• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    EXISTENCE RESULTS FOR SINGULAR FRACTIONAL p-KIRCHHOFF PROBLEMS*

    2022-06-25 02:13:30MingqiXIANG向明啟
    關(guān)鍵詞:張彬

    Mingqi XIANG (向明啟)

    College of Science,Civil Aviation University of China,Tianjin 300300,China

    E-mail:xiangmingqi_hit@163.com

    Vicen?iu D.R?DULESCU

    Faculty of Applied Mathematics,AGH University of Science and Technology,al.Mickiewicza 30,30-059 Krak′ow,Poland Department of Mathematics,University of Craiova,Street A.I.Cuza No.13,200585 Craiova,Romania Institute of Mathematics,Physics and Mechanics,Jadranska 19,1000 Ljubljana,Slovenia

    E-mail:radulescu@inf.ucv.ro

    Binlin ZHANG (張彬林)?

    College of Mathematics and Systems Science,Shandong University of Science and Technology,Qingdao 266590,China

    E-mail:zhangbinlin2012@163.com

    Abstract This paper is concerned with the existence and multiplicity of solutions for singular Kirchhoff-type problems involving the fractional p-Laplacian operator.More precisely,we study the following nonlocal problem: whereis the generalized fractional p-Laplacian operator,N≥1,s∈(0,1),α1,α2,β∈R,Ω?RN is a bounded domain with Lipschitz boundary,and M:,f:Ω→R are continuous functions.Firstly,we introduce a variational framework for the above problem.Then,the existence of least energy solutions is obtained by using variational methods,provided that the nonlinear term f has (θp-1)-sublinear growth at infinity.Moreover,the existence of in finitely many solutions is obtained by using Krasnoselskii’s genus theory.Finally,we obtain the existence and multiplicity of solutions if f has (θp-1)-superlinear growthat infinity.The main features of our paper are that the Kirchhofffunction may vanish at zero and the nonlinearity may be singular.

    Key words Fractional Kirchhoffequation;singular problems;variational and topological methods

    1 Introduction and Main Results

    LetN≥1,p≥1,q≥1,τ>0,0≤a≤1,α,β,γ∈R be such that

    In the casea>0,we assume in addition that,withγ=aσ+(1-a)β,0≤α-σ≤1 if

    Caffarelli,Kohn and Nirenberg[5]proved the following well-known Caffarelli-Kohn-Nirenberg inequality:

    In particular,ifa=1,this inequality becomes

    After that,existence and multiplicity of solutions for singular elliptic problems have been investigated by using the Caffarelli-Kohn-Nirenberg inequality.Indeed,due to the Caffarelli-Kohn-Nirenberg inequality,one can study the existence and multiplicity of solutions for some singular elliptic equations like

    wherea(x) is a nonnegative function satisfyingandbis a function satisfying.For instance,F(xiàn)elli and Schneider in[17]considered the equation

    The authors obtained the existence of positive solutions and non-radial solutions asεsmall enough.Ghergu and Rdulescu[16]studied the singular elliptic equation:

    Under suitable assumptions onK,the authors obtained two distinct solutions asλsmall enough by using Ekeland’s variational principle and the mountain pass theorem.In[10],Chu et al.studied the existence and the qualitative properties of solutions for the singularp-Laplacian type problem

    where the operator div (|x|-βa(x,?u)) is a general form of the singularp-Laplacian div (|x|αp|?u|p-2?u) andfsatisfies (p-1)-sublinear growth at infinity.The authors obtained two nontrivial solutions by using variational methods.In[9],Caristi et al.discussed the following nonlocal degenerate problem:

    whereM:R+→R+is a continuous functionn satisfying thatm0otα-1≤M(t)≤m1tα-1for allt∈R+,wherem1>m0and 1<α<minand the nonlinear termfsatisfies the following conditions:

    (A1) there exists a constantsuch that 0<νF(t)≤tf(t) for allt∈R{0};

    (H1)=0.

    Under the above conditions,the authors obtained the existence and multiplicity of solutions.However,it seems that assumptions (A1) and (H1) can not hold simultaneously.The paper[21]extended the Caffarelli-Kohn-Nirenberg inequality to the case of variable exponent Sobolev spaces and obtained the existence of solutions for a class of singularp(x)-Laplacian equations by using variational methods.

    The issue of the Caffarelli-Kohn-Nirenberg inequalities in fractional Sobolev spaces is quite delicate.Very recently,Nguyen and Squasssina in[28]proved that the following fractional Caffarelli-Kohn-Nirenberg inequality (see also[1]for a special case):Lets∈(0,1),α1,α2,α∈R withα1+α2=α,andN≥1,p>1,q≥1,τ>0,0<a≤1,β,γ∈R be such that

    In the casea>0,assume in addition that,withγ=aσ+(1-a)β,0≤α-σandα-σ≤1 ifUnder the above assumptions,Nguyen and Squassina in[28]proved that if,then

    Inspired by the above works,in this paper,we study the following singular fractional Kirchhofftype problem:

    whereN≥1,s∈(0,1),α1,α2∈R,Ω?RNis a bounded domain with Lipschitz boundary containing zero,M:[0,∞)→[0,∞) is a continuous function,f:Ω→R is a continuous function,andis the generalized fractionalp-Laplacian operator which,up to a normalization constant,is defined as follows:

    for allu,.Especially,asα1=α2=0 andp=2,the above operator reduces to the well-known fractional Laplace operator (-Δ)s.Furthermore,ifs→1-,then (-Δ)sbecomes the classic Laplace operator-Δ(see[14,Proposition 4.4]).

    Since the pioneering work of Caffarelli and Silvestre in[7],a lot of attention has been attracted to investigate problems involving fractional Laplace operator.Especially,much effort has been focused on the subcritical and critical growth of the nonlinearities,which lead us to study various variational problems using the critical point theory.Problems like (1.2) appeared in many fields of real world,for example,continuum mechanics,phase transition phenomena,population dynamics,minimal surfaces and anomalous diffusion.In fact,fractional Laplace operator can be viewed as the typical outcome of stochastically stabilization of Lévy processes;we refer to[2,6,14,20]for more details.

    Problem (1.2) also involves the study of Kirchhoff-type problems.In fact,such problems arise in various models of physical and biological systems.In particular,the existence results concerning Kirchhoff-type problems are more and more abundant in recent years.More precisely,Kirchhoffin[19]established a model governed by the equation

    whereu=u(x,t) denotes the lateral displacement,Eis the Young modulus,ρis the mass density,his the cross-section area,Lis the length andp0is the initial axial tension.In fact,Equation (1.3) extends the classical D’Alembert wave equation based on a physical consideration;that is,enclosing the effects of the changes in the length of the strings during the vibrations.In particular,F(xiàn)iscella and Valdinoci in[18]proposed a stationary Kirchhoffmodel involving the fractional Laplacian by investigating the nonlocal aspect of the tension;see[18,Appendix A]for further details.

    Throughout the paper,without explicit mention,we assume thatM:is a continuous function and verifies (M0) or (M1) and (M2) as below.

    (M0) There existm0>0 andθ>1 such thatM(t)≥m0tθ-1for allt≥0;

    (M1) For anyd>0 there existsκ:=κ(d)>0 such thatM(t)≥κfor allt≥d;

    (M2) There existsθ∈(1,N/N-sp) such that

    A simple example ofMis given byM(t)=a0+b0θtθ-1for allt≥0 and someθ>1,wherea0,b0≥0 anda0+b0>0.WhenMis of this type,problem (1.2) is called to be degenerate ifa=0,while it is named non-degenerate ifa>0.In recent years,Kirchhoff-type fractional problems have triggered more and more attention.Existence results for nondegenerate Kirchhoff-type fractional Laplacian problems were given,for example,in[30,32].While some recent existence results concerning the degenerate case of Kirchhoff-type fractional Laplacian equations were obtained;see[4,8,12,22–25,31,33,34]and references therein.It is worth pointing out that the degenerate case is rather interesting and is treated in some famous works concerning Kirchhofftheory;see for instance[13].From a physical point of view,it seems rational to describe a realistic model byM(0)=0,which means that the base tension of the string vanishes.

    Throughout the paper,we assume thatf:Ω→R is a continuous function.In the following,we enumerate the assumptions concerning the nonlinear termf,but keep in mind that they will not be fulfilled simultaneously:

    (f0)fis odd,that is,f(-t)=-f(t) for allt∈R;

    (f1)

    (f2) there existsq∈(1,p) such thatF(t)≥|t|q,where

    (f3) there existq>θpandC>0 such that

    (f4) there existμ>θpandT>0 such thatfsatisfies the Ambrosetti-Rabinowtiz type condition,i.e.,

    A simple example of functionfsatisfying (f1)-(f2) is given by

    where 1:=Np/(N-sp).

    Remark 1.1From (f1) one can deduce thatfis (θp-1)-sublinear at infinity,while from (f4) one can deduce thatfis (θp-1)-superlinear at infinity.

    Definition 1.2We say thatuis a (weak) solution of problem (1.2),if it holds that

    We always assume thats∈(0,1),α1,α2∈R,α=α1+α2,N≥1,and Ω?RNis a bounded domain with Lipschitz boundary and 0∈Ω.Now we are in a position to introduce two existence results involving the case that the nonlinearityfis (θp-1)-sublinear at infinity.

    Theorem 1.3Assume thatMfulfills (M0) andfsatisfies (f1)–(f2).Ifβ>(α-s)θp+N(θ-1),then problem (1.2) has a least energy solution inwith negative energy.

    Moreover,we get the existence of in finitely many solutions of problem (1.2).

    Theorem 1.4Assume thatMfulfills (M0) andfsatisfies (f0),(f1) and (f2).Ifβ>(α-s)θp+N(θ-1),then problem (1.2) has in finitely many solutions inwith negative energy.

    We also obtain the existence and multiplicity of solutions for problem (1.2) when the nonlinearityfis (θp-1)-superlinear at infinity.

    Theorem 1.5Assume thatMfulfills (M1)–(M2) andfsatisfies (f3)–(f4). Ifβ>(α-s)q+N(q/p-1),then problem (1.2) admits a nontrivial mountain pass solution in

    Theorem 1.6Assume thatMfulfills (M1)–(M2) andfsatisfies (f0) and (f3)–(f4).Ifβ>(α-s)q+N(q/p-1),then problem (1.2) has in finitely many solutions in

    Remark 1.7Ifα1=α2=α,then we can defineas follows:for anyx∈RN

    along anyu∈(RN).

    To the best of our knowledge,Theorems 1.3–1.6 are the first existence and multiplicity results for singular Kirchhoff-type problems in the fractional setting.

    The rest of the paper is organized as follows:in Section 2,we introduce a variational framework of problem (1.2) and give some necessary properties for the functional setting.In Section 3,we obtain the existence of least energy solution for problem (1.2).In Section 4,the existence of in finitely many solutions is obtained by using genus theory.In Section 5,a mountain pass solution and in finitely many solutions for problem (1.2) are obtained by using the mountain pass theorem and the symmetric mountain pass theorem,respectively.

    2 Variational Framework and Preliminary Results

    We first provide some basic functional setting that will be used in the next sections.Let 1<p<∞and defineas the completion of(Ω) with respect to the norm

    Using a similar discussion as in[32],the spaceis a reflexive Banach space.Let 1<q<∞andβ∈R.Define the weighted Lebesgue space

    The next fractional Caffarelli-Kohn-Nirenberg inequality will be used later,which was obtained in[28].In fact,by takinga=1 in (1.1),we have

    Theorem 2.1Lets∈(0,1),1<p<N/s,α>-(N-sp)/pandα-s≤γ≤α.Set.Then there existsC(N,α,s)>0 such that

    Using Theorem 2.1,we have the following embedding theorem:

    Theorem 2.2Lets∈(0,1),1<p<N/sandα>-(N-sp)/p.Thenis continuously embedded inLq(Ω,|x|β),ifandβ≥(α-s)q+N(q/p-1);the embedding is compact ifandβ>(α-s)q+N(q/p-1).

    ProofIf,then by takingγ=αin Theorem 2.1,the embeddingis continuous.If,then we takeα-s<γ<αsuch that

    Letu∈.Then by the Hlder inequality,we have

    Sinceβ>(α-s)q+N(q/p-1),we get

    Thus,it follows that

    It follows from (2.1) and Theorem 2.1 that

    which yields that the embeddingis continuous.

    Next we show that the embeddingis compact.To this aim,let{un}be a bounded sequence inFor anyR>0 withBR(0)?Ω is a ball centered at 0 with radiusR.Then{un}is a bounded sequence inBy Theorem 7.1 in[14],we obtain that there is a convergent subsequence of{un}inLq(ΩBR(0)).By choosing a diagonal sequence,without loss of generality,we assume that{un}converges inLq(ΩBR(0)) for anyR>0.

    Since the embedding is continuous,we obtain that{un}is bounded in

    whereC>0 denotes various constants independent ofn,m.Asβ>q(α-s)+N(q/p-q),it follows thatThus,for anyε>0 there existsR>0 such that

    Then we can choosen0∈N such that

    whereCβ=Rβifβ<0 andCβ=(diam (Ω))βifβ>0.Therefore,we conclude

    This means that{un}is a Cauchy sequence inLq(Ω,|x|β). □

    To study solutions of problem (1.2),we define the associated functionalI:(Ω,|x|αp)→R as follows:

    By assumption (f2),for anyε>0 there existsTε>0 such that

    Using (2.3),β>(α-s)θp+N(θ-1) and Theorem 2.2,one can verify thatIis well defined,of class,R) and

    for allu,v∈(Ω,|x|αp).Clearly,the critical points ofIλare exactly the weak solutions of problem (1.2).

    3 Proof of Theorem 1.3

    In this section,we always assume thatMsatisfies (M0) andfsatisfies (f1) and (f2).

    Let us now recall that the functionalIsatisfies the (PS)ccondition in,if any (PS)csequence,namely a sequence such thatI(un)→candI′(un)→0 asn→∞,admits a strongly convergent subsequence in

    In order to study the existence of least energy solutions for problem (1.2) in the sublinear case,we will use the following direct method in the calculus of variations:

    Theorem 3.1LetXbe a reflexive Banach space with norm ‖·‖X.Assume that the functionalJ:X→R is

    (i) coercive onX,that is,J(u)→∞as ‖u‖X→∞;

    (ii) weakly lower semi-continuous onX,that is,for anyu∈Xand any sequence{un}?Xsuch thatun?uweakly inX,

    ThenJis bounded from below onXand attains its infimum inX.

    Lemma 3.2The functionalIis weakly lower semi-continuous on

    ProofWe first show that Φ is weakly lower semi-continuous on.To this aim,we define a functionalH:(Ω,|x|αp)→R as

    Chooset0-δ<t1<t0<t2<t0+δ.By the assumption onM,we know that M is a increasing function.It follows that

    Next we prove that Ψ is weakly continuous on.By (f2),there existsC>0 such that|f(t)|≤C(1+|t|θp-1) for allt∈R.It follows from Theorem 2.2 thatLθp(Ω,|x|β) is compact forβ>θp(α-s)+N(θ-1).Using a standard argument,one can deduce that Ψ is weakly continuous on

    In conclusion,we obtain thatI(u)=Φ(u)-Ψ(u) is a weakly lower semi-continuous functional on(Ω,|x|αp). □

    Lemma 3.3The functionalIis coercive and satisfies the (PS)ccondition.

    ProofFor anyε>0,by (M1) and (2.3),we obtain that for allu∈(Ω,|x|αp) with ‖u‖≥1,

    By Theorem 2.2 andβ>(α-s)θp+N(θ-1),there existsC>0 such that

    for allu∈with ‖u‖≥1.Now chooseε=m0/(2C),we obtain

    which together withθp>1 implies thatI(u)→∞as ‖u‖→∞.Thus we have proved thatIis coercive.

    Next we show thatIsatisfies the (PS)ccondition.To this aim,we assume that{un}?is (PS)csequence;that is,I(un)→candI′(un)→0 inSinceIis coercive,{un}is bounded inThus,up to a subsequence,we have

    Moreover,by

    we deduce

    It follows that

    By (2.2),we have

    which converges to zero by Theorem 2.2.It follows from (3.1) that

    which,together with the fact that〈(u),un-u〉=0,yields that

    Then using a similar discussion as in[32,Lemma 3.6],we can obtain thatun→uin(Ω,|x|αp).Ifthen up to a subsequence we obtain thatun→0 in□

    Proof of Theorem 1.3By Theorem 3.1,Lemmas 3.2 and 3.3,the functionalIhas a global minimizeru∈(Ω,|x|αp),which is a least energy solution of problem (1.2).Now we prove thatuis nontrivial.Choose a nonnegative functionwith ‖v‖=1 and.Then it follows from the definition ofIand (f2) that

    thanks top>q.Thus,we can choose somet>0 such thatI(tv)<0.Then by the minimality ofu,we have

    which yields thatuis nontrivial. □

    4 Proof of Theorem 1.4

    In this section we study the existence of in finitely many solutions of problem (1.2).To this end,we mainly use a classical result due to Clark (see[11]).Before stating our result,we first recall some basic notions on Krasnoselskii’s genus and its properties.

    Denote byXa real Banach space.Set

    Definition 4.1LetA∈Γ andX=Rk.The genusγ(A) ofAis defined by

    If there does not exist such a mapping for anyk≥1,we setγ(A)=∞.Note that ifAis a subset which consists of finitely many pairs of points,thenγ(A)=1.Moreover,γ(?)=0.

    Now,we list some necessary results of Krasnoselskii’s genus.

    Lemma 4.2(1) LetX=Rkand?Ω be the boundary of an open,symmetric and bounded subset Ω?Rkwith 0∈Ω.Thenγ(?Ω)=k.In particular,let Sk-1be ak-1-dimensional sphere in Rk,thenγ(Sk-1)=k.

    (2) LetA?X,Ω be a bounded neighborhood of 0 in Rk,and assume that there exists an odd mappingh∈C(A,?Ω) withha homeomorphism.Thenγ(A)=k.

    Theorem 4.3(Clark’s theorem[11]) LetJ∈C1(X,R) be a functional satisfying the (PS)ccondition.Furthermore,let us suppose that

    (i)Jis even,i.e.,J(-u)=J(u) for allu∈X,andJis bounded from below;

    (ii) there is a compact setA?Γ such thatγ(A)=kand

    ThenJpossesses at leastkpairs of distinct critical points,and their corresponding critical values are less thanJ(0).

    Proof of Theorem 1.4Set

    then it follows from Lemma 3.3 that

    SinceAkis finite dimensional,all norms on it are equivalent.Thus there exists a positive constantC>0 such that

    By (f2),we get

    for allu∈Skand 0<t≤1 small enough,whereSk={u∈Ak:‖u‖=1}.Thus,we can findt*=t(k)∈(0,1) andε*=ε*(k)>0 such thatI(t*u)≤-ε*<0 for allu∈Sk.Set.Clearly,is homeomorphic to Sk-1.Thenand so

    Sincefis odd,the functionalIis even.In view of Lemma 3.3,we know that all assumptions of Theorem 4.3 are satisfied.Then the functionalIadmits at leastkpairs of distinct critical points.Due to the arbitrary ofk,we obtain the existence of in finitely many critical points ofI.Thus,the proof is complete. □

    5 Proofs of Theorems 1.5–1.6

    In this section we consider the superlinear case of problem (1.2).Without special mentioning,we always assume thatMsatisfies (M1)–(M2),andfsatisfies (f3)–(f4).

    In the sequel,we shall make use of the following general mountain pass theorem (see[3]):

    Theorem 5.1LetXbe a real Banach space andJ∈C1(X,R) withJ(0)=0.Suppose that

    (i) there existρ,r>0 such thatJ(u)≥ρfor allu∈X,with ‖u‖X=r;

    (ii) there existse∈Xsatisfying ‖e‖X>ρsuch thatJ(e)<0.

    Define H={h∈C1([0,1];X):h(0)=1,h(1)=e}.Then

    and there exists a (PS)csequence{un}?X.

    Now we check that the functionalIsatisfies the mountain geometry properties (i) and (ii).

    Lemma 5.2There existr,ρ>0 such thatI(u)≥ρif ‖u‖=r.

    ProofBy (M2),one can deduce

    By (5.1) and (f3),we obtain

    for allu∈(Ω,|x|αp) with ‖u‖≤1.Here we have used the fact that the embedding from(Ω,|x|αp) toLq(Ω,|x|β) is continuous by Theorem 2.2,sinceq∈() andβ>(α-s)θp+N(θ-1).Sinceq>θp,we can chooser∈(0,1) small enough such thatThen it follows from (5.2) thatI(u)≥for allu∈(Ω,|x|αp),with ‖u‖=r. □

    Lemma 5.3There existse∈(Ω,|x|αp) with ‖e‖>rsuch thatI(e)<0,whereris given by Lemma 5.2.

    ProofBy (M2),we have

    Choose a nonnegative functionφ∈(Ω) such that ‖φ‖=1.Then by (f4) and (5.3),for allτ,withτ>1,we have

    Sinceq>θp,fixingτ>0 even large so that we have thatI(e)<0,wheree=τφ.□

    Lemma 5.4The functionalIsatisfies the (PS)ccondition.

    ProofLet{un}?(Ω,|x|αp) be such that

    asn→∞.We first show that{un}is bounded.Arguing by contradiction,we assume that up to a subsequence,

    Using (f4) and (M2),we deduce

    Dividing the above inequality by ‖un‖pand lettingngo to infinity,we obtain

    which together withμ>θpyields a contradiction.Thus,{un}is bounded inWs,p0(Ω,|x|αp).

    Then there exist a subsequence of{un},still denoted by{un},andusuch that

    We first show that

    Indeed,by (f3) and the Hlder inequality,we have Using Theorem 2.2,we obtainThen it follows from (5.5) that (5.4) holds true.

    Due to the fact that{un}is a (PS)csequence,we have

    Then by using a similar discussion as in Lemma 3.3,we conclude that ‖un-u‖→0 asn→∞.In conclusion,the proof is complete. □

    Proof of Theorem 1.5By Lemmas 5.2–5.3 and Theorem 5.1,there exists a (PS)csequence{un}such thatI(un)→c,I′(un)→0,whereand H={h∈C1([0,1];(Ω,|x|αp)):h(0)=1,h(1)=e}.Furthermore,by Lemma 5.4,there exist a subsequence of{un}(still denoted by{un}) andu∈(Ω,|x|αp) such thatun→u.Moreover,uis a nonnegative solution of problem (1.2). □

    We shall use the following symmetric mountain pass theorem to get the existence of in finitely many solutions of problem (1.2) in the superlinear case:

    Theorem 5.5LetXbe a real in finite dimensional Banach space andJ∈C1(X,R) a functional satisfying the (PS)ccondition.Assume thatJsatisfies the following:

    (1)J(0)=0 and there existρ,r>0 such thatJ(u)≥ρfor all ‖u‖X=r;

    (2)Jis even;

    (3) for all finite dimensional subspace?X,there existsR=R()>0 such thatJ(u)<0 for allu∈BR().

    ThenJpossesses an unbounded sequence of critical values characterized by a minimax argument.

    Proof of Theorem 1.6By (f4),we have

    LetEbe a fixed finite dimensional subspace of(Ω,|x|αp).For anyu∈Ewith ‖u‖=1,and for allt≥1 we have by (5.3) and (5.6) that

    asR→∞.Hence there existsR0>0 so large such thatI(u)<0 for allu∈E,with ‖u‖=RandR>R0.Clearly,I(0)=0 andIis even.In view of Lemma 5.2,we know that all assumptions of Theorem 5.5 are satisfied.Thus,problem (1.2) admits an unbounded sequence of solutions. □

    AcknowledgementsThe third author of this paper would like to thank Professor Giovanni Molica Bisci for helpful discussions during the preparation of manuscript.

    猜你喜歡
    張彬
    Simulation of space heavy-ion induced primary knock-on atoms in bipolar devices
    Compared discharge characteristics and film modifications of atmospheric pressure plasma jets with two different electrode geometries
    復(fù)雜光照環(huán)境的車道線檢測方法
    女醫(yī)生喚醒沉睡愛人:攀山渡河筑一座愛城
    電力拖動(dòng)實(shí)訓(xùn)接線板的設(shè)計(jì)與研究
    一種相控陣天線波束指向角計(jì)算方法
    GEANT4 simulation study of over-response phenomenon of fiber x-ray sensor?
    酒鬼報(bào)警
    患癌一瞞到底:我們笑著我們含淚炮制深情
    孤獨(dú)舞者情殤7年,“天邊的愛”就在盈盈眉眼處
    好男人视频免费观看在线| 亚洲第一区二区三区不卡| 嫩草影院入口| 亚洲av欧美aⅴ国产| 少妇精品久久久久久久| 在线观看免费高清a一片| 精品一区二区免费观看| 另类亚洲欧美激情| 日韩亚洲欧美综合| 亚洲av成人精品一二三区| 免费少妇av软件| 一本大道久久a久久精品| 久久人妻熟女aⅴ| 久久久a久久爽久久v久久| 少妇猛男粗大的猛烈进出视频| 色婷婷av一区二区三区视频| 人人妻人人爽人人添夜夜欢视频| 熟女人妻精品中文字幕| 久久人人爽av亚洲精品天堂| 街头女战士在线观看网站| 免费黄频网站在线观看国产| 国产精品久久久久久av不卡| 国产精品秋霞免费鲁丝片| 久久人妻熟女aⅴ| 大又大粗又爽又黄少妇毛片口| 人妻少妇偷人精品九色| 女人精品久久久久毛片| 欧美xxⅹ黑人| 天天影视国产精品| 亚洲精品成人av观看孕妇| 亚洲国产精品一区三区| 国产永久视频网站| 一个人看视频在线观看www免费| 久久精品国产亚洲av天美| 久久精品久久精品一区二区三区| 欧美日韩精品成人综合77777| 免费高清在线观看日韩| 在线观看一区二区三区激情| 国产精品久久久久久精品电影小说| 精品一区在线观看国产| 美女主播在线视频| 免费观看在线日韩| 亚洲av成人精品一区久久| 免费看av在线观看网站| 色视频在线一区二区三区| 成人黄色视频免费在线看| 国产成人精品无人区| 蜜桃久久精品国产亚洲av| 精品国产国语对白av| 桃花免费在线播放| 高清午夜精品一区二区三区| 亚洲精品美女久久av网站| 日本欧美视频一区| 99热这里只有是精品在线观看| av卡一久久| 91久久精品国产一区二区三区| av在线观看视频网站免费| 人人妻人人澡人人爽人人夜夜| 国产色婷婷99| 精品99又大又爽又粗少妇毛片| 亚洲欧洲精品一区二区精品久久久 | 亚洲欧美色中文字幕在线| 我要看黄色一级片免费的| 国产一区亚洲一区在线观看| 欧美精品人与动牲交sv欧美| 男人添女人高潮全过程视频| 插阴视频在线观看视频| 精品一区二区免费观看| 国产极品天堂在线| 国产午夜精品一二区理论片| 一边摸一边做爽爽视频免费| 国产视频首页在线观看| 亚洲色图 男人天堂 中文字幕 | 免费看不卡的av| 婷婷成人精品国产| 国产 精品1| 久久精品久久精品一区二区三区| 我的女老师完整版在线观看| 久久国产精品大桥未久av| 欧美一级a爱片免费观看看| 国产日韩欧美视频二区| 亚洲四区av| 伦理电影免费视频| 亚洲综合色惰| 精品国产一区二区三区久久久樱花| 欧美97在线视频| 91精品国产九色| 亚洲情色 制服丝袜| 日本wwww免费看| 精品少妇黑人巨大在线播放| 国产高清三级在线| 18禁动态无遮挡网站| 久久久久国产精品人妻一区二区| 大香蕉97超碰在线| 丰满迷人的少妇在线观看| 日本wwww免费看| 国产免费一级a男人的天堂| 日日摸夜夜添夜夜添av毛片| 777米奇影视久久| .国产精品久久| 亚洲美女搞黄在线观看| 大香蕉97超碰在线| 久久久久人妻精品一区果冻| 欧美精品一区二区免费开放| 少妇熟女欧美另类| 青青草视频在线视频观看| 少妇人妻久久综合中文| 22中文网久久字幕| 国产高清不卡午夜福利| 欧美精品高潮呻吟av久久| 韩国av在线不卡| 高清av免费在线| 99re6热这里在线精品视频| 国产精品99久久99久久久不卡 | 午夜激情av网站| 天堂8中文在线网| 午夜av观看不卡| 亚洲中文av在线| 久热久热在线精品观看| 在线观看美女被高潮喷水网站| 成人国产麻豆网| 国产成人精品在线电影| 老女人水多毛片| 午夜老司机福利剧场| 日日撸夜夜添| 永久免费av网站大全| 亚洲,欧美,日韩| 最近2019中文字幕mv第一页| 日本av手机在线免费观看| 国产亚洲最大av| 人妻夜夜爽99麻豆av| 国产成人午夜福利电影在线观看| 国语对白做爰xxxⅹ性视频网站| 国产精品国产三级国产av玫瑰| 久久人妻熟女aⅴ| 久久鲁丝午夜福利片| 亚洲精品国产av蜜桃| 美女视频免费永久观看网站| 最近2019中文字幕mv第一页| 大片免费播放器 马上看| 精品久久久久久电影网| 蜜臀久久99精品久久宅男| 国产免费现黄频在线看| 久久久a久久爽久久v久久| 国产视频内射| 91精品伊人久久大香线蕉| 九九久久精品国产亚洲av麻豆| av.在线天堂| 97超碰精品成人国产| 91精品国产九色| a 毛片基地| 亚洲av免费高清在线观看| 免费av中文字幕在线| 久久综合国产亚洲精品| 日韩一本色道免费dvd| 国产在线免费精品| 亚洲欧美成人精品一区二区| 精品99又大又爽又粗少妇毛片| 国产乱来视频区| 少妇 在线观看| 久久午夜综合久久蜜桃| 97超视频在线观看视频| 久久久久精品久久久久真实原创| 亚洲一区二区三区欧美精品| 波野结衣二区三区在线| 久久精品国产亚洲av涩爱| 考比视频在线观看| 国产色爽女视频免费观看| 国产精品99久久99久久久不卡 | 蜜桃在线观看..| 一级爰片在线观看| 亚洲av不卡在线观看| 国产 精品1| 丝袜脚勾引网站| 亚洲四区av| 精品卡一卡二卡四卡免费| 视频中文字幕在线观看| 伦理电影免费视频| 在线观看免费高清a一片| 午夜91福利影院| 欧美国产精品一级二级三级| 日韩三级伦理在线观看| 久久久久精品久久久久真实原创| 在线观看免费日韩欧美大片 | 蜜臀久久99精品久久宅男| 高清黄色对白视频在线免费看| 亚洲中文av在线| 成年人免费黄色播放视频| 国产精品不卡视频一区二区| 亚洲国产毛片av蜜桃av| 午夜免费观看性视频| 人体艺术视频欧美日本| 22中文网久久字幕| 国产精品国产三级国产av玫瑰| 欧美少妇被猛烈插入视频| 国语对白做爰xxxⅹ性视频网站| 国产成人a∨麻豆精品| 一级毛片我不卡| 免费黄网站久久成人精品| 中文字幕免费在线视频6| 国产精品久久久久久精品古装| 免费黄频网站在线观看国产| 久久毛片免费看一区二区三区| 久久久国产精品麻豆| 色网站视频免费| 亚洲成人av在线免费| 成人毛片a级毛片在线播放| 国产精品成人在线| 26uuu在线亚洲综合色| 少妇丰满av| 制服诱惑二区| 亚州av有码| 91久久精品国产一区二区三区| 黄片播放在线免费| 日日摸夜夜添夜夜爱| 秋霞在线观看毛片| 最近的中文字幕免费完整| 五月天丁香电影| 亚洲婷婷狠狠爱综合网| 丰满迷人的少妇在线观看| 国产成人精品婷婷| 26uuu在线亚洲综合色| 亚洲精品亚洲一区二区| 成人亚洲欧美一区二区av| 久久鲁丝午夜福利片| 伊人久久精品亚洲午夜| 久久久久久久久久久丰满| 蜜桃国产av成人99| 欧美亚洲日本最大视频资源| 热99国产精品久久久久久7| 成人无遮挡网站| 最近中文字幕高清免费大全6| 亚洲内射少妇av| 亚洲内射少妇av| 国产一区亚洲一区在线观看| 97超视频在线观看视频| 国产极品粉嫩免费观看在线 | 亚洲久久久国产精品| 成人午夜精彩视频在线观看| 午夜精品国产一区二区电影| 在线亚洲精品国产二区图片欧美 | 久久久a久久爽久久v久久| 久久久久久久国产电影| 飞空精品影院首页| 熟女av电影| 美女中出高潮动态图| 中文字幕人妻熟人妻熟丝袜美| 国产爽快片一区二区三区| 亚洲精品中文字幕在线视频| 欧美3d第一页| 久久韩国三级中文字幕| 色视频在线一区二区三区| 久久久精品94久久精品| 国产精品免费大片| 大码成人一级视频| 91国产中文字幕| 看非洲黑人一级黄片| 亚洲激情五月婷婷啪啪| 欧美精品一区二区大全| videosex国产| 99久久精品一区二区三区| 在线观看人妻少妇| 国产日韩欧美视频二区| 99热6这里只有精品| 亚洲精品国产av成人精品| 18禁在线无遮挡免费观看视频| 国产精品一区二区在线不卡| 亚洲精品色激情综合| 亚洲一级一片aⅴ在线观看| 久久久久久久久大av| 国产熟女午夜一区二区三区 | 一级毛片黄色毛片免费观看视频| 十八禁网站网址无遮挡| 国产亚洲精品第一综合不卡 | 中文天堂在线官网| 欧美xxⅹ黑人| 久久99一区二区三区| 肉色欧美久久久久久久蜜桃| 人体艺术视频欧美日本| 九草在线视频观看| 国产在线视频一区二区| 在线精品无人区一区二区三| 午夜福利,免费看| 麻豆成人av视频| 99re6热这里在线精品视频| 亚洲无线观看免费| 人人妻人人爽人人添夜夜欢视频| 热99久久久久精品小说推荐| 亚洲精品一二三| 考比视频在线观看| 少妇的逼水好多| 免费人成在线观看视频色| 一级黄片播放器| 亚洲欧美日韩另类电影网站| 熟女人妻精品中文字幕| 秋霞在线观看毛片| 热re99久久精品国产66热6| 性色av一级| 国产一级毛片在线| 亚洲精品一区蜜桃| 久久精品国产鲁丝片午夜精品| 国产在线一区二区三区精| 欧美成人午夜免费资源| av黄色大香蕉| 日韩电影二区| 97超碰精品成人国产| 91精品三级在线观看| 久久久国产精品麻豆| 亚洲综合色网址| 亚洲美女黄色视频免费看| 成人综合一区亚洲| 日本av手机在线免费观看| 国产午夜精品久久久久久一区二区三区| 成年美女黄网站色视频大全免费 | 在线观看免费视频网站a站| 天天影视国产精品| 国产亚洲av片在线观看秒播厂| 内地一区二区视频在线| 老司机影院成人| 人妻系列 视频| 亚洲欧美一区二区三区国产| av电影中文网址| 在现免费观看毛片| 色视频在线一区二区三区| 成人漫画全彩无遮挡| 国产男女内射视频| 桃花免费在线播放| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲内射少妇av| 国产亚洲午夜精品一区二区久久| 一级毛片电影观看| 精品一区在线观看国产| 亚洲av.av天堂| 十分钟在线观看高清视频www| 亚洲av成人精品一二三区| 九草在线视频观看| 亚洲国产日韩一区二区| 国产白丝娇喘喷水9色精品| 欧美最新免费一区二区三区| 精品熟女少妇av免费看| 亚洲精品aⅴ在线观看| 久久久久久久久久久久大奶| 国产免费一级a男人的天堂| 26uuu在线亚洲综合色| 一区在线观看完整版| 爱豆传媒免费全集在线观看| 9色porny在线观看| 亚洲精品国产色婷婷电影| 黑人欧美特级aaaaaa片| 免费观看性生交大片5| 久久韩国三级中文字幕| 热99国产精品久久久久久7| 亚洲人成网站在线播| 国产爽快片一区二区三区| av在线老鸭窝| 亚洲人成网站在线观看播放| 少妇被粗大的猛进出69影院 | 国产高清国产精品国产三级| 亚洲色图综合在线观看| 免费黄色在线免费观看| 欧美精品高潮呻吟av久久| 制服丝袜香蕉在线| 亚洲一级一片aⅴ在线观看| 美女cb高潮喷水在线观看| 国产日韩欧美亚洲二区| 99国产综合亚洲精品| 国产成人91sexporn| 国产亚洲最大av| 大香蕉97超碰在线| 丰满饥渴人妻一区二区三| 精品久久久噜噜| av有码第一页| 交换朋友夫妻互换小说| 看非洲黑人一级黄片| 狂野欧美激情性xxxx在线观看| 国产精品国产三级国产专区5o| 熟女av电影| 日本与韩国留学比较| 免费观看无遮挡的男女| 自线自在国产av| 精品少妇黑人巨大在线播放| 国产精品一区二区在线观看99| 七月丁香在线播放| 综合色丁香网| 国产69精品久久久久777片| 亚洲久久久国产精品| 欧美日韩成人在线一区二区| 蜜臀久久99精品久久宅男| 少妇人妻久久综合中文| 午夜福利视频精品| 简卡轻食公司| 少妇 在线观看| 欧美3d第一页| 成人二区视频| av在线老鸭窝| av在线app专区| 黄色欧美视频在线观看| 纯流量卡能插随身wifi吗| 亚洲精品乱码久久久v下载方式| 秋霞伦理黄片| 免费少妇av软件| 免费看光身美女| 亚洲精品亚洲一区二区| 3wmmmm亚洲av在线观看| 黑人高潮一二区| 欧美日韩视频高清一区二区三区二| 午夜老司机福利剧场| 老司机影院成人| 18禁观看日本| 少妇的逼水好多| 国产男女超爽视频在线观看| 你懂的网址亚洲精品在线观看| 欧美精品人与动牲交sv欧美| 少妇丰满av| 欧美日韩精品成人综合77777| 国产成人精品婷婷| 久久 成人 亚洲| 精品人妻熟女av久视频| 纯流量卡能插随身wifi吗| 99久久精品一区二区三区| 亚洲成色77777| 伊人亚洲综合成人网| 男人操女人黄网站| 国产亚洲午夜精品一区二区久久| 国产成人免费无遮挡视频| 国产黄色视频一区二区在线观看| 久久久精品区二区三区| 18禁观看日本| 少妇的逼水好多| av.在线天堂| 久久久久久伊人网av| 久久久久久久精品精品| 高清欧美精品videossex| 嘟嘟电影网在线观看| 国产色婷婷99| 国产精品.久久久| 欧美精品一区二区免费开放| 各种免费的搞黄视频| 校园人妻丝袜中文字幕| 亚洲欧美一区二区三区国产| 日本欧美视频一区| 国产白丝娇喘喷水9色精品| av网站免费在线观看视频| 黑人高潮一二区| 亚洲色图综合在线观看| a级毛色黄片| 日韩电影二区| 欧美激情国产日韩精品一区| 你懂的网址亚洲精品在线观看| 午夜av观看不卡| 精品久久国产蜜桃| 一区二区三区乱码不卡18| 飞空精品影院首页| 两个人免费观看高清视频| 五月开心婷婷网| 免费观看在线日韩| 国产伦精品一区二区三区视频9| 黑人欧美特级aaaaaa片| 久久综合国产亚洲精品| 免费日韩欧美在线观看| 午夜福利视频在线观看免费| 国产免费现黄频在线看| 少妇人妻 视频| 亚洲精品av麻豆狂野| 亚洲欧美日韩另类电影网站| 一个人免费看片子| 夫妻性生交免费视频一级片| av免费观看日本| 男女国产视频网站| 欧美 亚洲 国产 日韩一| 18禁动态无遮挡网站| 国产精品成人在线| 精品国产乱码久久久久久小说| 热99国产精品久久久久久7| 免费人成在线观看视频色| 如日韩欧美国产精品一区二区三区 | 免费av中文字幕在线| 亚洲不卡免费看| 永久免费av网站大全| 日日爽夜夜爽网站| 一级毛片aaaaaa免费看小| 又大又黄又爽视频免费| 亚洲精品第二区| 色网站视频免费| 精品少妇久久久久久888优播| 国产又色又爽无遮挡免| 日韩强制内射视频| 国产无遮挡羞羞视频在线观看| 午夜免费鲁丝| 免费黄频网站在线观看国产| 欧美亚洲 丝袜 人妻 在线| av电影中文网址| 欧美+日韩+精品| 欧美精品国产亚洲| 久久久久久久大尺度免费视频| 大话2 男鬼变身卡| 少妇猛男粗大的猛烈进出视频| 亚洲人成网站在线观看播放| 中国三级夫妇交换| 丝袜在线中文字幕| 制服丝袜香蕉在线| 国精品久久久久久国模美| 国产av一区二区精品久久| 国产成人免费观看mmmm| 国产爽快片一区二区三区| 久久久午夜欧美精品| 美女国产高潮福利片在线看| 欧美日韩综合久久久久久| 校园人妻丝袜中文字幕| 99国产精品免费福利视频| 丰满乱子伦码专区| 国产成人精品一,二区| 搡女人真爽免费视频火全软件| 秋霞在线观看毛片| 国产免费福利视频在线观看| 国产成人a∨麻豆精品| 尾随美女入室| √禁漫天堂资源中文www| 青春草视频在线免费观看| 99久久中文字幕三级久久日本| 亚洲国产欧美日韩在线播放| 欧美亚洲 丝袜 人妻 在线| 下体分泌物呈黄色| 成年美女黄网站色视频大全免费 | 国产精品人妻久久久久久| 2018国产大陆天天弄谢| 丝袜喷水一区| 美女国产视频在线观看| 国产日韩欧美亚洲二区| 男人操女人黄网站| 99热这里只有是精品在线观看| 夜夜看夜夜爽夜夜摸| 国产成人免费无遮挡视频| 亚洲性久久影院| 久久午夜综合久久蜜桃| 秋霞伦理黄片| 自拍欧美九色日韩亚洲蝌蚪91| 新久久久久国产一级毛片| 哪个播放器可以免费观看大片| 亚洲精品av麻豆狂野| 熟女av电影| a级毛片免费高清观看在线播放| 秋霞伦理黄片| 伦理电影免费视频| av视频免费观看在线观看| 日韩强制内射视频| 亚洲精华国产精华液的使用体验| 激情五月婷婷亚洲| 蜜桃在线观看..| 欧美国产精品一级二级三级| 免费少妇av软件| 国产精品人妻久久久影院| 亚洲国产精品国产精品| 精品久久久久久电影网| 自线自在国产av| 久久久久精品久久久久真实原创| 久久久久久久国产电影| 日韩不卡一区二区三区视频在线| 亚洲精品国产av蜜桃| 黄片无遮挡物在线观看| 五月天丁香电影| 欧美精品人与动牲交sv欧美| 亚洲五月色婷婷综合| 久久免费观看电影| 人妻少妇偷人精品九色| 欧美日韩一区二区视频在线观看视频在线| 99九九线精品视频在线观看视频| 日本欧美视频一区| 十分钟在线观看高清视频www| 蜜桃国产av成人99| 亚洲精品亚洲一区二区| 久久久久网色| 欧美xxⅹ黑人| 国产亚洲精品久久久com| 少妇高潮的动态图| 黑人欧美特级aaaaaa片| av专区在线播放| 色吧在线观看| av线在线观看网站| 草草在线视频免费看| 国产爽快片一区二区三区| 最新中文字幕久久久久| 国产欧美日韩一区二区三区在线 | 久久 成人 亚洲| 九草在线视频观看| 久久人人爽av亚洲精品天堂| 久久亚洲国产成人精品v| 一级毛片电影观看| 午夜视频国产福利| 国产伦精品一区二区三区视频9| 久久久久久久国产电影| 又大又黄又爽视频免费| 中文字幕制服av| 伊人亚洲综合成人网| av女优亚洲男人天堂| 天天操日日干夜夜撸| 99久国产av精品国产电影| 制服丝袜香蕉在线| 久久国内精品自在自线图片| 老司机影院毛片| 亚洲高清免费不卡视频| www.av在线官网国产| xxxhd国产人妻xxx| 九草在线视频观看| 国产免费视频播放在线视频| 九草在线视频观看| 毛片一级片免费看久久久久| 免费av不卡在线播放| 99久久综合免费| 精品国产露脸久久av麻豆| av不卡在线播放| 天天操日日干夜夜撸| 亚洲精品第二区| 日本与韩国留学比较| 亚洲av综合色区一区|