观看免费视频日本深夜| av超薄肉色丝袜交足视频| 午夜激情av网站| 亚洲av第一区精品v没综合| 老熟妇乱子伦视频在线观看| 亚洲av五月六月丁香网| 叶爱在线成人免费视频播放| 午夜久久久久精精品| 亚洲久久久国产精品| 国产激情偷乱视频一区二区| 国内毛片毛片毛片毛片毛片| 中文字幕精品免费在线观看视频| 亚洲av电影在线进入| 欧美最黄视频在线播放免费| 久久香蕉国产精品| 国产精品亚洲美女久久久| 亚洲精品粉嫩美女一区| 色尼玛亚洲综合影院| 巨乳人妻的诱惑在线观看| 久久久久国内视频| 免费在线观看视频国产中文字幕亚洲| 免费av毛片视频| 国产色视频综合| 亚洲成人免费电影在线观看| 久久久久久久精品吃奶| 中文资源天堂在线| АⅤ资源中文在线天堂| 男女那种视频在线观看| 男女做爰动态图高潮gif福利片| 男人操女人黄网站| 在线观看舔阴道视频| 99在线人妻在线中文字幕| 高潮久久久久久久久久久不卡| 18禁黄网站禁片免费观看直播| 中文字幕人妻熟女乱码|