• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Relationship between Orifice Parameters of Slinger and Atomization Performance

    2022-02-12 06:26:06WenlongTan

    Wenlong Tan

    (Chinese Flight Test Establishment, Xi’an 710089, China)

    Abstract: Slinger is a rotary atomizer whose atomization performance is affected by the parameters of orifice. 8 kinds of orifices with different structure parameters were investigated, and an optimal diameter exists for the round orifice with that the spray SMD is the smallest and the uniformity is the best. Increases in the axial length of slot orifice decrease the spray SMD and improve the spray uniformity, but increases in the width of the slot orifice are invalid for liquid spray SMD, and the spray uniformity becomes even worse. In most cases, the spray SMD of slot orifice is smaller than that of round orifice with the same perimeter, and the spray uniformity is better likewise. Increases in radial length of orifice cause the spray SMD to be larger, but the spray uniformity become obviously better. The spray SMD become larger with decreases in liquid surface tension. The spray uniformity became better nevertheless.

    Keywords: rotary atomization; slinger; orifice parameters; spray uniformity; SMD

    0 Introduction

    Slinger is a kind of rotary atomizer that accelerates the liquid to a high relative speed to the air by mechanical rotation and produces a fine liquid spray. It is usually used in the combustion chamber of small aircraft engines. The shape of the orifice on a slinger is usually round or slot, and the geometric parameters of the orifice play an important role in the slinger atomization.

    Dahm investigated the slinger with various orifices. The geometric parameters of the orifices are shown in Table 1[1-3]. The liquid leaves the slinger orifice in two regimes: film mode and stream mode. The film mode indicates the liquid leaves the orifice along its circumference and forms a liquid film, while the stream mode indicates the liquid leaves the orifice on the side of the orifice that is opposite to the slinger rotation direction and forms a liquid column. The film mode performs in two breakup ways: subcritical breakup and supercritical breakup. After leaving the orifice, the liquid film first aggregates into a liquid column and then breaks into droplets, which is termed subcritical breakup; if the liquid film breaks into droplets directly after leaving the orifice, it is termed supercritical breakup. The breakup modes of the film are related to the Weber numberWehwith the liquid film thicknesshas the characteristic length. The smaller theWeh, the more likely the liquid film performs subcritical breakup. The slinger’s liquid spray SMD is related toWet, withtas the characteristic length.tis determined by the liquid regimes when it leaves the orifice. When the liquid leaves the orifice in film-supercritical regime,tis equivalent to the thickness of the liquid film; when the liquid performs film-subcritical regime,tis equivalent to the diameter of the liquid column that is aggregated by the liquid film; when the liquid performs stream mode,tis equivalent to the diameter of the orifice.

    Table 1 Geometric parameters of test orifices[1-2]

    Carmen found the liquid breakup distance after leaving the orifice to increase with the increases in the liquid flowrate, and decrease with the increases in the slinger rotary speed[4-7]. The distribution range of the diameter of the droplets in the liquid spray increases with the increases in the liquid flowrate, and decreases with the increases in the slinger rotary speed. The liquid breakup distance and the spray SMD decrease with the increases in the diameter of the orifice.

    Choi found the liquid in the slinger performs irregular breakup when the rotary speed is low or the liquid flowrate is high, which will produce large droplets and deteriorate the atomization performance[8-11]. The spatial distribution of the liquid spray depends on the diameter of the orifice. The orifice with a larger diameter can produce a more uniform and wider distributed liquid spray. If the slinger works in a lateral airflow, whose flow direction is parallel to the axis of the slinger, the velocity of the airflow will affect the atomization of the slinger. When the velocity of the lateral airflow is less than 50 m/s, the liquid spray SMD decreases with the increases in the slinger rotary speed. However, if the velocity of the lateral airflow is more than 100 m/s, the spray SMD will not change significantly with the change of slinger rotary speed.

    Ye[12]presented a three-dimensional numerical simulation to study the liquid regimes near the orifice of the slinger. He found the liquid flowrates of each orifices are different in a short time and the total liquid flowrate of the slinger varies with time as well. Chakraborty[13]found the Coriolis force cannot be ignored when the slinger’s rotary speed is high, and the liquid will leave the orifice from the orifice side that is opposite to the rotary direction. Based on Dahm’s research[1-3], Rezayat[14]found when the rotary speed of slinger is up to 4000 r/min, and the liquid performs subcritical breakup; when the rotary speed is more than 5000 r/min, a phenomenon of liquid jet bifurcation is observed; when the rotary speed is up to 10000 r/min, the liquid performs supercritical breakup.

    The existing researches on how the parameters of the orifice affect the atomization of the slinger are mainly qualitative results obtained from theoretical analysis or experimental research. This paper will present quantitative research and explore how the geometric parameters of the orifice affect the atomization of the slinger.

    1 Test Apparatus

    Fig.1 is a diagram of the test rig. A motor drives the slinger with a rotary speed range of 0-24 kr/min and the minimum adjustment unit is 6 r/min.

    Fig.1 Diagram of the test rig

    A transparent shield surrounds the slinger and is used to collect the liquid thrown out from the test slinger and return it to the liquid tank. The liquid in the tank is driven by a pump. It passes through the filter, pump, valve, and mass flowmeter, and then is ejected from the inject tube and finally hits on the wall of the test slinger to start a new liquid recycle. The minimum measuring unit of the mass flowmeter is 0.1 g/s, and the measuring range corresponds to 0-40 g/s.

    The measurement equipment includes a high-speed camera and aphase of doppler particle analyzer (PDPA). The high-speed camera is used to capture the liquid regime near the slinger, and the maximum shooting frequency corresponds to 2500 fps. The PDPA is used to measure the diameter of the droplets in the liquid spray, from which SMD and the RR (Rosin-Rammler) distribution indexncan be calculated. The spray SMD is used to evaluate the size of the droplets. The smaller the SMD, the smaller the droplets.nis used to evaluate the uniformity of the liquid spray. The larger then, the more uniform the liquid spray. The minimum measuring unit corresponds to the laser wavelength of the PDPA and is about 0.5 mm. The measuring error of the PDPA is related to the types of the measurement particles when measuring liquid spray. The relative error for measuring the diameter of the droplet is 0.5%, while that for the quantity of the droplets is 1%[15].

    Water is used as the main test liquid. Adding sulfonic acid in the water will change its surface tension, which can be used to explore the effect of the liquid surface tension on the atomization performance. The property of liquid solutions is shown in Table 2.

    Table 2 Property of liquid solutions

    The structure of the test slinger is shown in Fig.2. The radiusRof the slinger is 50 mm. The serial number and the shape parameters of the test orifices are shown in Fig.3. The radial lengthlof orificeA-Fis 3 mm, the shape of orificeA-Cis round, and orificeD-Eis a slot. The perimeters of orificeBandDare the same, and orificeC,E, andFhave the same perimeter likewise. Besides, two orificeBlandDlwith the same shape parameters as orificeBandDrespectively are added, and their the radial lengthlare 6 mm.

    Fig.2 Schematic diagram of the slinger

    Fig.3 Chart of orifices shape and size(Unit:mm)

    2 Theoretical Analysis

    High-speed photography found three liquid regimes exist near the orifice. Except for film mode and stream mode found by Dahm[1-3], the full mode will be formed when the liquid fills the orifice. The three liquid regimes are shown in Fig.4.

    Fig.4 Liquid regimes in the orifice

    Weber numberWetis the most important parameter to predict the liquid atomization, and the characteristic lengthtofWetis different when the liquid leaves the orifice in various regimes. However, it was found through experiments that when the rotary speed of the slinger is larger than 3 kr/min, the three liquid regimes all perform turbulent breakup. That means the liquid film or stream is severely torn by the air to form multiple fragments with a diameter approximating to the thicknesshof the liquid film in the orifice. According to Dahm’s research[1-3], there is

    (1)

    whereμLdenotes dynamic viscosity of the liquid and is 0.001 Pa·s,mdenotes mass flowrate of the liquid,ρLdenotes the density of the liquid and is 1000 kg/m3,ωdenotes the rotary speed of the liquid, andddenotes the diameter of the orifice. When the orifice is a slot, there is

    d=P/π

    (2)

    wherePdenotes the perimeter of the orifice.

    In most cases, the liquid regimes perform turbulent breakup as shown in Fig.5. ThereforeWehwithhas the characteristic length has the highest correlation coefficient with the liquid spray, and that was proved by the experiment results.

    Weh=ρGu2h/σ

    (3)

    Fig.5 Regimes of turbulent breakup

    whereρGis the density of gas and is 1.29 kg/m3, anduis the velocity at the edge of the slinger. The following equation is obtained:

    u=ωR

    (4)

    Substituting Eqs.(1),(4) and the values of other parameters into Eq.(3):

    (5)

    3 Results

    The radial position of the point where the liquid is thrown from the slinger completely broke into droplets corresponding to the working condition of the slinger. That means the radial position where the spray SMD is the minimum changes with the slinger working condition. In previous researches, the parameters of the liquid spray are usually measured at a fixed point and the effect of the changes in the minimun SMD position cannot be considered. In the experiment of this paper, the liquid spray parameters at a series of radial positions were firstly measured, then the parameters where the liquid SMD was the minimum were selected and analyzed, hence the effect of the change in the minimum SMD position was eliminated.

    Liquid spray SMD and distribution indexnare the two main parameters to evaluate the atomization performance. Fig.6 shows the liquid spray SMD from various orifices versusWeh.The test data are discretely distributed corresponding toWeh, thus it is impossible to compare SMD quantitatively. First, the fitting formulas between SMD andWehof each orifice were calculated, then the fitting formulas were compared with each other, and the quantitative comparisons can be achieved.

    (a)Orifice A/B/C

    Exponential, linearity, logarithmic, power, and polynomial functions were used to fit the relationship between SMD/nandWeh.The formula with the highest relative coefficient was selected as the fitting formula and used to represent the atomization performance of the orifice. Table 3 is the table of fitting formula about SMD andWeh, and Table 4 is the table of fitting formula aboutnandWeh.The relative coefficients of the SMD fitting formulas are higher than those ofn, which means the analysis of SMD is reliable, while the analysis ofnis only reliable to a certain extent.

    Table 3 Fitting formulas of spray SMD

    Table 4 Fitting formulas of n

    4 Analysis and Discussion

    4.1 Change Rules of SMD

    4.1.1Effectofdiameterofroundorifice

    Fig.7 Curves of the effect of round orifice diameter on SMD

    Fig.8 Curves of the effect of shape parameters of slot orifice on SMD

    4.1.2Effectofshapeparametersofslotorifice

    OrificeDandEhave the same width but different axial lengths, orificeDandFhave the same axial length but different widths, and orificeEandFhave the same perimeter. As shown in Fig.8, in most cases, orificeEexhibits smaller SMD than orificeD, and only whenWeh>6.853, the SMD of orificeDis smaller. Compare orificeDwithF; whenWeh<4.184, the SMD of orificeFis smaller; whenWeh>4.184, orificeDexhibits smaller SMD. The SMD of orificeEis always smaller than that of orificeF.

    Previous research shows that an increase in the axial length of a slot orifice can reduce the spray SMD within a large range ofWeh, but increases in the width of a slot orifice have little effect on spray SMD. When the perimeters of the slot orifices are the same, the one whose axial length is larger exhibits a smaller SMD. WhenWehis large enough, orificeDwith a smaller perimeter exhibits the smallest SMD. Therefore, lengthening the slot orifice is beneficial to atomization whenWehis not very large, but widening the slot orifice is not recommended.

    4.1.3Effectofshapesoforifices

    When the perimeters of the orifices are the same, thedin Eq.(1) of each orifice is the same likewise. Fig.9 shows the comparison curves of SMD between the orifices with the same perimeters. WhenWeh<2.620, the spray SMD of slot orificeDis larger than that of round orificeB; whenWeh>2.620, orificeDexhibits a smaller SMD than orificeB.Compare slot orificeE/Fwith round orificeC; the SMD ofE/Fis always smaller than that of orificeC.The results mean that whenWehis the same, the slot orifice performs smaller SMD than round orifice in most cases. Only when the perimeter andWehare both small, the round orifice’s SMD is smaller.

    Fig.9 Curves of the effect of orifice shapes on SMD

    4.1.4Effectofradiallengthoftheorifice

    Fig.10 is the comparison curves of SMD between the orifices with different radial lengths but the same shape parameters. The radial length ofBlandDlis 6 mm, while that ofBandDis 3 mm. WhenWeh<5.748, the SMD of round orificeBlis larger than that of orificeB; whenWeh>5.748, the SMD of orificeBlis smaller than that of orificeB, but the values of SMD of both orifices are very close. In slot orifices, whenWeh<0.769, orificeDlexhibits a smaller SMD than orificeD; whenWeh>0.769, the SMD of orificeDlis larger than that of orificeD.WhenWehis the same, the SMD of orificeDlis larger than that of orificeDby about 5 μm. Consequently, increases in the radial length of an orifice will cause an increase in SMD in most cases, especially in slot orifice.

    Fig.10 Curves of the effect of radial length l of the orifice on SMD

    4.1.5Effectofsurfacetension

    Fig.11 shows curves of the relationship between SMD andWehwhen the surface tension is different, and the values of the test solutions’ surface tension are shown in Table 2. WhenWehis the same, the SMD of Solution I is the minimum, while those of Solution II and III are nearly the same. From Fig.12, it is found the SMD of Solution II is smaller than Solution III. Consequently, whenWehkeeps the same, SMD increases with decreases in surface tension. It is found from Eq.(5) thatWeh~σ-1.IfWehkeeps the same whenσdecreases, other parameters such as rotary speed or flowrate should decrease too, and the spray SMD may increase.

    Fig.11 Curves of the effect of surface tension on SMD (orifice C)

    Fig.12 Comparison curve between Solution II and Solution III (orifice C)

    4.2 Change Rules of n

    4.2.1Effectofthediameterofroundorifice

    As shown in Fig.13, in most cases,nincreases with increases in diameter of round orifice. Only when 1.16

    Fig.13 Curves of the effect of diameter of the round orifice on n

    4.2.2Effectofshapeparametersofslotorifice

    As shown in Fig.14, orificeEexhibits the maximumn, andnof orificeDis larger than that of orificeF.Only whenWeh<0.59,nof orificeDis larger than that of orificeE; whenWeh<0.63,nof orificeFis larger than that of orificeE; whenWeh<0.85,nof orificeFis larger than orificeD.Consequently, lengthening the slot orifice is beneficial to increase the uniformity of the spray, but widening the slot orifice will cause a less uniform spray.

    Fig.14 Curves of the effect of shape parameters of slot orifice on n

    4.2.3Effectofshapesoforifices

    Fig.15 is the spray distribution index comparison curves between the round orifice and the slot orifice with the same perimeter. If the perimeter of the orifice is 2π(orificeBandD), whenWeh<3.51,nof the round orifice is larger; whenWeh>3.51,nof slot orifice is larger, but the difference between the values ofnof both orifices are less than 0.1. If the perimeter of the orifice is 3π(orificeC/E/F),nof orificeEis larger than that of orificeC, and only whenWeh<0.91, orificeCperforms a largern.nof orificeFis always smaller than that of orificeC.

    Fig.15 Curves of the effect of orifice shape on n

    The projection length of the orificeDin the axis direction of slinger is longer than that of orificeB, and that of orificeEis longer than that of orificeC, but the axis projection length of orificeFis shorter than that of orificeC.Consequently, it can be considered that when the perimeters of the orifices are the same, the orifice with a longer axis projection length performs a more uniform spray. Only whenWehis very small, the round orifice performs a more uniform spray.

    4.2.4Effectofradiallengthoftheorifice

    Fig.16 shows spray distribution index comparison curves between orifices with different radial lengths but the same shape parameters. In most cases,nof the orifice with a longer radial length is larger, especially in slot orifices. Only whenWeh<0.33,nof orificeBis larger than that of orificeBl; whenWeh<0.34,nof orificeDis larger than that of orificeDl.Consequently, with the orifice in the radial direction lengthened, the uniformity of the spray becomes obviously better, especially in slot orifices.

    Fig.16 Curves of the effect of orifice radial length on n

    4.2.5Effectofsurfacetension

    As shown in Fig.17, when the liquid surface tension decreases,nincreases at the sameWeh.Only whenWeh<1.97,nof Solution III is smaller than that of Solution I; whenWeh<2.32,nof Solution II is smaller than that of Solution I; whenWeh<0.33,nof Solution III is smaller than that of Solution II. Consequently, whenWehkeeps the same, the uniformity of the spray becomes better as the liquid surface tension decreases. Only whenWehis small, the uniformity of the spray does not optimize as the surface tension decreases.

    Fig.17 Curves of the effect of surface tension on n (orifice C)

    5 Summary and Discussion

    In a certain range ofWeh, an optimal diameter exists when the round orifice produces the smallest liquid spray. Under the sameWeh, increases in the axial length of a slot orifice decrease the spray SMD. In most cases, the spray SMD of slot orifice is smaller than that of the round orifice; increases in the radial length of orifice cause the spray SMD to be larger, especially in slot orifice; when the liquid surface tension decreases, the spray SMD increases.

    Under the sameWeh, enlarging the round orifice will improve the uniformity of spray in most cases. Increases in the axial length of the orifice will improve the uniformity of the spray likewise, but if the axial length is too long, the spray uniformity becomes worse. When the equivalent diameters of the orifices are the same, the orifice with a longer axial projection length will produce a more uniform spray. Increasing the radial length of the orifice improves the spray uniformity significantly; the bigger the liquid surface tension, the worse the spray uniformity.

    In conclusion, the parameters of the orifice should be determined according to the range ofWehof the slinger's actual work condition. Usually, the slot orifice performs a better spray than round orifice with the same perimeter. Increases in the radial length of the orifice cause the spray SMD to be larger, but the spray uniformity becomes better at the same time. To a certain extent, increases in the axial length of slot orifice improve the liquid spray, but if the axial length is too large, the uniformity of the spray will become worse.

    av国产精品久久久久影院| 伊人亚洲综合成人网| 亚洲欧美中文字幕日韩二区| 亚洲精品乱码久久久久久按摩| 日韩制服丝袜自拍偷拍| 韩国精品一区二区三区 | 大话2 男鬼变身卡| 欧美亚洲 丝袜 人妻 在线| 26uuu在线亚洲综合色| 美女国产视频在线观看| 国产国拍精品亚洲av在线观看| 国产亚洲午夜精品一区二区久久| 综合色丁香网| 又黄又粗又硬又大视频| 综合色丁香网| 国产高清国产精品国产三级| 99热全是精品| 亚洲久久久国产精品| 18在线观看网站| 精品久久国产蜜桃| 少妇人妻精品综合一区二区| a级片在线免费高清观看视频| 交换朋友夫妻互换小说| 国产一区亚洲一区在线观看| 我要看黄色一级片免费的| 日日啪夜夜爽| 国产免费现黄频在线看| 少妇人妻 视频| 青青草视频在线视频观看| 在线免费观看不下载黄p国产| 中文字幕免费在线视频6| 精品第一国产精品| 成年动漫av网址| 国产无遮挡羞羞视频在线观看| 在线观看美女被高潮喷水网站| xxx大片免费视频| 国产熟女午夜一区二区三区| 肉色欧美久久久久久久蜜桃| 看免费成人av毛片| 国产午夜精品一二区理论片| 久久久久久久亚洲中文字幕| 国产爽快片一区二区三区| 在线亚洲精品国产二区图片欧美| 黄色视频在线播放观看不卡| 9191精品国产免费久久| av在线播放精品| 久久综合国产亚洲精品| av免费在线看不卡| 汤姆久久久久久久影院中文字幕| 国产精品一国产av| 免费观看a级毛片全部| 伊人亚洲综合成人网| 国产熟女欧美一区二区| 全区人妻精品视频| www.av在线官网国产| 免费在线观看完整版高清| 国产又爽黄色视频| 侵犯人妻中文字幕一二三四区| 最新中文字幕久久久久| 99国产综合亚洲精品| 在线天堂中文资源库| 日本91视频免费播放| 亚洲人成网站在线观看播放| 欧美 日韩 精品 国产| 国产精品一区www在线观看| 亚洲精品中文字幕在线视频| 亚洲欧美色中文字幕在线| 午夜福利,免费看| av.在线天堂| 国产精品无大码| 国产欧美另类精品又又久久亚洲欧美| 国产男女内射视频| 高清不卡的av网站| a级毛片黄视频| 国产爽快片一区二区三区| 赤兔流量卡办理| 亚洲成色77777| 一级,二级,三级黄色视频| 又大又黄又爽视频免费| 99久久综合免费| 韩国精品一区二区三区 | 亚洲 欧美一区二区三区| 久热久热在线精品观看| 国产在线免费精品| 最近最新中文字幕免费大全7| 亚洲国产最新在线播放| 精品国产一区二区三区四区第35| 国产免费福利视频在线观看| 搡老乐熟女国产| 黄网站色视频无遮挡免费观看| 日韩在线高清观看一区二区三区| 精品国产乱码久久久久久小说| av卡一久久| 内地一区二区视频在线| 久久人妻熟女aⅴ| 国产欧美另类精品又又久久亚洲欧美| 少妇人妻精品综合一区二区| 欧美激情极品国产一区二区三区 | 国产乱来视频区| 国产av一区二区精品久久| 欧美日韩综合久久久久久| 日产精品乱码卡一卡2卡三| 日韩中字成人| 国产精品欧美亚洲77777| 美女福利国产在线| 久久精品夜色国产| 新久久久久国产一级毛片| a级片在线免费高清观看视频| 99国产综合亚洲精品| 街头女战士在线观看网站| 一本色道久久久久久精品综合| 日韩成人av中文字幕在线观看| 午夜福利影视在线免费观看| 夜夜爽夜夜爽视频| 国产精品国产三级专区第一集| 国产精品女同一区二区软件| 国产精品久久久久久久久免| 国产免费现黄频在线看| 日韩伦理黄色片| 一区二区av电影网| 久久久久久伊人网av| 国产 一区精品| 一级片'在线观看视频| 亚洲欧洲精品一区二区精品久久久 | 国产极品天堂在线| 桃花免费在线播放| 日本爱情动作片www.在线观看| 亚洲国产精品成人久久小说| 欧美成人午夜免费资源| 亚洲性久久影院| 母亲3免费完整高清在线观看 | 男女啪啪激烈高潮av片| av又黄又爽大尺度在线免费看| 免费观看无遮挡的男女| 亚洲国产看品久久| 久久久久久久久久久久大奶| 久久热在线av| 乱码一卡2卡4卡精品| 国产福利在线免费观看视频| 青青草视频在线视频观看| 久久人人97超碰香蕉20202| 插逼视频在线观看| 国产亚洲最大av| a级毛色黄片| 女性生殖器流出的白浆| 日韩av免费高清视频| 99热6这里只有精品| 国产一区二区三区综合在线观看 | 国产xxxxx性猛交| 日韩av不卡免费在线播放| 亚洲国产精品一区三区| 精品亚洲成a人片在线观看| 久久久久久久久久人人人人人人| 波野结衣二区三区在线| 国产一级毛片在线| 大香蕉久久成人网| 成人亚洲欧美一区二区av| 久久精品国产亚洲av涩爱| 在线观看www视频免费| 好男人视频免费观看在线| 极品人妻少妇av视频| 国产一区二区三区av在线| 少妇的丰满在线观看| 曰老女人黄片| 五月开心婷婷网| 亚洲一级一片aⅴ在线观看| 美女国产高潮福利片在线看| 国产一区二区三区综合在线观看 | 成年动漫av网址| 国产一区二区三区av在线| 王馨瑶露胸无遮挡在线观看| 久久婷婷青草| 免费人妻精品一区二区三区视频| 亚洲欧美清纯卡通| 伦精品一区二区三区| 美女国产视频在线观看| 热re99久久精品国产66热6| 女性生殖器流出的白浆| 国产高清国产精品国产三级| 又黄又粗又硬又大视频| 91精品三级在线观看| 亚洲伊人久久精品综合| 熟女人妻精品中文字幕| 最近中文字幕2019免费版| 色哟哟·www| 欧美亚洲日本最大视频资源| 亚洲精品aⅴ在线观看| 校园人妻丝袜中文字幕| 精品国产一区二区三区四区第35| 日本免费在线观看一区| 欧美日韩视频精品一区| 夫妻性生交免费视频一级片| 2022亚洲国产成人精品| 亚洲成人av在线免费| 狠狠精品人妻久久久久久综合| 2021少妇久久久久久久久久久| 色婷婷av一区二区三区视频| 五月伊人婷婷丁香| 亚洲一级一片aⅴ在线观看| 亚洲精品成人av观看孕妇| 亚洲中文av在线| 少妇的逼好多水| 女的被弄到高潮叫床怎么办| 欧美精品一区二区大全| 亚洲高清免费不卡视频| 精品一品国产午夜福利视频| 我的女老师完整版在线观看| 美女视频免费永久观看网站| 美女大奶头黄色视频| 黄色毛片三级朝国网站| 18禁国产床啪视频网站| 国产精品国产三级国产av玫瑰| 一级黄片播放器| 90打野战视频偷拍视频| 国产精品三级大全| 新久久久久国产一级毛片| 最新的欧美精品一区二区| 成人无遮挡网站| 欧美老熟妇乱子伦牲交| 日日撸夜夜添| 亚洲精品中文字幕在线视频| 1024视频免费在线观看| 欧美精品av麻豆av| 咕卡用的链子| 少妇猛男粗大的猛烈进出视频| 色视频在线一区二区三区| 国产精品秋霞免费鲁丝片| 亚洲精品乱码久久久久久按摩| 女性生殖器流出的白浆| 看免费成人av毛片| 高清黄色对白视频在线免费看| 少妇人妻久久综合中文| 亚洲精品第二区| 大陆偷拍与自拍| 亚洲国产精品一区三区| 午夜福利乱码中文字幕| 五月玫瑰六月丁香| 亚洲图色成人| 国产精品成人在线| 日韩 亚洲 欧美在线| 亚洲经典国产精华液单| 国产综合精华液| 国产精品麻豆人妻色哟哟久久| 日本色播在线视频| 少妇人妻精品综合一区二区| 精品国产露脸久久av麻豆| 中国国产av一级| 国产精品麻豆人妻色哟哟久久| 免费观看a级毛片全部| 久久久久精品性色| 日韩熟女老妇一区二区性免费视频| 男女边吃奶边做爰视频| 夜夜爽夜夜爽视频| 18禁裸乳无遮挡动漫免费视频| 婷婷色av中文字幕| 亚洲av国产av综合av卡| 亚洲精品日本国产第一区| 亚洲国产日韩一区二区| 国产精品女同一区二区软件| 夜夜爽夜夜爽视频| 国产精品国产三级国产av玫瑰| 国产精品蜜桃在线观看| 亚洲美女黄色视频免费看| 久久青草综合色| 99热这里只有是精品在线观看| 春色校园在线视频观看| av在线老鸭窝| av在线老鸭窝| 中文字幕亚洲精品专区| 少妇熟女欧美另类| 女性被躁到高潮视频| 欧美亚洲日本最大视频资源| 丝袜喷水一区| 国产精品一国产av| 天堂俺去俺来也www色官网| 成年美女黄网站色视频大全免费| 美女内射精品一级片tv| 国产一区二区三区综合在线观看 | 亚洲,欧美,日韩| 国产成人精品婷婷| 亚洲第一av免费看| 亚洲成国产人片在线观看| 黄色 视频免费看| av网站免费在线观看视频| 午夜91福利影院| 国产成人一区二区在线| 日韩av免费高清视频| 精品人妻一区二区三区麻豆| 免费在线观看黄色视频的| 建设人人有责人人尽责人人享有的| 在线天堂最新版资源| 国产免费视频播放在线视频| 国产成人一区二区在线| 丰满迷人的少妇在线观看| 男人添女人高潮全过程视频| 亚洲精品色激情综合| 丝瓜视频免费看黄片| 国产精品偷伦视频观看了| 9热在线视频观看99| 免费高清在线观看日韩| 美女内射精品一级片tv| 久久女婷五月综合色啪小说| 中文字幕av电影在线播放| 免费在线观看完整版高清| 桃花免费在线播放| 色婷婷久久久亚洲欧美| 精品国产一区二区三区四区第35| av视频免费观看在线观看| 日本黄色日本黄色录像| 成年人免费黄色播放视频| 国产一区二区激情短视频 | 99久久精品国产国产毛片| 男女午夜视频在线观看 | av在线老鸭窝| 18禁裸乳无遮挡动漫免费视频| 高清毛片免费看| 69精品国产乱码久久久| 在线观看www视频免费| 亚洲精品乱码久久久久久按摩| 国产精品嫩草影院av在线观看| 亚洲成色77777| 亚洲,一卡二卡三卡| 日韩成人伦理影院| 国产精品成人在线| 妹子高潮喷水视频| av在线观看视频网站免费| 曰老女人黄片| 欧美精品人与动牲交sv欧美| 国产精品99久久99久久久不卡 | 成人亚洲精品一区在线观看| 久久韩国三级中文字幕| 少妇高潮的动态图| 欧美性感艳星| 深夜精品福利| 青青草视频在线视频观看| 国产精品人妻久久久久久| 国产男女内射视频| 成人午夜精彩视频在线观看| 夫妻午夜视频| 免费看不卡的av| 日韩大片免费观看网站| 国产成人aa在线观看| 日韩欧美一区视频在线观看| 成人免费观看视频高清| 成人毛片60女人毛片免费| 一区二区av电影网| 欧美另类一区| 国产精品熟女久久久久浪| av视频免费观看在线观看| 视频区图区小说| 亚洲国产色片| 日韩熟女老妇一区二区性免费视频| 交换朋友夫妻互换小说| 国产国语露脸激情在线看| 亚洲国产精品一区三区| 一二三四在线观看免费中文在 | 国产免费现黄频在线看| 嫩草影院入口| 免费高清在线观看日韩| 亚洲精品国产av成人精品| 最近中文字幕2019免费版| 精品卡一卡二卡四卡免费| 国产精品.久久久| 观看美女的网站| 人妻一区二区av| 美女xxoo啪啪120秒动态图| 国产精品国产av在线观看| 欧美另类一区| 久久亚洲国产成人精品v| 制服人妻中文乱码| 亚洲精品美女久久久久99蜜臀 | 精品国产露脸久久av麻豆| av国产久精品久网站免费入址| 女性生殖器流出的白浆| 成人无遮挡网站| 99精国产麻豆久久婷婷| 最后的刺客免费高清国语| 国产高清不卡午夜福利| 夜夜骑夜夜射夜夜干| 免费观看在线日韩| www日本在线高清视频| 国产成人精品无人区| 久久午夜福利片| 日韩一区二区视频免费看| 亚洲av国产av综合av卡| 男女边吃奶边做爰视频| 国产成人aa在线观看| 国产免费又黄又爽又色| 热99久久久久精品小说推荐| 91午夜精品亚洲一区二区三区| 九色成人免费人妻av| 午夜91福利影院| 涩涩av久久男人的天堂| 99精国产麻豆久久婷婷| 啦啦啦在线观看免费高清www| 国产亚洲一区二区精品| 亚洲第一区二区三区不卡| 久久综合国产亚洲精品| 日本欧美视频一区| 成人黄色视频免费在线看| 97人妻天天添夜夜摸| 老司机影院毛片| 丰满少妇做爰视频| 久久人妻熟女aⅴ| 女性被躁到高潮视频| 成人毛片a级毛片在线播放| 美女国产高潮福利片在线看| 最新的欧美精品一区二区| 久久久精品区二区三区| 观看av在线不卡| 久久人人97超碰香蕉20202| 菩萨蛮人人尽说江南好唐韦庄| 91成人精品电影| 自拍欧美九色日韩亚洲蝌蚪91| 国产色婷婷99| 久久久精品94久久精品| 国产不卡av网站在线观看| 美女xxoo啪啪120秒动态图| 亚洲在久久综合| 黄色毛片三级朝国网站| 全区人妻精品视频| 水蜜桃什么品种好| 两性夫妻黄色片 | 婷婷色麻豆天堂久久| 啦啦啦啦在线视频资源| 搡女人真爽免费视频火全软件| 久久精品国产亚洲av天美| 久久99蜜桃精品久久| 2021少妇久久久久久久久久久| 久久毛片免费看一区二区三区| 亚洲一区二区三区欧美精品| av国产精品久久久久影院| 亚洲美女搞黄在线观看| 久久精品人人爽人人爽视色| 成人黄色视频免费在线看| 中国国产av一级| 国产黄色视频一区二区在线观看| 亚洲国产看品久久| 91aial.com中文字幕在线观看| 高清不卡的av网站| 日本91视频免费播放| 成人国产麻豆网| 超碰97精品在线观看| 精品福利永久在线观看| 少妇高潮的动态图| 一级a做视频免费观看| 伊人久久国产一区二区| 亚洲天堂av无毛| 狂野欧美激情性bbbbbb| 中文字幕另类日韩欧美亚洲嫩草| 卡戴珊不雅视频在线播放| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | av片东京热男人的天堂| 成人综合一区亚洲| 免费大片18禁| 久久久久久久久久人人人人人人| 曰老女人黄片| 国产精品一国产av| 男女午夜视频在线观看 | 精品少妇黑人巨大在线播放| 99九九在线精品视频| 久久人妻熟女aⅴ| 久久久久国产精品人妻一区二区| 日本午夜av视频| 男女午夜视频在线观看 | 免费大片黄手机在线观看| 毛片一级片免费看久久久久| 亚洲一码二码三码区别大吗| 妹子高潮喷水视频| 美女国产视频在线观看| 久久久精品免费免费高清| 美女xxoo啪啪120秒动态图| videosex国产| 下体分泌物呈黄色| 日本色播在线视频| 亚洲国产毛片av蜜桃av| 国产亚洲最大av| 在线天堂中文资源库| 亚洲精品国产av成人精品| 91午夜精品亚洲一区二区三区| 飞空精品影院首页| 亚洲av电影在线进入| 日本欧美国产在线视频| 在线观看免费日韩欧美大片| 精品亚洲乱码少妇综合久久| 一级毛片电影观看| 女性生殖器流出的白浆| 美女国产高潮福利片在线看| 免费观看a级毛片全部| 国产亚洲av片在线观看秒播厂| 国产亚洲欧美精品永久| 久久精品国产亚洲av涩爱| 性色avwww在线观看| 男女边摸边吃奶| 三上悠亚av全集在线观看| 大码成人一级视频| 99国产精品免费福利视频| 最后的刺客免费高清国语| 久久久亚洲精品成人影院| 欧美3d第一页| 国产成人免费观看mmmm| 青春草视频在线免费观看| 久久热在线av| 在线天堂最新版资源| 一级黄片播放器| 少妇人妻 视频| 精品视频人人做人人爽| xxxhd国产人妻xxx| 亚洲国产精品一区二区三区在线| 婷婷成人精品国产| 爱豆传媒免费全集在线观看| 深夜精品福利| 久久国内精品自在自线图片| 中文欧美无线码| 如何舔出高潮| 亚洲国产欧美在线一区| 亚洲成av片中文字幕在线观看 | 亚洲五月色婷婷综合| 亚洲av成人精品一二三区| 精品视频人人做人人爽| 一区二区三区四区激情视频| 亚洲国产精品一区二区三区在线| 丝袜在线中文字幕| 午夜激情久久久久久久| 免费大片黄手机在线观看| 五月天丁香电影| 一区在线观看完整版| 午夜影院在线不卡| 日本爱情动作片www.在线观看| 欧美xxⅹ黑人| 如何舔出高潮| 2018国产大陆天天弄谢| 国产在线视频一区二区| 中文乱码字字幕精品一区二区三区| 国产 一区精品| 巨乳人妻的诱惑在线观看| 亚洲精品久久午夜乱码| 久久人妻熟女aⅴ| 亚洲av综合色区一区| 五月玫瑰六月丁香| 看免费成人av毛片| 国产精品一区www在线观看| 最新中文字幕久久久久| 国产av一区二区精品久久| 嫩草影院入口| 国产精品国产三级专区第一集| 极品少妇高潮喷水抽搐| 国产精品女同一区二区软件| 制服丝袜香蕉在线| 亚洲国产成人一精品久久久| 国产男女内射视频| 人人妻人人澡人人爽人人夜夜| 欧美xxxx性猛交bbbb| 亚洲国产av影院在线观看| 少妇被粗大的猛进出69影院 | 久久久久久久久久成人| 五月天丁香电影| 少妇被粗大猛烈的视频| 免费人成在线观看视频色| 久久 成人 亚洲| 日韩一本色道免费dvd| 久久精品国产鲁丝片午夜精品| 亚洲精品国产色婷婷电影| 成人亚洲欧美一区二区av| 久久99热6这里只有精品| 国产精品国产三级国产av玫瑰| 91精品三级在线观看| 精品一区二区三区视频在线| 免费播放大片免费观看视频在线观看| h视频一区二区三区| 一区二区三区四区激情视频| 精品人妻偷拍中文字幕| 十八禁高潮呻吟视频| 国产日韩一区二区三区精品不卡| 日本免费在线观看一区| 国产精品久久久久久久久免| 男女边吃奶边做爰视频| 精品国产一区二区三区久久久樱花| 国产69精品久久久久777片| 亚洲综合色网址| 九草在线视频观看| 水蜜桃什么品种好| av片东京热男人的天堂| 久久精品国产亚洲av涩爱| 国产精品久久久久久精品电影小说| 少妇人妻 视频| 欧美激情 高清一区二区三区| 国内精品宾馆在线| 国产极品粉嫩免费观看在线| 久久毛片免费看一区二区三区| 亚洲精品国产av成人精品| 观看av在线不卡| 亚洲人成网站在线观看播放| 一本大道久久a久久精品| av福利片在线| 考比视频在线观看| 亚洲综合精品二区| 免费观看a级毛片全部| 午夜视频国产福利| 又黄又粗又硬又大视频| 精品国产乱码久久久久久小说| 国产又色又爽无遮挡免| 2021少妇久久久久久久久久久| 又大又黄又爽视频免费| 欧美激情 高清一区二区三区| 女性被躁到高潮视频| 日本wwww免费看| 深夜精品福利| 97人妻天天添夜夜摸| 亚洲一级一片aⅴ在线观看| 岛国毛片在线播放| 国产乱来视频区| 大片电影免费在线观看免费| 国产高清不卡午夜福利| 丝袜在线中文字幕|