• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    EXISTENCE RESULTS FOR SINGULAR FRACTIONAL p-KIRCHHOFF PROBLEMS*

    2022-06-25 02:13:30MingqiXIANG向明啟
    關(guān)鍵詞:張彬

    Mingqi XIANG (向明啟)

    College of Science,Civil Aviation University of China,Tianjin 300300,China

    E-mail:xiangmingqi_hit@163.com

    Vicen?iu D.R?DULESCU

    Faculty of Applied Mathematics,AGH University of Science and Technology,al.Mickiewicza 30,30-059 Krak′ow,Poland Department of Mathematics,University of Craiova,Street A.I.Cuza No.13,200585 Craiova,Romania Institute of Mathematics,Physics and Mechanics,Jadranska 19,1000 Ljubljana,Slovenia

    E-mail:radulescu@inf.ucv.ro

    Binlin ZHANG (張彬林)?

    College of Mathematics and Systems Science,Shandong University of Science and Technology,Qingdao 266590,China

    E-mail:zhangbinlin2012@163.com

    Abstract This paper is concerned with the existence and multiplicity of solutions for singular Kirchhoff-type problems involving the fractional p-Laplacian operator.More precisely,we study the following nonlocal problem: whereis the generalized fractional p-Laplacian operator,N≥1,s∈(0,1),α1,α2,β∈R,Ω?RN is a bounded domain with Lipschitz boundary,and M:,f:Ω→R are continuous functions.Firstly,we introduce a variational framework for the above problem.Then,the existence of least energy solutions is obtained by using variational methods,provided that the nonlinear term f has (θp-1)-sublinear growth at infinity.Moreover,the existence of in finitely many solutions is obtained by using Krasnoselskii’s genus theory.Finally,we obtain the existence and multiplicity of solutions if f has (θp-1)-superlinear growthat infinity.The main features of our paper are that the Kirchhofffunction may vanish at zero and the nonlinearity may be singular.

    Key words Fractional Kirchhoffequation;singular problems;variational and topological methods

    1 Introduction and Main Results

    LetN≥1,p≥1,q≥1,τ>0,0≤a≤1,α,β,γ∈R be such that

    In the casea>0,we assume in addition that,withγ=aσ+(1-a)β,0≤α-σ≤1 if

    Caffarelli,Kohn and Nirenberg[5]proved the following well-known Caffarelli-Kohn-Nirenberg inequality:

    In particular,ifa=1,this inequality becomes

    After that,existence and multiplicity of solutions for singular elliptic problems have been investigated by using the Caffarelli-Kohn-Nirenberg inequality.Indeed,due to the Caffarelli-Kohn-Nirenberg inequality,one can study the existence and multiplicity of solutions for some singular elliptic equations like

    wherea(x) is a nonnegative function satisfyingandbis a function satisfying.For instance,F(xiàn)elli and Schneider in[17]considered the equation

    The authors obtained the existence of positive solutions and non-radial solutions asεsmall enough.Ghergu and Rdulescu[16]studied the singular elliptic equation:

    Under suitable assumptions onK,the authors obtained two distinct solutions asλsmall enough by using Ekeland’s variational principle and the mountain pass theorem.In[10],Chu et al.studied the existence and the qualitative properties of solutions for the singularp-Laplacian type problem

    where the operator div (|x|-βa(x,?u)) is a general form of the singularp-Laplacian div (|x|αp|?u|p-2?u) andfsatisfies (p-1)-sublinear growth at infinity.The authors obtained two nontrivial solutions by using variational methods.In[9],Caristi et al.discussed the following nonlocal degenerate problem:

    whereM:R+→R+is a continuous functionn satisfying thatm0otα-1≤M(t)≤m1tα-1for allt∈R+,wherem1>m0and 1<α<minand the nonlinear termfsatisfies the following conditions:

    (A1) there exists a constantsuch that 0<νF(t)≤tf(t) for allt∈R{0};

    (H1)=0.

    Under the above conditions,the authors obtained the existence and multiplicity of solutions.However,it seems that assumptions (A1) and (H1) can not hold simultaneously.The paper[21]extended the Caffarelli-Kohn-Nirenberg inequality to the case of variable exponent Sobolev spaces and obtained the existence of solutions for a class of singularp(x)-Laplacian equations by using variational methods.

    The issue of the Caffarelli-Kohn-Nirenberg inequalities in fractional Sobolev spaces is quite delicate.Very recently,Nguyen and Squasssina in[28]proved that the following fractional Caffarelli-Kohn-Nirenberg inequality (see also[1]for a special case):Lets∈(0,1),α1,α2,α∈R withα1+α2=α,andN≥1,p>1,q≥1,τ>0,0<a≤1,β,γ∈R be such that

    In the casea>0,assume in addition that,withγ=aσ+(1-a)β,0≤α-σandα-σ≤1 ifUnder the above assumptions,Nguyen and Squassina in[28]proved that if,then

    Inspired by the above works,in this paper,we study the following singular fractional Kirchhofftype problem:

    whereN≥1,s∈(0,1),α1,α2∈R,Ω?RNis a bounded domain with Lipschitz boundary containing zero,M:[0,∞)→[0,∞) is a continuous function,f:Ω→R is a continuous function,andis the generalized fractionalp-Laplacian operator which,up to a normalization constant,is defined as follows:

    for allu,.Especially,asα1=α2=0 andp=2,the above operator reduces to the well-known fractional Laplace operator (-Δ)s.Furthermore,ifs→1-,then (-Δ)sbecomes the classic Laplace operator-Δ(see[14,Proposition 4.4]).

    Since the pioneering work of Caffarelli and Silvestre in[7],a lot of attention has been attracted to investigate problems involving fractional Laplace operator.Especially,much effort has been focused on the subcritical and critical growth of the nonlinearities,which lead us to study various variational problems using the critical point theory.Problems like (1.2) appeared in many fields of real world,for example,continuum mechanics,phase transition phenomena,population dynamics,minimal surfaces and anomalous diffusion.In fact,fractional Laplace operator can be viewed as the typical outcome of stochastically stabilization of Lévy processes;we refer to[2,6,14,20]for more details.

    Problem (1.2) also involves the study of Kirchhoff-type problems.In fact,such problems arise in various models of physical and biological systems.In particular,the existence results concerning Kirchhoff-type problems are more and more abundant in recent years.More precisely,Kirchhoffin[19]established a model governed by the equation

    whereu=u(x,t) denotes the lateral displacement,Eis the Young modulus,ρis the mass density,his the cross-section area,Lis the length andp0is the initial axial tension.In fact,Equation (1.3) extends the classical D’Alembert wave equation based on a physical consideration;that is,enclosing the effects of the changes in the length of the strings during the vibrations.In particular,F(xiàn)iscella and Valdinoci in[18]proposed a stationary Kirchhoffmodel involving the fractional Laplacian by investigating the nonlocal aspect of the tension;see[18,Appendix A]for further details.

    Throughout the paper,without explicit mention,we assume thatM:is a continuous function and verifies (M0) or (M1) and (M2) as below.

    (M0) There existm0>0 andθ>1 such thatM(t)≥m0tθ-1for allt≥0;

    (M1) For anyd>0 there existsκ:=κ(d)>0 such thatM(t)≥κfor allt≥d;

    (M2) There existsθ∈(1,N/N-sp) such that

    A simple example ofMis given byM(t)=a0+b0θtθ-1for allt≥0 and someθ>1,wherea0,b0≥0 anda0+b0>0.WhenMis of this type,problem (1.2) is called to be degenerate ifa=0,while it is named non-degenerate ifa>0.In recent years,Kirchhoff-type fractional problems have triggered more and more attention.Existence results for nondegenerate Kirchhoff-type fractional Laplacian problems were given,for example,in[30,32].While some recent existence results concerning the degenerate case of Kirchhoff-type fractional Laplacian equations were obtained;see[4,8,12,22–25,31,33,34]and references therein.It is worth pointing out that the degenerate case is rather interesting and is treated in some famous works concerning Kirchhofftheory;see for instance[13].From a physical point of view,it seems rational to describe a realistic model byM(0)=0,which means that the base tension of the string vanishes.

    Throughout the paper,we assume thatf:Ω→R is a continuous function.In the following,we enumerate the assumptions concerning the nonlinear termf,but keep in mind that they will not be fulfilled simultaneously:

    (f0)fis odd,that is,f(-t)=-f(t) for allt∈R;

    (f1)

    (f2) there existsq∈(1,p) such thatF(t)≥|t|q,where

    (f3) there existq>θpandC>0 such that

    (f4) there existμ>θpandT>0 such thatfsatisfies the Ambrosetti-Rabinowtiz type condition,i.e.,

    A simple example of functionfsatisfying (f1)-(f2) is given by

    where 1:=Np/(N-sp).

    Remark 1.1From (f1) one can deduce thatfis (θp-1)-sublinear at infinity,while from (f4) one can deduce thatfis (θp-1)-superlinear at infinity.

    Definition 1.2We say thatuis a (weak) solution of problem (1.2),if it holds that

    We always assume thats∈(0,1),α1,α2∈R,α=α1+α2,N≥1,and Ω?RNis a bounded domain with Lipschitz boundary and 0∈Ω.Now we are in a position to introduce two existence results involving the case that the nonlinearityfis (θp-1)-sublinear at infinity.

    Theorem 1.3Assume thatMfulfills (M0) andfsatisfies (f1)–(f2).Ifβ>(α-s)θp+N(θ-1),then problem (1.2) has a least energy solution inwith negative energy.

    Moreover,we get the existence of in finitely many solutions of problem (1.2).

    Theorem 1.4Assume thatMfulfills (M0) andfsatisfies (f0),(f1) and (f2).Ifβ>(α-s)θp+N(θ-1),then problem (1.2) has in finitely many solutions inwith negative energy.

    We also obtain the existence and multiplicity of solutions for problem (1.2) when the nonlinearityfis (θp-1)-superlinear at infinity.

    Theorem 1.5Assume thatMfulfills (M1)–(M2) andfsatisfies (f3)–(f4). Ifβ>(α-s)q+N(q/p-1),then problem (1.2) admits a nontrivial mountain pass solution in

    Theorem 1.6Assume thatMfulfills (M1)–(M2) andfsatisfies (f0) and (f3)–(f4).Ifβ>(α-s)q+N(q/p-1),then problem (1.2) has in finitely many solutions in

    Remark 1.7Ifα1=α2=α,then we can defineas follows:for anyx∈RN

    along anyu∈(RN).

    To the best of our knowledge,Theorems 1.3–1.6 are the first existence and multiplicity results for singular Kirchhoff-type problems in the fractional setting.

    The rest of the paper is organized as follows:in Section 2,we introduce a variational framework of problem (1.2) and give some necessary properties for the functional setting.In Section 3,we obtain the existence of least energy solution for problem (1.2).In Section 4,the existence of in finitely many solutions is obtained by using genus theory.In Section 5,a mountain pass solution and in finitely many solutions for problem (1.2) are obtained by using the mountain pass theorem and the symmetric mountain pass theorem,respectively.

    2 Variational Framework and Preliminary Results

    We first provide some basic functional setting that will be used in the next sections.Let 1<p<∞and defineas the completion of(Ω) with respect to the norm

    Using a similar discussion as in[32],the spaceis a reflexive Banach space.Let 1<q<∞andβ∈R.Define the weighted Lebesgue space

    The next fractional Caffarelli-Kohn-Nirenberg inequality will be used later,which was obtained in[28].In fact,by takinga=1 in (1.1),we have

    Theorem 2.1Lets∈(0,1),1<p<N/s,α>-(N-sp)/pandα-s≤γ≤α.Set.Then there existsC(N,α,s)>0 such that

    Using Theorem 2.1,we have the following embedding theorem:

    Theorem 2.2Lets∈(0,1),1<p<N/sandα>-(N-sp)/p.Thenis continuously embedded inLq(Ω,|x|β),ifandβ≥(α-s)q+N(q/p-1);the embedding is compact ifandβ>(α-s)q+N(q/p-1).

    ProofIf,then by takingγ=αin Theorem 2.1,the embeddingis continuous.If,then we takeα-s<γ<αsuch that

    Letu∈.Then by the Hlder inequality,we have

    Sinceβ>(α-s)q+N(q/p-1),we get

    Thus,it follows that

    It follows from (2.1) and Theorem 2.1 that

    which yields that the embeddingis continuous.

    Next we show that the embeddingis compact.To this aim,let{un}be a bounded sequence inFor anyR>0 withBR(0)?Ω is a ball centered at 0 with radiusR.Then{un}is a bounded sequence inBy Theorem 7.1 in[14],we obtain that there is a convergent subsequence of{un}inLq(ΩBR(0)).By choosing a diagonal sequence,without loss of generality,we assume that{un}converges inLq(ΩBR(0)) for anyR>0.

    Since the embedding is continuous,we obtain that{un}is bounded in

    whereC>0 denotes various constants independent ofn,m.Asβ>q(α-s)+N(q/p-q),it follows thatThus,for anyε>0 there existsR>0 such that

    Then we can choosen0∈N such that

    whereCβ=Rβifβ<0 andCβ=(diam (Ω))βifβ>0.Therefore,we conclude

    This means that{un}is a Cauchy sequence inLq(Ω,|x|β). □

    To study solutions of problem (1.2),we define the associated functionalI:(Ω,|x|αp)→R as follows:

    By assumption (f2),for anyε>0 there existsTε>0 such that

    Using (2.3),β>(α-s)θp+N(θ-1) and Theorem 2.2,one can verify thatIis well defined,of class,R) and

    for allu,v∈(Ω,|x|αp).Clearly,the critical points ofIλare exactly the weak solutions of problem (1.2).

    3 Proof of Theorem 1.3

    In this section,we always assume thatMsatisfies (M0) andfsatisfies (f1) and (f2).

    Let us now recall that the functionalIsatisfies the (PS)ccondition in,if any (PS)csequence,namely a sequence such thatI(un)→candI′(un)→0 asn→∞,admits a strongly convergent subsequence in

    In order to study the existence of least energy solutions for problem (1.2) in the sublinear case,we will use the following direct method in the calculus of variations:

    Theorem 3.1LetXbe a reflexive Banach space with norm ‖·‖X.Assume that the functionalJ:X→R is

    (i) coercive onX,that is,J(u)→∞as ‖u‖X→∞;

    (ii) weakly lower semi-continuous onX,that is,for anyu∈Xand any sequence{un}?Xsuch thatun?uweakly inX,

    ThenJis bounded from below onXand attains its infimum inX.

    Lemma 3.2The functionalIis weakly lower semi-continuous on

    ProofWe first show that Φ is weakly lower semi-continuous on.To this aim,we define a functionalH:(Ω,|x|αp)→R as

    Chooset0-δ<t1<t0<t2<t0+δ.By the assumption onM,we know that M is a increasing function.It follows that

    Next we prove that Ψ is weakly continuous on.By (f2),there existsC>0 such that|f(t)|≤C(1+|t|θp-1) for allt∈R.It follows from Theorem 2.2 thatLθp(Ω,|x|β) is compact forβ>θp(α-s)+N(θ-1).Using a standard argument,one can deduce that Ψ is weakly continuous on

    In conclusion,we obtain thatI(u)=Φ(u)-Ψ(u) is a weakly lower semi-continuous functional on(Ω,|x|αp). □

    Lemma 3.3The functionalIis coercive and satisfies the (PS)ccondition.

    ProofFor anyε>0,by (M1) and (2.3),we obtain that for allu∈(Ω,|x|αp) with ‖u‖≥1,

    By Theorem 2.2 andβ>(α-s)θp+N(θ-1),there existsC>0 such that

    for allu∈with ‖u‖≥1.Now chooseε=m0/(2C),we obtain

    which together withθp>1 implies thatI(u)→∞as ‖u‖→∞.Thus we have proved thatIis coercive.

    Next we show thatIsatisfies the (PS)ccondition.To this aim,we assume that{un}?is (PS)csequence;that is,I(un)→candI′(un)→0 inSinceIis coercive,{un}is bounded inThus,up to a subsequence,we have

    Moreover,by

    we deduce

    It follows that

    By (2.2),we have

    which converges to zero by Theorem 2.2.It follows from (3.1) that

    which,together with the fact that〈(u),un-u〉=0,yields that

    Then using a similar discussion as in[32,Lemma 3.6],we can obtain thatun→uin(Ω,|x|αp).Ifthen up to a subsequence we obtain thatun→0 in□

    Proof of Theorem 1.3By Theorem 3.1,Lemmas 3.2 and 3.3,the functionalIhas a global minimizeru∈(Ω,|x|αp),which is a least energy solution of problem (1.2).Now we prove thatuis nontrivial.Choose a nonnegative functionwith ‖v‖=1 and.Then it follows from the definition ofIand (f2) that

    thanks top>q.Thus,we can choose somet>0 such thatI(tv)<0.Then by the minimality ofu,we have

    which yields thatuis nontrivial. □

    4 Proof of Theorem 1.4

    In this section we study the existence of in finitely many solutions of problem (1.2).To this end,we mainly use a classical result due to Clark (see[11]).Before stating our result,we first recall some basic notions on Krasnoselskii’s genus and its properties.

    Denote byXa real Banach space.Set

    Definition 4.1LetA∈Γ andX=Rk.The genusγ(A) ofAis defined by

    If there does not exist such a mapping for anyk≥1,we setγ(A)=∞.Note that ifAis a subset which consists of finitely many pairs of points,thenγ(A)=1.Moreover,γ(?)=0.

    Now,we list some necessary results of Krasnoselskii’s genus.

    Lemma 4.2(1) LetX=Rkand?Ω be the boundary of an open,symmetric and bounded subset Ω?Rkwith 0∈Ω.Thenγ(?Ω)=k.In particular,let Sk-1be ak-1-dimensional sphere in Rk,thenγ(Sk-1)=k.

    (2) LetA?X,Ω be a bounded neighborhood of 0 in Rk,and assume that there exists an odd mappingh∈C(A,?Ω) withha homeomorphism.Thenγ(A)=k.

    Theorem 4.3(Clark’s theorem[11]) LetJ∈C1(X,R) be a functional satisfying the (PS)ccondition.Furthermore,let us suppose that

    (i)Jis even,i.e.,J(-u)=J(u) for allu∈X,andJis bounded from below;

    (ii) there is a compact setA?Γ such thatγ(A)=kand

    ThenJpossesses at leastkpairs of distinct critical points,and their corresponding critical values are less thanJ(0).

    Proof of Theorem 1.4Set

    then it follows from Lemma 3.3 that

    SinceAkis finite dimensional,all norms on it are equivalent.Thus there exists a positive constantC>0 such that

    By (f2),we get

    for allu∈Skand 0<t≤1 small enough,whereSk={u∈Ak:‖u‖=1}.Thus,we can findt*=t(k)∈(0,1) andε*=ε*(k)>0 such thatI(t*u)≤-ε*<0 for allu∈Sk.Set.Clearly,is homeomorphic to Sk-1.Thenand so

    Sincefis odd,the functionalIis even.In view of Lemma 3.3,we know that all assumptions of Theorem 4.3 are satisfied.Then the functionalIadmits at leastkpairs of distinct critical points.Due to the arbitrary ofk,we obtain the existence of in finitely many critical points ofI.Thus,the proof is complete. □

    5 Proofs of Theorems 1.5–1.6

    In this section we consider the superlinear case of problem (1.2).Without special mentioning,we always assume thatMsatisfies (M1)–(M2),andfsatisfies (f3)–(f4).

    In the sequel,we shall make use of the following general mountain pass theorem (see[3]):

    Theorem 5.1LetXbe a real Banach space andJ∈C1(X,R) withJ(0)=0.Suppose that

    (i) there existρ,r>0 such thatJ(u)≥ρfor allu∈X,with ‖u‖X=r;

    (ii) there existse∈Xsatisfying ‖e‖X>ρsuch thatJ(e)<0.

    Define H={h∈C1([0,1];X):h(0)=1,h(1)=e}.Then

    and there exists a (PS)csequence{un}?X.

    Now we check that the functionalIsatisfies the mountain geometry properties (i) and (ii).

    Lemma 5.2There existr,ρ>0 such thatI(u)≥ρif ‖u‖=r.

    ProofBy (M2),one can deduce

    By (5.1) and (f3),we obtain

    for allu∈(Ω,|x|αp) with ‖u‖≤1.Here we have used the fact that the embedding from(Ω,|x|αp) toLq(Ω,|x|β) is continuous by Theorem 2.2,sinceq∈() andβ>(α-s)θp+N(θ-1).Sinceq>θp,we can chooser∈(0,1) small enough such thatThen it follows from (5.2) thatI(u)≥for allu∈(Ω,|x|αp),with ‖u‖=r. □

    Lemma 5.3There existse∈(Ω,|x|αp) with ‖e‖>rsuch thatI(e)<0,whereris given by Lemma 5.2.

    ProofBy (M2),we have

    Choose a nonnegative functionφ∈(Ω) such that ‖φ‖=1.Then by (f4) and (5.3),for allτ,withτ>1,we have

    Sinceq>θp,fixingτ>0 even large so that we have thatI(e)<0,wheree=τφ.□

    Lemma 5.4The functionalIsatisfies the (PS)ccondition.

    ProofLet{un}?(Ω,|x|αp) be such that

    asn→∞.We first show that{un}is bounded.Arguing by contradiction,we assume that up to a subsequence,

    Using (f4) and (M2),we deduce

    Dividing the above inequality by ‖un‖pand lettingngo to infinity,we obtain

    which together withμ>θpyields a contradiction.Thus,{un}is bounded inWs,p0(Ω,|x|αp).

    Then there exist a subsequence of{un},still denoted by{un},andusuch that

    We first show that

    Indeed,by (f3) and the Hlder inequality,we have Using Theorem 2.2,we obtainThen it follows from (5.5) that (5.4) holds true.

    Due to the fact that{un}is a (PS)csequence,we have

    Then by using a similar discussion as in Lemma 3.3,we conclude that ‖un-u‖→0 asn→∞.In conclusion,the proof is complete. □

    Proof of Theorem 1.5By Lemmas 5.2–5.3 and Theorem 5.1,there exists a (PS)csequence{un}such thatI(un)→c,I′(un)→0,whereand H={h∈C1([0,1];(Ω,|x|αp)):h(0)=1,h(1)=e}.Furthermore,by Lemma 5.4,there exist a subsequence of{un}(still denoted by{un}) andu∈(Ω,|x|αp) such thatun→u.Moreover,uis a nonnegative solution of problem (1.2). □

    We shall use the following symmetric mountain pass theorem to get the existence of in finitely many solutions of problem (1.2) in the superlinear case:

    Theorem 5.5LetXbe a real in finite dimensional Banach space andJ∈C1(X,R) a functional satisfying the (PS)ccondition.Assume thatJsatisfies the following:

    (1)J(0)=0 and there existρ,r>0 such thatJ(u)≥ρfor all ‖u‖X=r;

    (2)Jis even;

    (3) for all finite dimensional subspace?X,there existsR=R()>0 such thatJ(u)<0 for allu∈BR().

    ThenJpossesses an unbounded sequence of critical values characterized by a minimax argument.

    Proof of Theorem 1.6By (f4),we have

    LetEbe a fixed finite dimensional subspace of(Ω,|x|αp).For anyu∈Ewith ‖u‖=1,and for allt≥1 we have by (5.3) and (5.6) that

    asR→∞.Hence there existsR0>0 so large such thatI(u)<0 for allu∈E,with ‖u‖=RandR>R0.Clearly,I(0)=0 andIis even.In view of Lemma 5.2,we know that all assumptions of Theorem 5.5 are satisfied.Thus,problem (1.2) admits an unbounded sequence of solutions. □

    AcknowledgementsThe third author of this paper would like to thank Professor Giovanni Molica Bisci for helpful discussions during the preparation of manuscript.

    猜你喜歡
    張彬
    Simulation of space heavy-ion induced primary knock-on atoms in bipolar devices
    Compared discharge characteristics and film modifications of atmospheric pressure plasma jets with two different electrode geometries
    復(fù)雜光照環(huán)境的車道線檢測方法
    女醫(yī)生喚醒沉睡愛人:攀山渡河筑一座愛城
    電力拖動(dòng)實(shí)訓(xùn)接線板的設(shè)計(jì)與研究
    一種相控陣天線波束指向角計(jì)算方法
    GEANT4 simulation study of over-response phenomenon of fiber x-ray sensor?
    酒鬼報(bào)警
    患癌一瞞到底:我們笑著我們含淚炮制深情
    孤獨(dú)舞者情殤7年,“天邊的愛”就在盈盈眉眼處
    国产精品伦人一区二区| 爱豆传媒免费全集在线观看| 亚洲av中文av极速乱| 中文资源天堂在线| 在线亚洲精品国产二区图片欧美 | 成人亚洲精品一区在线观看 | 成人亚洲欧美一区二区av| 18+在线观看网站| 一级av片app| 日韩亚洲欧美综合| 日韩强制内射视频| 美女主播在线视频| 一级毛片黄色毛片免费观看视频| 91精品一卡2卡3卡4卡| 亚洲av在线观看美女高潮| 国产淫片久久久久久久久| 免费大片18禁| 亚州av有码| 免费观看a级毛片全部| 1000部很黄的大片| 黄色配什么色好看| 日韩一区二区视频免费看| 色视频www国产| 亚洲综合精品二区| 成人漫画全彩无遮挡| 高清日韩中文字幕在线| 国产免费一级a男人的天堂| 内射极品少妇av片p| 新久久久久国产一级毛片| 免费久久久久久久精品成人欧美视频 | 国产 精品1| 亚洲欧美日韩卡通动漫| 九色成人免费人妻av| 日韩中字成人| 纵有疾风起免费观看全集完整版| 国产探花极品一区二区| 久久久久久久亚洲中文字幕| 亚洲成人一二三区av| 99久久精品国产国产毛片| 久久人人爽av亚洲精品天堂 | 久久久久久人妻| 欧美精品亚洲一区二区| 久久6这里有精品| 高清av免费在线| 国内揄拍国产精品人妻在线| 欧美精品人与动牲交sv欧美| 国产白丝娇喘喷水9色精品| 日韩一区二区视频免费看| 亚洲美女搞黄在线观看| 一级黄片播放器| 国产在视频线精品| 人人妻人人添人人爽欧美一区卜 | 亚洲高清免费不卡视频| 91久久精品国产一区二区三区| 精品久久久久久电影网| 这个男人来自地球电影免费观看 | 国产极品天堂在线| 九九在线视频观看精品| 国产精品99久久久久久久久| 成人美女网站在线观看视频| 国产精品久久久久久久久免| 在线免费十八禁| 大片免费播放器 马上看| 激情 狠狠 欧美| 各种免费的搞黄视频| 一区在线观看完整版| 男女啪啪激烈高潮av片| 欧美区成人在线视频| 精品少妇黑人巨大在线播放| 久久这里有精品视频免费| 国产色爽女视频免费观看| 女的被弄到高潮叫床怎么办| 午夜激情福利司机影院| 亚洲欧美清纯卡通| 日本爱情动作片www.在线观看| 伦理电影免费视频| 久久人人爽人人爽人人片va| 亚洲国产欧美在线一区| 99久久精品热视频| 在线观看一区二区三区| 国产一区二区三区av在线| 亚洲av国产av综合av卡| 午夜福利网站1000一区二区三区| 全区人妻精品视频| 伦理电影大哥的女人| 日韩成人伦理影院| 人妻 亚洲 视频| 少妇精品久久久久久久| 99热这里只有精品一区| 晚上一个人看的免费电影| 麻豆精品久久久久久蜜桃| 亚洲人与动物交配视频| 国产片特级美女逼逼视频| 亚洲va在线va天堂va国产| 美女福利国产在线 | 干丝袜人妻中文字幕| 黄色视频在线播放观看不卡| 大香蕉97超碰在线| 春色校园在线视频观看| 丰满少妇做爰视频| 欧美成人a在线观看| 校园人妻丝袜中文字幕| 久久综合国产亚洲精品| 国产精品嫩草影院av在线观看| 色视频在线一区二区三区| 欧美亚洲 丝袜 人妻 在线| 国产精品成人在线| 日韩制服骚丝袜av| 亚洲久久久国产精品| 王馨瑶露胸无遮挡在线观看| 狂野欧美激情性bbbbbb| 性色avwww在线观看| 精品少妇久久久久久888优播| 在线观看国产h片| 欧美另类一区| 免费久久久久久久精品成人欧美视频 | 又大又黄又爽视频免费| 日本与韩国留学比较| 亚洲人成网站在线观看播放| 91精品伊人久久大香线蕉| 色哟哟·www| 草草在线视频免费看| av网站免费在线观看视频| 永久网站在线| 久久久久久久久久人人人人人人| 人妻制服诱惑在线中文字幕| 欧美+日韩+精品| 成人一区二区视频在线观看| 老师上课跳d突然被开到最大视频| 国产精品久久久久久av不卡| 亚洲国产欧美人成| 国产精品一及| 99久久精品热视频| 久久久久精品久久久久真实原创| 婷婷色综合大香蕉| 汤姆久久久久久久影院中文字幕| 亚洲第一区二区三区不卡| 国产黄片美女视频| 国产精品一区二区三区四区免费观看| 国产探花极品一区二区| 日韩,欧美,国产一区二区三区| 内射极品少妇av片p| 高清视频免费观看一区二区| 国产乱来视频区| 丰满少妇做爰视频| 免费观看的影片在线观看| 国产亚洲精品久久久com| 大香蕉97超碰在线| 女性被躁到高潮视频| 国产成人aa在线观看| 成年免费大片在线观看| 秋霞在线观看毛片| 干丝袜人妻中文字幕| 久久久久久人妻| 99热这里只有精品一区| 国产亚洲av片在线观看秒播厂| 老女人水多毛片| 丝袜喷水一区| 久久精品熟女亚洲av麻豆精品| 青春草视频在线免费观看| 国产伦精品一区二区三区四那| 午夜免费男女啪啪视频观看| 在线播放无遮挡| 欧美日本视频| 欧美人与善性xxx| 看免费成人av毛片| 成人亚洲欧美一区二区av| 精品酒店卫生间| 久久女婷五月综合色啪小说| 肉色欧美久久久久久久蜜桃| 日本黄大片高清| 男女啪啪激烈高潮av片| 亚洲欧美日韩无卡精品| 黄片wwwwww| 国产精品国产三级国产av玫瑰| 啦啦啦在线观看免费高清www| 国产精品国产三级国产av玫瑰| 免费久久久久久久精品成人欧美视频 | 极品少妇高潮喷水抽搐| 国产色爽女视频免费观看| 精品久久久噜噜| 日韩欧美一区视频在线观看 | 美女中出高潮动态图| 欧美老熟妇乱子伦牲交| 高清视频免费观看一区二区| av福利片在线观看| 午夜福利网站1000一区二区三区| 蜜臀久久99精品久久宅男| 少妇丰满av| 久久99热这里只有精品18| 成人国产av品久久久| 在线播放无遮挡| 99视频精品全部免费 在线| 国产高潮美女av| 日本wwww免费看| 精品一区在线观看国产| 婷婷色综合www| 亚洲精品456在线播放app| 国产免费又黄又爽又色| 亚洲av二区三区四区| 亚洲精品亚洲一区二区| 日韩大片免费观看网站| 久久精品久久精品一区二区三区| 在线 av 中文字幕| 中文字幕亚洲精品专区| 精品视频人人做人人爽| 欧美区成人在线视频| 最黄视频免费看| 久久ye,这里只有精品| 亚洲欧美清纯卡通| 婷婷色av中文字幕| 免费少妇av软件| 久久久久久久久久人人人人人人| 欧美日韩精品成人综合77777| 自拍欧美九色日韩亚洲蝌蚪91 | 一级毛片我不卡| 国产精品久久久久久久久免| 大又大粗又爽又黄少妇毛片口| 国产伦理片在线播放av一区| 亚洲第一区二区三区不卡| 观看av在线不卡| 日本猛色少妇xxxxx猛交久久| 国产免费视频播放在线视频| 高清欧美精品videossex| 秋霞在线观看毛片| 直男gayav资源| 精品久久久噜噜| 日本黄色日本黄色录像| 在线观看av片永久免费下载| 久久99精品国语久久久| 亚洲精品色激情综合| 校园人妻丝袜中文字幕| 亚洲欧美清纯卡通| 九九爱精品视频在线观看| 麻豆成人av视频| 国产av精品麻豆| 婷婷色综合大香蕉| 中国国产av一级| 国产人妻一区二区三区在| 欧美一级a爱片免费观看看| 日本免费在线观看一区| 最新中文字幕久久久久| 99九九线精品视频在线观看视频| 免费观看av网站的网址| 久久国产乱子免费精品| 免费av中文字幕在线| 女性被躁到高潮视频| 中文在线观看免费www的网站| 免费大片黄手机在线观看| 国产精品成人在线| 偷拍熟女少妇极品色| 免费黄色在线免费观看| 一级爰片在线观看| 人体艺术视频欧美日本| 视频区图区小说| 日韩成人av中文字幕在线观看| 国产精品国产三级国产专区5o| 在线观看免费视频网站a站| 身体一侧抽搐| 爱豆传媒免费全集在线观看| av国产精品久久久久影院| 国产精品一二三区在线看| 人人妻人人看人人澡| 久久久久久九九精品二区国产| 又粗又硬又长又爽又黄的视频| 99久久综合免费| 国产在线一区二区三区精| 黄色配什么色好看| 哪个播放器可以免费观看大片| 亚洲精品国产成人久久av| 丝袜脚勾引网站| 久久精品国产亚洲av天美| 国产精品一区二区在线观看99| 亚洲欧美精品专区久久| 97在线视频观看| 黄色视频在线播放观看不卡| 97在线人人人人妻| 国产高清不卡午夜福利| 3wmmmm亚洲av在线观看| 国产综合精华液| 国产69精品久久久久777片| 久久婷婷青草| 久久久久久九九精品二区国产| 精品午夜福利在线看| 成人无遮挡网站| 久久久久久久久久久丰满| 大香蕉久久网| 九九久久精品国产亚洲av麻豆| 欧美zozozo另类| 国产91av在线免费观看| h日本视频在线播放| 日本色播在线视频| 国产综合精华液| 国产精品久久久久久久久免| 国产伦在线观看视频一区| 日日啪夜夜撸| 青青草视频在线视频观看| 青春草国产在线视频| 亚洲,欧美,日韩| 日本av免费视频播放| 亚洲,一卡二卡三卡| 欧美3d第一页| 免费看光身美女| 黄片wwwwww| 亚洲成人手机| 丝瓜视频免费看黄片| 成人亚洲精品一区在线观看 | 日日摸夜夜添夜夜爱| 亚洲av不卡在线观看| www.av在线官网国产| 久久精品久久久久久噜噜老黄| 日本av手机在线免费观看| 啦啦啦啦在线视频资源| 99re6热这里在线精品视频| 日本av免费视频播放| 国产黄片视频在线免费观看| 狠狠精品人妻久久久久久综合| 欧美最新免费一区二区三区| av免费在线看不卡| 乱系列少妇在线播放| 不卡视频在线观看欧美| 久久久成人免费电影| 熟女人妻精品中文字幕| 久久鲁丝午夜福利片| 丰满人妻一区二区三区视频av| 日本欧美国产在线视频| h视频一区二区三区| 欧美日韩在线观看h| av国产久精品久网站免费入址| 青春草视频在线免费观看| 黄片无遮挡物在线观看| 国精品久久久久久国模美| 亚洲人成网站高清观看| 日本与韩国留学比较| 六月丁香七月| 久久久精品免费免费高清| 一区在线观看完整版| 午夜老司机福利剧场| 成年女人在线观看亚洲视频| 欧美bdsm另类| 春色校园在线视频观看| 人妻 亚洲 视频| 久久99蜜桃精品久久| 王馨瑶露胸无遮挡在线观看| 亚洲丝袜综合中文字幕| 日本色播在线视频| 国产亚洲精品久久久com| 一级毛片aaaaaa免费看小| 一区二区三区精品91| 亚洲欧美日韩卡通动漫| 国产日韩欧美在线精品| 一区在线观看完整版| 毛片女人毛片| 日韩一区二区视频免费看| 最黄视频免费看| 在现免费观看毛片| 日韩国内少妇激情av| 精品国产三级普通话版| 少妇人妻精品综合一区二区| .国产精品久久| 高清av免费在线| 欧美3d第一页| 国产成人精品久久久久久| 国产精品女同一区二区软件| 精品亚洲乱码少妇综合久久| 久久久久久久久久人人人人人人| 欧美国产精品一级二级三级 | 国产乱人偷精品视频| 男女啪啪激烈高潮av片| 男男h啪啪无遮挡| 亚洲三级黄色毛片| 在线观看免费日韩欧美大片 | 日韩av在线免费看完整版不卡| 日日摸夜夜添夜夜爱| 国产一区有黄有色的免费视频| 亚洲精品视频女| 美女cb高潮喷水在线观看| 欧美日本视频| 美女国产视频在线观看| 少妇人妻精品综合一区二区| 亚洲最大成人中文| xxx大片免费视频| 韩国高清视频一区二区三区| 在线天堂最新版资源| 狂野欧美激情性xxxx在线观看| 嘟嘟电影网在线观看| 男的添女的下面高潮视频| 卡戴珊不雅视频在线播放| 在线观看一区二区三区激情| 日韩av在线免费看完整版不卡| 欧美xxxx黑人xx丫x性爽| 久久这里有精品视频免费| 九九久久精品国产亚洲av麻豆| 欧美3d第一页| 高清黄色对白视频在线免费看 | 精品久久久久久久末码| 18+在线观看网站| 日日撸夜夜添| 天堂俺去俺来也www色官网| 永久网站在线| 国产黄片视频在线免费观看| 小蜜桃在线观看免费完整版高清| 国产成人91sexporn| 热re99久久精品国产66热6| 亚洲av日韩在线播放| 亚洲欧美日韩卡通动漫| av视频免费观看在线观看| 色吧在线观看| 热re99久久精品国产66热6| 国产高潮美女av| 一区二区三区乱码不卡18| 国产成人freesex在线| 亚洲精品国产成人久久av| 丝袜喷水一区| av国产免费在线观看| 免费黄色在线免费观看| 大话2 男鬼变身卡| 国产成人a∨麻豆精品| 欧美高清成人免费视频www| 在线观看三级黄色| 亚洲成人一二三区av| 午夜福利在线在线| 一本一本综合久久| 日日摸夜夜添夜夜添av毛片| 国产亚洲欧美精品永久| 久久久久久久久久久丰满| 亚洲欧美日韩无卡精品| 精品一区二区三区视频在线| 老司机影院毛片| 久久人人爽av亚洲精品天堂 | 一边亲一边摸免费视频| 精品亚洲乱码少妇综合久久| 哪个播放器可以免费观看大片| 成年人午夜在线观看视频| 一个人看的www免费观看视频| 丰满迷人的少妇在线观看| 秋霞伦理黄片| 黑人高潮一二区| 久久精品国产鲁丝片午夜精品| 黄片无遮挡物在线观看| 狂野欧美激情性bbbbbb| 成年美女黄网站色视频大全免费 | 中文欧美无线码| 狂野欧美激情性bbbbbb| 一级毛片黄色毛片免费观看视频| 91久久精品国产一区二区成人| 久热这里只有精品99| 中国三级夫妇交换| 97在线人人人人妻| 亚洲熟女精品中文字幕| 婷婷色综合大香蕉| 久久久精品94久久精品| 乱码一卡2卡4卡精品| 草草在线视频免费看| 中文字幕制服av| 亚洲熟女精品中文字幕| av女优亚洲男人天堂| av福利片在线观看| 亚洲色图综合在线观看| 国产伦在线观看视频一区| 有码 亚洲区| 99热这里只有是精品50| 日本wwww免费看| 99热这里只有精品一区| 国产一区二区在线观看日韩| 国产一级毛片在线| 国产极品天堂在线| 中文乱码字字幕精品一区二区三区| 五月开心婷婷网| 青青草视频在线视频观看| 欧美日本视频| 91久久精品国产一区二区三区| av在线老鸭窝| 亚洲伊人久久精品综合| 亚洲精品国产av蜜桃| 观看av在线不卡| 国产精品久久久久久精品古装| 人妻夜夜爽99麻豆av| 一级毛片我不卡| h日本视频在线播放| 久久99热这里只频精品6学生| 国产精品人妻久久久久久| 亚洲精品国产色婷婷电影| 欧美变态另类bdsm刘玥| 国产亚洲91精品色在线| 久久久久久久久久久丰满| 久久精品久久久久久噜噜老黄| 如何舔出高潮| 国产精品偷伦视频观看了| 在现免费观看毛片| av在线蜜桃| 亚洲欧美中文字幕日韩二区| 午夜福利网站1000一区二区三区| 亚洲国产色片| 国产有黄有色有爽视频| 插阴视频在线观看视频| 国产熟女欧美一区二区| 91精品国产国语对白视频| 国产在线男女| 成人特级av手机在线观看| 青春草视频在线免费观看| 免费不卡的大黄色大毛片视频在线观看| 国产爽快片一区二区三区| 精品人妻视频免费看| 久久精品国产亚洲网站| freevideosex欧美| 亚洲av综合色区一区| 免费观看a级毛片全部| 中文字幕制服av| 国内揄拍国产精品人妻在线| 狠狠精品人妻久久久久久综合| 在线观看一区二区三区| 美女视频免费永久观看网站| 欧美日韩在线观看h| 亚洲成人一二三区av| 精华霜和精华液先用哪个| 婷婷色av中文字幕| 91午夜精品亚洲一区二区三区| 国产人妻一区二区三区在| 边亲边吃奶的免费视频| 大香蕉97超碰在线| 你懂的网址亚洲精品在线观看| 日韩免费高清中文字幕av| 欧美日韩综合久久久久久| 高清欧美精品videossex| 插逼视频在线观看| 日韩亚洲欧美综合| 在线看a的网站| 亚洲国产色片| 成人毛片a级毛片在线播放| 丝袜脚勾引网站| 麻豆成人午夜福利视频| 亚洲精品乱码久久久久久按摩| 性色av一级| 日本色播在线视频| 亚洲精品一区蜜桃| 一本色道久久久久久精品综合| 成年女人在线观看亚洲视频| 国产精品一区二区在线不卡| 不卡视频在线观看欧美| 亚洲高清免费不卡视频| 欧美xxⅹ黑人| 最近的中文字幕免费完整| 欧美日韩在线观看h| 亚洲不卡免费看| 日日撸夜夜添| 精品一品国产午夜福利视频| 美女xxoo啪啪120秒动态图| 少妇高潮的动态图| 欧美xxxx黑人xx丫x性爽| 大话2 男鬼变身卡| 最近的中文字幕免费完整| 少妇人妻一区二区三区视频| 成年av动漫网址| 亚州av有码| 国产淫语在线视频| 国产高清国产精品国产三级 | 色吧在线观看| 精品久久久噜噜| 成人影院久久| 日韩,欧美,国产一区二区三区| av卡一久久| 插逼视频在线观看| 国产 精品1| 日本与韩国留学比较| 久久久久久人妻| 亚洲国产av新网站| 少妇精品久久久久久久| 国产精品欧美亚洲77777| 91精品一卡2卡3卡4卡| 久久综合国产亚洲精品| 网址你懂的国产日韩在线| 国模一区二区三区四区视频| 熟女电影av网| 简卡轻食公司| 日本与韩国留学比较| 国产爽快片一区二区三区| 国产欧美另类精品又又久久亚洲欧美| 午夜免费观看性视频| 亚洲av电影在线观看一区二区三区| 久久鲁丝午夜福利片| 亚洲高清免费不卡视频| 一个人看的www免费观看视频| 丰满少妇做爰视频| 交换朋友夫妻互换小说| 麻豆精品久久久久久蜜桃| 又大又黄又爽视频免费| 国产精品麻豆人妻色哟哟久久| 欧美少妇被猛烈插入视频| 国产欧美亚洲国产| 国产精品嫩草影院av在线观看| 免费人妻精品一区二区三区视频| 干丝袜人妻中文字幕| 国产伦精品一区二区三区视频9| 新久久久久国产一级毛片| 国产国拍精品亚洲av在线观看| 国产又色又爽无遮挡免| 女人十人毛片免费观看3o分钟| 免费观看在线日韩| 中文乱码字字幕精品一区二区三区| 中文欧美无线码| 在线观看人妻少妇| 国产亚洲午夜精品一区二区久久| 伊人久久精品亚洲午夜| 婷婷色综合www| av在线观看视频网站免费| 99热这里只有精品一区| 2018国产大陆天天弄谢| 在线播放无遮挡| av卡一久久| 国产永久视频网站| 在线亚洲精品国产二区图片欧美 | 久久久久久久久久成人| 亚洲欧美清纯卡通| 亚洲精品,欧美精品|