• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Influence of Ti3SiC2 Content on the Arc Erosion Behavior of Ag-Ti3SiC2 Contact Material

    2022-02-06 07:00:10HUANGXiaochenYANYuDINGYunfeiGEJinlong

    HUANG Xiaochen,YAN Yu,DING Yunfei,GE Jinlong,

    LI Zongqun1,2,LI Tong1,2,ZHOU Zijue4

    (1.School of Material and Chemical Engineering,Bengbu University,Anhui 233030,China;2.Engineering Technology Research Center of Silicon-based Materials,Anhui 233030,China;3.Jiangsu Academy of Marine Resources Development (Lianyungang),Jiangsu Ocean University,Lianyungang 222005,China;4.School of Materials Science and Engineering,Hefei University of Technology,Anhui 230009,China)

    【Abstract】The influence of Ti3 SiC2 content on the arc erosion behavior of Ag-Ti3 SiC2 contact material was comprehensively investigated.After 10 k V arc erosion,the Ag-Ti3 SiC2 composite decomposed and oxidized by the formation of AgO,TiO2, and SiO 2.The morphologies of protrusions,pores,peelings,and folds formed on the cathode.With an increasing Ti3 SiC2 content,the electric arc was more dispersed on the eroded surface of Ag-Ti3 SiC2 composites.With 30 vol.%of Ti3 SiC2 addition to the composite,the gridlock effect of Ti3 SiC2 could lock the molten Ag tightly,which effectively reduced the splashing phenomenon of Ag matrix and the erosion effect of arc erosion on the contact material.

    【Key words】 Ag-Ti3 SiC2;Arc erosion;Gridlock effect;Oxidation

    1 Introduction

    Relays have been widely used in aerospace and national defense equipment systems such as satellite,rocket,and accelerator engineering due to their functions in signal transmission,circuit conversion and long-distance regulation.It is common to see the erosion effects of electric arc on the contact material of a relay,which greatly shortens the lifespan and causes substantial economic loss to a country.Compared with other commonly used metals,silver(Ag)has better electro-conductivity and thermal conductivity.In addition,a high thermal conductivity consequently promotes the heat transfer of the arc or Joule heat source to the surrounding environment,shortens the arc combustion time,and reduces arc erosion.However,the arc concentrates on the surface of pure silver,which might lead to a large number of materials splashing.The strength of Ag will decrease seriously.Besides,Ag has a relatively lower hardness and inferior wear resistance,which cannot meet the requirements of the mechanical strength for a good relay.Therefore,the addition of Ag to a composite as the contact material can reduce contact resistance and the local temperature rise caused by the electric arc.The addition of a reinforced phase in the silver matrix can promote the dispersion of arc and weaken the arc erosion of silver,contributing to the better performance of the contact materials.

    Through changing the preparation process and adding additives,the arc erosion abilities of traditional contact materials have been improved.It was found that the splashing phenomenon caused by arc erosion of AgZn O as a contact material prepared by co-precipitation method was less than that by ammonification method[1].Compared with internal oxidation and chemical co-precipitation,AgSnO2prepared by powder metallurgy had less arc erosion and shorter arc burning time[2].The conductivity of AgSnO2with (La,Bi)codoped was further enhanced[3].A further study found that the addition of CuO particles and its irregular distribution in the matrix significantly reduces the arc erosion of AgSn O2material[4].This could be resolved by the applications of Bi2O3,Y or NiO as the additives for AgSn O2.And thus,the electrical contact properties of AgSn O2material can be improved significantly[5-7].Those findings reveal that the addition of Ni improved the arc erosion resistance and dielectric strength of Ag TiB2and CuCr materials,respectively[8].Cu W alloys have been widely used in electrical and electronic fields because of its good combination of intrinsic properties of a hard W phase with a soft Cu phase.With the addition of graphite to Cu W contact,the arc originally occurred in the direction of Cu specific crystal transferred to graphite,which greatly improved the arc erosion resistance of Cu W alloy[9].A recent study investigated copper matrix composites reinforced with carbon nanotubes (CNTs)and TiB2micro-particles.It was found that CNTs addition to TiB2/Cu can effectively promote the dispersion of electric arc and greatly reduce the arc energy of TiB2/Cu materials[10].The increased W content can reduce the welding force of Al2O3-Cu(Cr,W)material and shorten the arc burning time[11].Additives make the composition of electrical contact materials more complex,and the preparation process is more challenging to control stably.Therefore,it is urgent to develop a new type of electrical contact materials without additives.

    The MAX phases are a group of layered ternary compounds in which M is a transition metal element,A is theⅢorⅣmain group element,and X is C or N element.The typical representative of the MAX phase is Ti3SiC2material[12-14].MAX phase Ti3SiC2material contains strong covalent bonds,ionic bonds and weak van der Waals forces,which endow Ti3SiC2with metal and ceramic properties.It has low resistivity (0.227μΩ· m)and high thermal conductivity(37 W·m-1·K-1).The linear expansion coefficient of Ti3SiC2is 9.1×10-6K-1[15],and the melting point of Ti3SiC2can reach about 3 000℃.Ti3SiC2material has excellent high-temperature oxidation resistance.After 20 hours of high temperature oxidation,the weight only increases by 3.5×10-2kg/m2.Ti3SiC2has excellent mechanical properties in Young’s modulus(322 GPa)and compressive strength(1 050 MPa).Because of the above behavior in electrical,thermal and mechanical properties,Ti3SiC2material has attracted more attention in the past decade.Sun et al.proved that Ag-Ti3SiC2composite had good wettability,and Ag and Ti3SiC2materials remained stable under high temperatures,did not chemical reactions occur,which proved that Ag-Ti3SiC2composite was suitable for contact material[16].Our previous studies proved that Ti3SiC2material had the function of dispersing electric arc on the Ag matrix,effectively avoiding the concentrated erosion of the Ag matrix by the electric arc.However,the principles of dispersed arc action and arc erosion mechanism of Ti3SiC2reinforced phase are still not well understood.Thus,this paper concentrated on the influence of Ti3SiC2content on the arc erosion behavior of Ag-Ti3SiC2contact material.Microstructure and compositions of eroded Ag-Ti3SiC2were characterized systematically.With the content of Ti3SiC2addition reached or exceeded 30%,the gridlock effect of Ti3SiC2was exhibited,which locked the Ag protrusions tightly due to the good wettability between Ag and Ti3SiC2material,leading to the reduction of the splashing of the silver matrix.

    2 Material and methods

    2.1 Fabrication of Ag-Ti3 SiC2 composites

    Ti3SiC2powders(-300 mesh,>98%purity)were fabricated by molten salt shielded synthesis[17].Ag powders and Ti3SiC2powders with a constant volume ratio of 60∶40,70∶30,80∶20 and 90∶10 were mechanically mixed for 2 h,respectively.Then,the mixtures were transferred into stainless steel molds(Φ15 mm).The pressure with 700 MPa was applied to the mold for 90 s.Each mixture was turned into a planchet.Then the planchets with different Ti3SiC2additions were heated to 600℃in a tube furnace with a constant Ar atmosphere for 1 h.The mixtures were placed in a furnace for an adequate time until room temperature.After that,Ag-Ti3SiC2specimens were obtained for the following experiment.All the specimens were polished with abrasive papers,and the specimens were thoroughly cleaned with alcoholic solution,acetone,and deionized water.The phase compositions of the fabricated Ag-Ti3SiC2were characterized using X-ray diffraction(XRD,Smart LabSE)with Cu Kαradiation at 40 k V and 50 m A.

    2.2 Microstructure

    The microstructure of the Ag-Ti3SiC2with various Ti3SiC2additions was investigated using scanning electron microscopy (FE-SEM,JEOL)coupled with energy-dispersive X-ray spectrometry(EDX)and an element-mapping technique.XRD was used to characterize the phase constituents of Ag-Ti3SiC2before and after arc erosion.All samples for micro-structure observation were cleaned to remove any contamination.

    2.3 Arc erosion of Ag-Ti3 SiC2

    A self-made arc generation device was utilized for the arc erosion of Ag-Ti3SiC2[18].Ag-Ti3SiC2contact materials with various Ti3SiC2additions(10,20,30,and 40 vol.%)were selected as the cathodes,and a tungsten rod with a tip was the anode.To avoid the influence of the last arc erosion,the anode was renewed after the completion of each test.After the application of the load voltage of 10 k V on the electrodes,the cathode and anode moved closer at 2 mm/minute until the occurrence of an electric arc.The arc lasted about 35 ms.The morphological characteristics were reconstructed by three-dimensional laser scanning confocal microscopy(3D LSCM,VK-X1000)in the mode of laser color observation.The field-emission scanning electron microscopy (FE-SEM,JEOL)was carried out to display the phase and element distribution of the eroded Ag-Ti3SiC2composites.The eroded products of the Ag-Ti3SiC2composite were analyzed by a Raman spectrometry (LabRAM HR,HORIBA JOBIN YVON),which was performed over a wavenumber range of 100-2 000 cm-1with an Nd∶YAG laser.

    3 Results and Discussions

    3.1 Microstructure

    Fig.1 shows the XRD patterns of the Ag-Ti3SiC2with various Ti3SiC2additions.The peaks of the phases,including Ag (JCPDF No.87-0597)and Ti3SiC2(JCPDF No.89-8255),were identified.The peaks of Ti3SiC2intensified with increasing Ti3SiC2content from 10%vol.to 40%vol..

    Fig.1 XRD patterns of Ag-Ti3 SiC2 with various volume percentages of(a)10 vol.%, (b)20 vol.%, (c)30 vol.%and(d)40 vol.%Ti3 SiC2

    The microstructures of Ag-Ti3SiC2with various Ti3SiC2additions are shown in Fig.2.It can be seen that with the increment of Ti3SiC2from 10 to 40 vol.%,the dark gray phase increased dramatically.To further investigate the phase distribution of Ag-Ti3SiC2,EDX mappings of the specimens were further conducted using FE-SEM.Fig.3 shows the distribution of elements in the matrix.It can be seen that gray phase and dark phase were identified in Fig.3(a),and they were further illustrated in Fig.3(c)and Fig.3(d).The gray and dark phases were the elements of Ti and Si,respectively.Those findings were coincident with the XRD patterns in Fig.1,which suggested that Ti3SiC2particles distributed in the Ag matrix uniformly without aggregations,indicating the stable preparation process and suitable Ag-Ti3SiC2composite for arc erosion.

    Fig.2 SEM images of Ag-Ti3 SiC2 composites with various volume percentages of(a)10 vol.%, (b)20 vol.%, (c)30 vol.%and(d)40 vol.%Ti3 SiC2

    Fig.3 (a)SEM images of Ag-10 vol.%Ti3 SiC2 composite,mappings of(b)Ag(c)Ti and(d)Si

    3.2 Gridlock effect of Ti3 SiC2

    To investigate the effects of Ti3SiC2content on the behavior of Ag-Ti3SiC2composites,the eroded morphologies of Ag-Ti3SiC2against the volume of Ti3SiC2were characterized and the results were shown in Fig.4.As can be seen,Ag-Ti3SiC2with different Ti3SiC2additions suffered various attacks from arc erosion,and the electric arc was more dispersed on the surface of Ag-Ti3SiC2composite.The phenomenon proved that Ti3SiC2has arc dispersing effect,which effectively avoid the concentrated erosion of Ag matrix.As can be seen from Fig.4(a),a large site of the Ag-Ti3SiC2was attacked on account of the arc erosion,and a layer of eroded sites was observed and splashed off the surface of the Ag-Ti3SiC2composite with 10%Ti3SiC2.With the increasing Ti3SiC2addition,Ag/Ag oxides protrusions formed on the surface of Ag-30 vol.%Ti3SiC2composite,as shown in Fig.4(c),accompanied by Ti3SiC2and its oxide particles.The enlarged image inside the yellow rectangle in Fig.4(c)was shown in Fig.6(a)and Fig.6(b),it can be seen that the Ag-Ti3SiC2composite has been melted by the arc erosion.After its solidification,refined protrusions formed on the surface of Ag-Ti3SiC2composite.In order to identify the composition of the protrusion and the flat place,the microstructure and the phase were further investigated using SEM and EDX.As shown in Fig.6(c),the EDX on the selected region indicated that the protrusion mainly contained Ag and O.While,Fig.6(d)showed that the flat place mainly contained Ti,O,and Si.Those findings presented that both Ag matrix and Ti3SiC2were oxidized.

    Fig.4 SEM images of eroded Ag-Ti3 SiC2 composites with the volume percentage of(a)10 vol.%, (b)20 vol.%, (c)30 vol.%and(d)40 vol.%Ti3 SiC2

    Fig.6 (a)Enlarged image inside the yellow rectangle in Fig.4(c); (b)enlarged image inside the yellow rectangle in Fig.6(a); (c)and(d)EDX results of blue rectangles in Fig.6(b)

    In order to better explain the dispersing function of Ti3SiC2,the morphological characteristics were reconstructed by three-dimensional laser scanning confocal microscopy in the mode of laser color observation.The results are shown in Fig.5.Compared with Fig.4,the images in Fig.5 showed the color change of Ag-Ti3SiC2composite after arc erosion more clearly.The surface conditions of Ag-10 vol.%Ti3SiC2and Ag-20 vol.%Ti3SiC2composites were compared in Fig.5(a)and 5(b).Due to the function of arc erosion,a layer of material on the surface has been stripped and leaked out of the fresh surface in Fig.5(a),shown by the white circles.There was no such phenomenon in Fig.5(b).The content of Ti3SiC2in the composite in Fig.5(b)was higher than that in Fig.5(a),and Ti3SiC2particles played the role of consuming arc energy and dispersing arc,therefore,there was no material peeling phenomenon in Fig.5(b).When the content of Ti3SiC2material increased to 30%and 40%,the arc jumped from the arc starting position to the side,and finally a larger erosion image formed in Fig.5(c)and(d)than that in Fig.5(a)and(b).In summary,Ti3SiC2can disperse the arc.

    Fig.5 Microscopic images of eroded Ag-Ti3 SiC2 composite with the volume percentage of(a)10 vol.%, (b)20 vol.%,(c)30 vol.%and(d)40 vol.%Ti3 SiC2

    The above findings presented that with the increasing Ti3SiC2content,Ag-Ti3SiC2exhibited different behavior after arc corrosion application.This could be explained by the schematic model as shown in Fig.7.It is known that the melting point of Ag is 961.78℃,which is far lower than that of Ti3SiC2(>3 000℃).After applying load voltage of 10 k V on the cathode (Ag-Ti3SiC2)and anode(Tungsten rod),high energy and high heat arc made Ag matrix melt first.Due to the surface tension and arc plasma force[19-20],Ag formed the shape of protrusion,as shown in Fig.7(a).When the cathode contained 10%or 20%of Ti3SiC2,some Ag protrusions splashed off the surface,while the others remained on the eroded surface,as shown in Fig.4(a)and 4(b).Sun et al.found that the contact angle of molten Ag/Ti3SiC2was 14°,which represented the good wettability between Ag/Ti3SiC2[16].When Ti3SiC2content exceeded 30%,Ti3SiC2formed a grid-like structure.Before the molten Ag splashed off the material surface,the excellent wettability made Ti3SiC2lock the Ag protrusions tightly,as shown in Fig.7(b).After the arc erosion was extinguished,Ag protrusions solidified rapidly,leading to the morphologies as shown in Fig.4(c),4(d)and Fig.6(a).Thus,Ti3SiC2effectively reduced the splashing phenomenon of the Ag matrix and the erosion effect of arc erosion on the contact material.

    Fig.7 Schematic illustration for the morphology formation mechanism of eroded(a)Ag-10 vol.%Ti3 SiC2, (b)Ag-30 vol.%Ti3 SiC2 composite

    3.3 Microstructure of eroded Ag-Ti3 SiC2 composite

    It is well known that the microstructure of the eroded surface of Ag-Ti3SiC2composites varied with the increasing Ti3SiC2content(as shown in Fig.4 and Fig.6).Fig.8 showed the surface morphologies of Ag-Ti3SiC2after arc erosion.It can be seen from Fig.8(a)to Fig.8(d)that protrusions,pores,peelings and folds form on the eroded Ag-Ti3SiC2composite.The regions around the pores were rich in Ag and O,as shown in Fig.8(c).In similar,the fold also mainly contained Ag and O in Fig.8(f).In order to further confirm the products of the Ag-Ti3SiC2composite after arc erosion,Raman spectrometry was conducted on the Ag-Ti3SiC2composite.Through analyzing the shift value of Raman peaks,the specific substance can be identified precisely.The laser of the Raman spectrometry acts at the yellow cross,shown in the insets of Fig.9.In Fig.9(a),the laser served at the flat place,similar to the place in Fig.6(b)and Fig.6(d).The peaks of 793 and 1 035 cm-1belonged to SiO2(R061064,R070565),and the peak of 327 cm-1belonged to TiO2(R050363).The results were consistent with the EDX result in Fig.6(d).In Fig.9(b),the pattern obtained at the fold morphology was similar to that of the morphology in Fig.8(e).The shift of 993 cm-1arose from Ag O[21]while the peaks at 1 312 and 1 586 cm-1arose from carbides[21],which was agreed with EDX result in Fig.8(e)and Fig.8(f).The Raman shifts in Fig.9 further certificated that Ag-Ti3SiC2decomposed and oxidized into AgO,TiO2and SiO2.

    Fig.8 Microstructures of erode Ag-Ti3 SiC2(a)protrusions, (b)pores, (d)peelings, (e)folds;EDS results of(c)spectrum 1 and(f)spectrum 2

    Fig.9 Raman shifts of eroded Ag-Ti3 SiC2 composite(a)TiO2 and SiO2 and(b)Ag O

    4 Conclusion

    The influence of Ti3SiC2content on the arc erosion behavior of Ag-Ti3SiC2contact materials was comprehensively investigated.After the application of the load voltage of 10 k V on Ag-Ti3SiC2composite,the composite decomposed and oxidized into AgO,TiO2and SiO2.Consequently,protrusions,pores,peelings,and folds formed on the eroded surface.Due to the effect of the dispersed arc of Ti3SiC2,the eroded regions by the arc were more scattered with the increasing Ti3SiC2content.When the Ti3SiC2content was less than 30%,some molten Ag particles splashed off the cathode surface,while some Ag particles formed protrusions and remained on the surface dispersedly.When Ti3SiC2content reached or exceeded 30%,due to the excellent wettability between Ag and Ti3SiC2material,Ti3SiC2had the gridlock effect,which could lock the Ag protrusions tightly.Ti3SiC2can effectively reduce the splashing phenomenon of Ag matrix and the erosion effect of arc erosion on the contact material.

    亚洲精品乱码久久久v下载方式| 亚洲精品乱码久久久久久按摩| 亚洲av.av天堂| 99久久无色码亚洲精品果冻| 蜜桃久久精品国产亚洲av| 欧美激情国产日韩精品一区| 日本与韩国留学比较| 久久久精品94久久精品| 久99久视频精品免费| 久久久a久久爽久久v久久| 网址你懂的国产日韩在线| 少妇人妻一区二区三区视频| 免费大片18禁| 久久精品久久久久久久性| 小蜜桃在线观看免费完整版高清| 婷婷色麻豆天堂久久 | 韩国av在线不卡| 国产探花在线观看一区二区| 91午夜精品亚洲一区二区三区| 又粗又硬又长又爽又黄的视频| 亚洲国产最新在线播放| 中文在线观看免费www的网站| 亚洲经典国产精华液单| 国产亚洲5aaaaa淫片| 九九在线视频观看精品| 成人国产麻豆网| 亚洲av一区综合| 免费在线观看成人毛片| 欧美人与善性xxx| 国产av在哪里看| 97在线视频观看| 日本三级黄在线观看| 别揉我奶头 嗯啊视频| 免费人成在线观看视频色| 色5月婷婷丁香| 最近中文字幕2019免费版| 婷婷六月久久综合丁香| 91久久精品国产一区二区成人| 超碰97精品在线观看| kizo精华| 免费观看a级毛片全部| 偷拍熟女少妇极品色| 99热全是精品| 伊人久久精品亚洲午夜| 精品久久久久久电影网 | 欧美日韩一区二区视频在线观看视频在线 | 99久久精品国产国产毛片| 高清在线视频一区二区三区 | 深爱激情五月婷婷| 成人二区视频| 精品少妇黑人巨大在线播放 | 精品久久久久久久久久久久久| 一个人看的www免费观看视频| 久久精品国产自在天天线| 岛国在线免费视频观看| 老司机福利观看| 国产探花极品一区二区| 九九久久精品国产亚洲av麻豆| 91久久精品国产一区二区成人| 中文字幕亚洲精品专区| 一级黄色大片毛片| 欧美精品国产亚洲| 韩国av在线不卡| 欧美日本视频| 男女下面进入的视频免费午夜| 两个人视频免费观看高清| 男人狂女人下面高潮的视频| 国产精品1区2区在线观看.| 久久婷婷人人爽人人干人人爱| 亚洲高清免费不卡视频| 欧美一级a爱片免费观看看| 国产一级毛片七仙女欲春2| 亚洲精品乱久久久久久| 能在线免费观看的黄片| 久久亚洲国产成人精品v| av播播在线观看一区| 天美传媒精品一区二区| 尤物成人国产欧美一区二区三区| 午夜福利网站1000一区二区三区| 久久久精品欧美日韩精品| 美女高潮的动态| 搞女人的毛片| 免费av毛片视频| 最后的刺客免费高清国语| videos熟女内射| 日本免费在线观看一区| 国产亚洲午夜精品一区二区久久 | 欧美xxxx黑人xx丫x性爽| 精品久久久久久久久久久久久| 中文亚洲av片在线观看爽| 色吧在线观看| 国内精品宾馆在线| av在线亚洲专区| 黄片wwwwww| 男女视频在线观看网站免费| 欧美一级a爱片免费观看看| ponron亚洲| 丰满乱子伦码专区| 如何舔出高潮| 国产极品精品免费视频能看的| 亚洲熟妇中文字幕五十中出| 干丝袜人妻中文字幕| 免费看光身美女| 久久久久精品久久久久真实原创| 国产亚洲av嫩草精品影院| 夜夜爽夜夜爽视频| 国产极品天堂在线| 卡戴珊不雅视频在线播放| 别揉我奶头 嗯啊视频| 精品国产露脸久久av麻豆 | 日本免费a在线| 中文字幕制服av| 夫妻性生交免费视频一级片| 久久久久久国产a免费观看| 麻豆精品久久久久久蜜桃| 麻豆成人av视频| 看非洲黑人一级黄片| 亚洲高清免费不卡视频| 亚洲av中文字字幕乱码综合| 日本午夜av视频| 男女视频在线观看网站免费| 成人美女网站在线观看视频| av播播在线观看一区| 欧美zozozo另类| 国产乱人偷精品视频| 精品熟女少妇av免费看| 综合色丁香网| 国产精品永久免费网站| 国产爱豆传媒在线观看| 日本免费a在线| 久久精品国产亚洲av天美| 夜夜看夜夜爽夜夜摸| 国产国拍精品亚洲av在线观看| 最近的中文字幕免费完整| 高清视频免费观看一区二区 | 亚洲精品影视一区二区三区av| videos熟女内射| 午夜福利高清视频| 亚洲aⅴ乱码一区二区在线播放| 精品人妻一区二区三区麻豆| 久久久午夜欧美精品| 嫩草影院新地址| 国产久久久一区二区三区| 欧美三级亚洲精品| 超碰av人人做人人爽久久| 精品99又大又爽又粗少妇毛片| 小说图片视频综合网站| 我要看日韩黄色一级片| 国产av一区在线观看免费| 国内精品美女久久久久久| 男女国产视频网站| 日韩欧美国产在线观看| 蜜臀久久99精品久久宅男| 国产黄片视频在线免费观看| 一级毛片aaaaaa免费看小| 蜜臀久久99精品久久宅男| 久久韩国三级中文字幕| 国产在线男女| 久久久久精品久久久久真实原创| 精品欧美国产一区二区三| 午夜免费男女啪啪视频观看| 菩萨蛮人人尽说江南好唐韦庄 | 最近中文字幕2019免费版| 国产精品三级大全| 国产色爽女视频免费观看| 成人毛片a级毛片在线播放| av在线天堂中文字幕| 内地一区二区视频在线| 亚洲精品亚洲一区二区| 18禁裸乳无遮挡免费网站照片| 免费人成在线观看视频色| 深夜a级毛片| 97热精品久久久久久| 美女被艹到高潮喷水动态| 五月伊人婷婷丁香| 狂野欧美白嫩少妇大欣赏| 欧美人与善性xxx| 高清日韩中文字幕在线| 秋霞在线观看毛片| 天堂中文最新版在线下载 | 日本与韩国留学比较| 精品久久久久久久末码| 国产精品不卡视频一区二区| 美女国产视频在线观看| 少妇人妻精品综合一区二区| 精品国产露脸久久av麻豆 | 六月丁香七月| 免费一级毛片在线播放高清视频| 男女下面进入的视频免费午夜| 中文乱码字字幕精品一区二区三区 | 色综合色国产| 日韩强制内射视频| 亚洲av成人精品一区久久| av播播在线观看一区| 日韩高清综合在线| 国产又色又爽无遮挡免| 久久久成人免费电影| 在线免费观看不下载黄p国产| 久久久久国产网址| 欧美一区二区国产精品久久精品| 国产在视频线在精品| 日韩av在线免费看完整版不卡| 亚洲aⅴ乱码一区二区在线播放| 亚洲三级黄色毛片| 亚洲av成人精品一二三区| 亚洲欧美中文字幕日韩二区| 国产高清不卡午夜福利| 久久精品久久精品一区二区三区| 美女被艹到高潮喷水动态| 色噜噜av男人的天堂激情| 精品欧美国产一区二区三| 国产探花极品一区二区| 国产亚洲最大av| 亚洲国产精品久久男人天堂| 亚洲乱码一区二区免费版| 午夜福利视频1000在线观看| 国产精品一区二区三区四区免费观看| 又粗又硬又长又爽又黄的视频| 亚洲欧美精品综合久久99| 麻豆久久精品国产亚洲av| 91在线精品国自产拍蜜月| 亚洲在线观看片| 亚洲精品成人久久久久久| 国产精品嫩草影院av在线观看| 欧美人与善性xxx| 黑人高潮一二区| 干丝袜人妻中文字幕| 大话2 男鬼变身卡| 国产精品久久视频播放| 日韩成人伦理影院| 九色成人免费人妻av| 欧美成人免费av一区二区三区| 三级国产精品欧美在线观看| 亚洲国产最新在线播放| 白带黄色成豆腐渣| 一级毛片久久久久久久久女| 天堂av国产一区二区熟女人妻| 久久这里只有精品中国| 如何舔出高潮| 欧美日本亚洲视频在线播放| 熟女人妻精品中文字幕| 免费无遮挡裸体视频| 国产精品三级大全| 亚洲精品一区蜜桃| 五月伊人婷婷丁香| 亚洲一区高清亚洲精品| 中文字幕av成人在线电影| 亚洲五月天丁香| 色5月婷婷丁香| 亚洲熟妇中文字幕五十中出| 国产又黄又爽又无遮挡在线| 婷婷六月久久综合丁香| 欧美成人免费av一区二区三区| 中文字幕av成人在线电影| 能在线免费看毛片的网站| 国产精品99久久久久久久久| 亚洲欧洲日产国产| 青春草视频在线免费观看| 看非洲黑人一级黄片| 国产中年淑女户外野战色| 熟女电影av网| 欧美成人a在线观看| 亚洲成av人片在线播放无| 亚洲一级一片aⅴ在线观看| 婷婷色av中文字幕| 汤姆久久久久久久影院中文字幕 | 免费看av在线观看网站| 亚洲精品自拍成人| 日本欧美国产在线视频| 最近中文字幕2019免费版| 国产黄片视频在线免费观看| 麻豆成人av视频| 床上黄色一级片| 别揉我奶头 嗯啊视频| 国产午夜精品久久久久久一区二区三区| 国产精品熟女久久久久浪| 亚洲色图av天堂| or卡值多少钱| 国产在线男女| 97在线视频观看| 99热这里只有是精品50| 久久久久久久久大av| 久久精品国产99精品国产亚洲性色| 人妻夜夜爽99麻豆av| 亚洲婷婷狠狠爱综合网| 伦精品一区二区三区| 一边亲一边摸免费视频| 午夜久久久久精精品| www日本黄色视频网| 韩国av在线不卡| 国产高潮美女av| 一边摸一边抽搐一进一小说| 久久久久久久久久久免费av| 亚洲国产精品成人综合色| 91狼人影院| 日本猛色少妇xxxxx猛交久久| 老师上课跳d突然被开到最大视频| eeuss影院久久| 99热全是精品| 午夜福利在线在线| 免费在线观看成人毛片| 2022亚洲国产成人精品| 国产人妻一区二区三区在| 国产老妇女一区| 久久6这里有精品| 亚洲国产日韩欧美精品在线观看| 久久久精品欧美日韩精品| 精品国内亚洲2022精品成人| av又黄又爽大尺度在线免费看 | 亚洲成人精品中文字幕电影| 国产精品一二三区在线看| 久久久久久九九精品二区国产| 美女cb高潮喷水在线观看| 欧美最新免费一区二区三区| 18禁在线无遮挡免费观看视频| 两性午夜刺激爽爽歪歪视频在线观看| 免费看美女性在线毛片视频| 日韩成人伦理影院| 一级毛片久久久久久久久女| 久久久久久久久久成人| 我要搜黄色片| 天天一区二区日本电影三级| 久久99热这里只频精品6学生 | 99在线人妻在线中文字幕| 中文在线观看免费www的网站| 久久精品夜夜夜夜夜久久蜜豆| 久久精品国产99精品国产亚洲性色| 国产极品天堂在线| 日本黄色片子视频| 国产 一区精品| 国产亚洲av片在线观看秒播厂 | 国产国拍精品亚洲av在线观看| 久久人妻av系列| 美女国产视频在线观看| 老师上课跳d突然被开到最大视频| 久久亚洲精品不卡| 久久精品国产鲁丝片午夜精品| 精品国产三级普通话版| 久久精品国产鲁丝片午夜精品| 午夜a级毛片| 老司机福利观看| 久久国产乱子免费精品| 国产一级毛片在线| 国产一区二区在线观看日韩| 亚洲美女搞黄在线观看| 亚洲国产精品专区欧美| 在线播放国产精品三级| 丰满人妻一区二区三区视频av| av线在线观看网站| 精品一区二区免费观看| 又爽又黄a免费视频| 久久99热这里只有精品18| 国产91av在线免费观看| 亚洲欧美成人综合另类久久久 | 亚洲av成人av| 国产精品野战在线观看| or卡值多少钱| 欧美+日韩+精品| 成人漫画全彩无遮挡| 日韩在线高清观看一区二区三区| 亚洲av成人av| 日本三级黄在线观看| 哪个播放器可以免费观看大片| 国产精品国产三级国产专区5o | 国产精品永久免费网站| 国产真实伦视频高清在线观看| videossex国产| 少妇高潮的动态图| 亚洲国产精品成人综合色| 青春草视频在线免费观看| 搡女人真爽免费视频火全软件| 一卡2卡三卡四卡精品乱码亚洲| 免费观看a级毛片全部| 久热久热在线精品观看| 午夜a级毛片| 亚洲美女搞黄在线观看| 国产私拍福利视频在线观看| 天堂网av新在线| 国产欧美另类精品又又久久亚洲欧美| 久久精品熟女亚洲av麻豆精品 | 免费观看性生交大片5| 亚洲,欧美,日韩| 视频中文字幕在线观看| 伦理电影大哥的女人| 国产免费视频播放在线视频 | 亚洲欧洲国产日韩| 级片在线观看| 又粗又硬又长又爽又黄的视频| 精品国内亚洲2022精品成人| 淫秽高清视频在线观看| 亚洲在久久综合| 最近中文字幕高清免费大全6| 亚洲国产精品合色在线| 欧美成人a在线观看| 在线观看66精品国产| 插阴视频在线观看视频| 寂寞人妻少妇视频99o| av女优亚洲男人天堂| 日韩人妻高清精品专区| 国产乱来视频区| 国产亚洲5aaaaa淫片| 久久精品久久久久久久性| 91av网一区二区| 欧美成人精品欧美一级黄| 26uuu在线亚洲综合色| 国产91av在线免费观看| 我的女老师完整版在线观看| 欧美97在线视频| 国产精品一区二区三区四区久久| 国产伦精品一区二区三区四那| 丰满乱子伦码专区| 亚洲在久久综合| 一二三四中文在线观看免费高清| 九九在线视频观看精品| 在线免费十八禁| 亚洲av中文av极速乱| 桃色一区二区三区在线观看| 五月伊人婷婷丁香| 中文字幕人妻熟人妻熟丝袜美| 爱豆传媒免费全集在线观看| 成人午夜精彩视频在线观看| 99九九线精品视频在线观看视频| 九草在线视频观看| 亚洲va在线va天堂va国产| 免费av不卡在线播放| 最后的刺客免费高清国语| 国产午夜福利久久久久久| 成人性生交大片免费视频hd| 汤姆久久久久久久影院中文字幕 | 午夜久久久久精精品| 亚洲自偷自拍三级| 免费av观看视频| 日本爱情动作片www.在线观看| 网址你懂的国产日韩在线| 亚洲精品国产av成人精品| 麻豆久久精品国产亚洲av| 三级毛片av免费| 中文欧美无线码| 欧美成人免费av一区二区三区| 免费av观看视频| 日本猛色少妇xxxxx猛交久久| 欧美高清成人免费视频www| 日本av手机在线免费观看| 精品少妇黑人巨大在线播放 | 边亲边吃奶的免费视频| a级毛色黄片| 国产一区二区在线观看日韩| 国产又黄又爽又无遮挡在线| 国产一区二区亚洲精品在线观看| 熟妇人妻久久中文字幕3abv| 国产精品久久久久久av不卡| 久久精品91蜜桃| 乱系列少妇在线播放| 亚洲乱码一区二区免费版| 精品久久久久久成人av| 亚洲18禁久久av| 精品久久久久久久人妻蜜臀av| 我要搜黄色片| 精品不卡国产一区二区三区| 精品一区二区三区视频在线| 自拍偷自拍亚洲精品老妇| 中文字幕免费在线视频6| 亚洲av男天堂| 小蜜桃在线观看免费完整版高清| 久久精品久久精品一区二区三区| 在线天堂最新版资源| 亚洲成人久久爱视频| 国产 一区精品| 国产乱人偷精品视频| 亚洲内射少妇av| 国产精品不卡视频一区二区| 毛片一级片免费看久久久久| 国产免费一级a男人的天堂| 免费在线观看成人毛片| 热99在线观看视频| 大又大粗又爽又黄少妇毛片口| 听说在线观看完整版免费高清| 99久久九九国产精品国产免费| 禁无遮挡网站| 只有这里有精品99| 亚洲图色成人| 高清av免费在线| 亚洲,欧美,日韩| av国产久精品久网站免费入址| 1000部很黄的大片| 久久精品国产99精品国产亚洲性色| www.色视频.com| 国产免费又黄又爽又色| 18禁在线播放成人免费| 国产精品1区2区在线观看.| av女优亚洲男人天堂| 亚洲欧美日韩无卡精品| 高清在线视频一区二区三区 | 观看免费一级毛片| 亚洲最大成人av| 国语自产精品视频在线第100页| 毛片女人毛片| 欧美日韩在线观看h| 99久久成人亚洲精品观看| 男女边吃奶边做爰视频| 九草在线视频观看| 亚洲国产色片| 少妇被粗大猛烈的视频| 欧美97在线视频| 观看美女的网站| 人体艺术视频欧美日本| 麻豆乱淫一区二区| 99热网站在线观看| 亚洲人成网站在线观看播放| 日韩av在线大香蕉| 午夜福利高清视频| 欧美高清性xxxxhd video| 久久精品影院6| 国产免费男女视频| 国产精品熟女久久久久浪| 亚洲自拍偷在线| 国产 一区 欧美 日韩| 久久久久久大精品| 国产白丝娇喘喷水9色精品| 亚洲国产色片| 少妇丰满av| 秋霞伦理黄片| 99久久无色码亚洲精品果冻| 中文字幕av成人在线电影| 亚洲久久久久久中文字幕| 长腿黑丝高跟| 亚洲国产精品合色在线| 简卡轻食公司| 精品欧美国产一区二区三| 少妇人妻一区二区三区视频| 久久久精品大字幕| 免费观看性生交大片5| 身体一侧抽搐| 亚洲av不卡在线观看| АⅤ资源中文在线天堂| 看免费成人av毛片| 一区二区三区免费毛片| 日韩一本色道免费dvd| 中文字幕亚洲精品专区| 国产成人福利小说| 久久久久久久久久久免费av| 精品人妻熟女av久视频| 日韩精品有码人妻一区| 波多野结衣巨乳人妻| 亚洲国产精品成人综合色| 成人亚洲欧美一区二区av| 久久国内精品自在自线图片| 日本五十路高清| 天堂影院成人在线观看| 青青草视频在线视频观看| 中文亚洲av片在线观看爽| 啦啦啦啦在线视频资源| 五月玫瑰六月丁香| 欧美激情久久久久久爽电影| 成人性生交大片免费视频hd| 婷婷六月久久综合丁香| 国产精品不卡视频一区二区| 禁无遮挡网站| 欧美日韩精品成人综合77777| 欧美潮喷喷水| 好男人视频免费观看在线| 国产精品国产三级专区第一集| 观看免费一级毛片| 免费观看性生交大片5| 国产精品综合久久久久久久免费| 亚洲精品乱码久久久v下载方式| 国产视频首页在线观看| 国产白丝娇喘喷水9色精品| 中文字幕精品亚洲无线码一区| 国产成人免费观看mmmm| 国产精品99久久久久久久久| 久久久国产成人免费| 久久这里只有精品中国| 中文资源天堂在线| 国产精品嫩草影院av在线观看| 国产不卡一卡二| 久久久久久久久中文| 丰满少妇做爰视频| 亚洲精品日韩av片在线观看| 久久这里有精品视频免费| 国模一区二区三区四区视频| 欧美日韩在线观看h| 99热精品在线国产| 午夜福利在线观看吧| 亚洲自拍偷在线| 一级毛片aaaaaa免费看小| 好男人视频免费观看在线| 久久99蜜桃精品久久| 啦啦啦观看免费观看视频高清| 国产成人a∨麻豆精品| 国产亚洲5aaaaa淫片| 国产免费又黄又爽又色| 天天躁日日操中文字幕| 亚洲精品久久久久久婷婷小说 | 亚洲欧洲国产日韩| 中国美白少妇内射xxxbb| 老司机影院成人| 免费播放大片免费观看视频在线观看 | ponron亚洲| 级片在线观看| 国产高清有码在线观看视频| 亚洲av中文av极速乱| 国产成人精品一,二区| 91久久精品国产一区二区成人| 亚洲精品久久久久久婷婷小说 | 亚洲综合色惰| 伊人久久精品亚洲午夜| 久久精品夜色国产| 国产精品人妻久久久影院| 一个人看的www免费观看视频| 美女高潮的动态| АⅤ资源中文在线天堂| 欧美日韩综合久久久久久| 久久精品国产99精品国产亚洲性色| 国产一区二区亚洲精品在线观看|