• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Wideband switchable dual-functional terahertz polarization converter based on vanadium dioxide-assisted metasurface

    2022-01-23 06:36:34DeXianYan嚴(yán)德賢QinYinFeng封覃銀ZiWeiYuan袁紫微MiaoMeng孟淼XiangJunLi李向軍GuoHuaQiu裘國(guó)華andJiNingLi李吉寧
    Chinese Physics B 2022年1期
    關(guān)鍵詞:國(guó)華

    De-Xian Yan(嚴(yán)德賢) Qin-Yin Feng(封覃銀) Zi-Wei Yuan(袁紫微) Miao Meng(孟淼)Xiang-Jun Li(李向軍) Guo-Hua Qiu(裘國(guó)華) and Ji-Ning Li(李吉寧)

    1Key Laboratory of Electromagnetic Wave Information Technology and Metrology of Zhejiang Province,College of Information Engineering,China Jiliang University,Hangzhou 310018,China

    2Center for THz Research,China Jiliang University,Hangzhou 310018,China

    3College of Precision Instrument and Optoelectronic Engineering,Tianjin University,Tianjin 300072,China

    4State Key Laboratory of Crystal Materials,Shandong University,Jinan 250100,China

    Keywords: metasurface,polarization conversion,vanadium dioxide,dual-functional

    1. Introduction

    Terahertz waves in the region between the microwave and infrared frequency regions have high potential applications in future communication networks,such as sixth-generation(6G)systems.[1]The ability to manipulate terahertz waves freely and flexibly has aroused considerable interest in basic and applied studies. In recent years, metasurfaces have attracted increasing attention because of their planar geometries, simple designs, and outstanding controls over the counterparts of electromagnetic fields. Metasurface structures are fundamentally different from traditional optical elements,which are usually curved and spatially extended (i.e., bulky) in shape.Therefore, metasurface-based devices are surface-limited to subwavelength thickness,providing a new route to the realization of very intensive integration and miniaturization in photonics. Numerous attractive applications have been realized through designing the metasurfaces, including surface wave couplers,[2]focusing lenses,[3]optical imaging,[4]broadband absorbers,[5]wave plates,[6]and polarimeters.[7]

    The manipulation of the polarization and the transmission characteristics of electromagnetic waves have been demonstrated in microwave,[8]terahertz,[9,10]infrared,[11]and optical[12]frequency regions.Traditional polarization modulation elements including optical gratings[13]and dichroic crystals[14]usually provide narrow operation frequency bands. Wideband characteristics of the reported elements are achieved by stacking various structures with different resonant frequencies[15]or by forming a gradient in the dichroic crystal.[16]However, these designs for wideband responses lead to bulky three-dimensional (3D) devices, which hinders the device from integrating, thereby increasing the complexity,and leading the manufacturing cost to increase.

    The interaction of terahertz waves with metasurfaces enables the modulation of the polarization by changing the phase of the incident wave.[17,18]This can be used to construct polarization converters, including linear-to-linear (LTL), linear-tocircular(LTC),and left-to-right or right-to-left circular polarization converters. Most of metasurfaces have been proposed to perform only one function at the operation frequencies,while the freedom and flexibility of metasurface design enable the manufacture of universal polarization converters which is advantageous for device applications with miniaturization and integration. Different types of polarization-manipulated metasurfaces have been designed to provide similar or identical functions.Thus,the effective integration of different functions into a single metasurface has attracted considerable attention,particularly in the terahertz region.

    To achieve different functions, the metasurface can be combined with functional materials, such as phase-change materials. Tunable metasurface structures based on different materials (including graphene,[19,20]VO2,[21]and Dirac semimetals[22]) have been extensively investigated. Among them,VO2exhibits a reversible insulator-to-metal(ITM)transition by stimulations of electric, thermal, and optical properties. The conductivity of VO2can vary by four or five orders of magnitude during the ITM transition,[23-25]making it a superior choice for the development of tunable terahertz metasurface devices. The phase transition occurs on a time scale of few femtoseconds.[26]Numerous intriguing applications based on VO2have been proposed and experimentally investigated for optical devices, including absorbers, modulators, and filters. However, in the terahertz frequency band,the dynamic operation of composite metasurfaces with multifunctional properties has rarely been studied. Therefore, two or more different functions are expected to be integrated into a single metasurface structure.[27,28]For the design of switchable terahertz metasurface devices, Dinget al.designed a metasurface combining an absorber and half-wave plate based on the ITM transition of VO2.[29]Wanget al.developed a tunable dual-functional terahertz metasurface structure by using Dirac semimetal films and VO2.[30]Chen and Song introduced a VO2film into a multi-layer structure to realize the two functions of perfect absorption and high transmission through using the ITM phase transition of VO2.[26]Recently,we reported a single metasurface structure to realize broadband absorption and LTC polarization conversion through using the ITM transition of VO2.[31]These reported devices with complex structures hinder the metadevices from being designed and fabricated.

    In this study,by combining a simple microstructure with the phase transition of VO2, a dual-functional metadevice is proposed based on a sandwich structure configuration. The proposed metadevice can switch from LTL polarization conversion to another function with LTC polarization conversion by utilizing the ITM phase transition of VO2. Simulation results indicate that the relative bandwidth of the proposed metadevice used as an LTL converter and LTC converter are approximately 81% and 44%, respectively. This study provides a foundation for the design of switchable multifunctional metadevices in the terahertz frequency band. The structure can also be employed in other frequency regions by changing the structure size.

    2. Design of multi-functional metasurface device

    Based on the concept of metasurfaces,a 3D schematic diagram of the designed tunable metasurface with different functions operating in the terahertz region based on the ITM transition of VO2is shown in Fig.1. The metasurface consists of different functional layers, including a periodic gold circular split-ring resonator (CSRR), first dielectric layer, continuous VO2film,second dielectric layer,and bottom metal substrate.

    The metadevice is designed and the corresponding calculation is carried out based on the commercial software CST Microwave Studio. The unit cell boundary conditions are set to be in thexandydirections to simulate infinite arrays, and the open boundaries are added in thezdirection. The linearly polarized plane wave travelling in thezdirection propagates through the entire structure. As shown in Fig. 1, the parameters of the unit cell arepx=py=80 μm,t3=10 μm,t2=1μm,t1=16μm,R=30μm,w=3μm,andα=15°. The top metal CSRR layer and bottom substrate are 0.2-μm-thick gold layers each with a conductivity of 4.561×107S/m.[32,33]The top CSRRs are aligned with a clockwise rotation of 45°with respect to theydirection and periodically arranged in thexandydirections. In the simulation, the first and second dielectric layer are of polyimide (PI) with a dielectric constant ofεr=3.5 and loss tangent ofδ=0.0027.[34]

    The continuous VO2film of the metasurface can be fabricated by the sol-gel method,which has a lower cost and can be implemented in one process. Different preparation methods can be used, including vacuum evaporation, sputtering,and pulsed laser deposition.[35]Notably, unlike most of terahertz metadevices combined with various materials and complex microstructures, the proposed structure is simple to process, mainly because it contains only the metal CSRRs and continuous VO2film,which effectively reduces the complexity of the metadevice.

    The ITM transition characteristic of VO2in the terahertz region can be determined by the Bruggeman effective medium theory. A detailed description can be found in our previous report.[31]In terahertz frequency band, the dielectric function in the insulating phase isεD= 9. And the dielectric function in the metallic phase can be expressed as the Drude modelεM(ω)=ε∞-ω2P/(ω2+iω/τ), whereωis the angular frequency,ε∞is the high-frequency limit dielectric constant,τ=2.2 fs is the carrier collision time, andωPis the plasma angular frequency. When VO2material is in the insulating phase,thenε∞=εD=9. The VO2is modeled as a material with a conductivity ofσ=-iε0ω(εC-1) at different temperatures,[36]whereεCis the dielectric function.[37,38]At room temperature,VO2exhibits insulating property in the terahertz frequency region. Thus,the metasurface can be equivalent to an LTL polarization converter including the gold CSRR structure, first PI layer, VO2film, second PI layer, and bottom gold substrate. The incident linear terahertz wave can be reflected and converted into a cross-linear terahertz wave.In contrast, when the temperature increases above the phasetransition temperature (approximately 68°C in the heating process),VO2exhibits the ITM transition and only the top part including the top gold CSRR,first PI layer,and VO2continuous film operates,which realizes a wideband LTC polarization conversion.

    3. Results and discussion

    3.1. Reflective LTL polarization conversion

    The LTL polarization conversion characteristics of the dual-functional metadevice are verified when VO2can be regarded as an insulator at a temperature of 28°C. TherEE=|EEr|/|EEi| andrME=|EMr|/|EEi| are defined as the co-(transverse electric (TE)-to-TE,y-to-y) reflection coefficient and the cross-polarization (TE-to-transverse magnetic(TM),y-to-x)reflection coefficient related to the TE-polarized incident field, respectively. The simulated reflection coefficients of the TE-polarized terahertz wave at normal incidence are shown in Fig. 2(a). The cross-polarization reflection coefficientrMEis higher than 0.9 in a frequency range from 0.90 THz to 2.11 THz, while the co-polarized reflection coefficientrEEis lower than 0.3 on average. Thus, an efficient polarization conversion can be achieved by the proposed metasurface structure. TherEEvalues of the four resonances atf1=0.984 THz,f2=1.362 THz,f3=2.012 THz,andf4=2.104 THz reach the local minima of approximately 0.03176, 0.00688, 0.01412, and 0.02242, respectively. The above four resonance points correspond to the high value ofrME. The polarization conversion ratio(PCR)is expressed as PCR=r2ME/(r2ME+r2EE) to obtain the efficiency of polarization conversion.[8]Figure 2(a)also shows the simulated PCR as a function of frequency. The PCR of the designed structure is above 0.9 in a range from 0.912 THz to 2.146 THz,which indicates that more than 90% of the incident terahertz TE polarization is converted into cross-polarized (TM polarization) states. In this frequency range, the bandwidth ratio (fmax-fmin)/[(fmax+fmin)/2] is approximately 81%.[39]For the optimized structure, the PCR is higher than 0.9999 at the three resonance frequency points, which achieve the perfect polarization conversion. The wideband performance is provided mainly by the superposition of various resonance modes.[40]The simulated PCR of the designed metadevice as a function of temperature in the heating process is shown in Fig.2(b). When the temperature increases from room temperature to the heating point temperature of 68°C the metadevice can be used as an LTL polarization converter and a very high PCR(>0.9)in a broadband frequency range can be obtained and is accompanied with a slight change. When the temperature is higher than the heating point temperature (around 68°C), the VO2is in the metal phase, so that the wideband LTL polarization conversion disappears.The PCR curve in the cooling condition is also simulated(not shown here). Notably,the PCR does not significantly decrease with the temperature decreasing. This originates mainly from the hysteresis of the ITM transition characteristics of the VO2material.[31]

    Fig.2.(a)Frequency-dependent amplitudes of reflection coefficients rME and rEE and PCR for optimized metasurface structure. (b)Relationships between PCR and frequency at different heating temperatures.

    To better investigate the influences of the structural geometry parameters on the polarization conversion performance,the variations of the PCR with geometry parameters (thicknesst3and widthw) are shown in Fig. 3. The resonances of the PCR spectrum are shifted toward lower frequencies with the increase of thicknesst3,i.e., a red-shift appears. In addition, the PCR increases when the frequency region is below the second resonance, but decreases above the second resonance. The size of the CSRR can be changed by adjusting its widthw. With the widthwincreasing from 1μm to 5μm,the second resonance shifts toward a lower frequency range,while the first and third resonances are almost unchanged(Fig.3(b)).Moreover, witht3andwchanging, the overall bandwidth of the PCR spectrum does not varies significantly.

    Fig. 3. Simulated variations of PCR with: (a) thickness t3 and (b) w of metadevice.

    Fig. 4. (a) Simulated frequency-dependent contours of PCR evolving with(a)polarization angle and(b)incident angle for TE polarization.

    The variations of the performance of the designed LTL polarization converter with the polarization angle and incident angle are also investigated. Figure 4(a) shows the evolution contour of the PCR when the polarization angle changes from 0°to 90°in steps of 5°. When the polarization angleφof the incident terahertz wave increases from 0°to 90°,the terahertz wave polarization changes from TE polarization into TM polarization. The results indicate that the structure achieves the same response to the incident terahertz waves with TE polarization as that with TM polarization due to the symmetry properties of the designed metadevice. Figure 4(b)shows the PCR of the TE-polarized terahertz wave as a function of frequency and incident angleθ. During the simulation,θvaries from 0°to 85°in steps of 5°. According to the simulated results, the PCR of the LTL polarization converter is still above 0.8 whenθapproaches to 60°. The main PCR peak narrows with the increase of incident angle,while the corresponding PCR remains high at larger incident angles. Some higher-order diffractions appear due to the smaller ratio (1.7) of the operation wavelength(136μm,2.2 THz)to the structure period(80μm).[39]

    3.2. Reflective LTC polarization conversion

    The above wideband LTL polarization conversion depends on the insulator state of VO2at 28°C. When the temperature is higher than the heating temperature point(approximately 68°C), VO2experiences an ITM transition and becomes metal,providing novel degree of freedom and excellent performance for the control of the polarization state of terahertz waves.Thus,only the top structure consisting of the gold CSRR, first PI layer, and VO2continuous film in the metal state operates. In thex-ycoordinate system,the co-polarized reflection coefficientrEEand cross-polarized reflection coefficientrMEmust be equal, providing a phase difference of Δφ=φME-φEE=2mπ±π/2(mis an integer)for the function as an LTC polarization converter, with “-” and “+” denoting the left-circular polarization and the right-circular polarization,respectively.[41]To achieve an efficient polarization conversion in the metasurface structure, the reflection coefficients need to be as large as possible. As shown in Figs.5(a)and 5(b), when the temperature is approximately 78°C in a frequency band of 1.07 THz-1.67 THz, the reflection coefficientsrEEandrMEexhibit approximately equal intensities.This implies that the TE-polarized incident terahertz wave can be converted into TE and TM polarization component with the same intensity. Furthermore,in the same frequency range,the phase difference Δφis approximately 90°for the TE-polarized incident terahertz wave, which is necessary for right circular polarization.The related geometry parameters aret3=10μm,t2=1μm,t1=16μm,R=30μm,andw=3μm.

    The realization of LTC conversion can be indicated by the ellipticity and axis ratio. The normalized ellipticity ofE=2|rME||rEE|sin(Δφ)/(|rME|2+|rEE|2) can be defined to estimate the effect of the polarization conversion.[42]An ideal circularly-polarized wave has an ellipticity of 1. WhenE=-1, the reflected wave is right-circularly polarized. The reflected wave has left-hand circular polarization whenE=+1.An ellipticity larger than 0.90 is regarded as corresponding to a circularly polarized wave.[43]Figure 5(c) shows the relationship between the ellipticity and terahertz frequency. As shown in Fig.5(c),the ellipticity is close to-1 in a frequency band of 1.07 THz-1.67 THz, which confirms that the reflective wave is right-hand circularly polarized. The bandwidth ratio is approximately 44%. Notably,when the incident wave is TM-polarized, the reflected wave has circular polarization performances with almost the same bandwidth as but rotating oppositely to the incident wave.

    The axis ratio

    is also used to evaluate the degree of circular polarization.[44]Figure 5(d)shows the calculated results. The axis ratios of the reflected wave are lower than 3 dB in a wide frequency band of 1.07 THz-1.67 THz, which indicates that the designed metasurface provides a good performance in the LTC polarization conversion.

    The energy conversion efficiency can also be expressed asη=|rME|2+|rEE|2.[41]The efficiency of right circular polarization is higher than 80% at the same frequency (results not shown here). This demonstrates that the designed metasurface possesses the high-efficiency conversion characteristics.

    The relationship between the ellipticity and structural parameters(t1andw)is studied with normal incidence when the temperature is 78°C. Figure 6(a) shows the influence of the first PI layer thicknesst1on ellipticity when the other parameters are unchanged(t3=10μm,t2=1μm,R=30μm,andw=3 μm). The bandwidth decreases as the thicknesst1increases from 14 μm to 18 μm. In addition, the intensity increases slightly. The effect of the widthwof the gold CSRR on the ellipticity is also investigated. The relations between the ellipticity and the terahertz frequency at differentwvalues are shown in Fig.6(b)witht1=16μm. Aswincreases from 1μm to 5μm,the bandwidth of ellipticity gradually decreases,while the intensity increases slightly.

    Figure 7(a)shows the evolution contour of the axis ratio when the temperature rises from 62°C to 78°C As shown in Fig. 7(a), when the temperature is lower than 67°C the LTC polarization conversion reflection is almost unchanged.However,the LTC polarization conversion reflection decreases rapidly at temperatures higher than 67°C due to the VO2film changing from the insulator to the metal state. The AR of the metasurface varying with incident angleθand frequency is also investigated, and the results are shown in Fig. 7(b). The designed metasurface can achieve a good circular polarization conversion performance in an ultrabroad band range asθvaries from 0°to approximately 40°. Whenθis above 40°,the reflected wave is circularly polarized only in two narrow bands.

    Fig.5. Stimulated frequency-dependent(a)reflection coefficients,(b)phases for the TE-polarized wave at normal incidence,(c)ellipticity,and(d)axis ratio of metadevice.

    Fig.6. Relations between ellipticity and frequency at different values of(a)thickness t1 of the first PI dielectric layer and(b)width w of CSRR.

    Fig.7. Simulated frequency-dependent axis ratio varying with(a)heating temperature and with(b)incident angle.

    Table 1. Comparisons between proposed device and other devices.

    The recently reported VO2-based studies provide a practical guidance for our study.The dielectric material PI exhibits stable performances at different temperatures.[35]The fabrication of VO2-assisted metadevices has been reported.[45,46]A thin VO2film is deposited on a PI substrate by using molecular beam epitaxy. Another thick PI layer is then introduced to the top of the VO2film. Subsequently,gold microstructures are fabricated on the top of the PI layer based on traditional lithography and metallization, forming gold CSRRs. The design method presented in this study offers a new approach to the study of multi-functional metasurface-based devices integrating completely different functions into a structure based on the continuous VO2film.

    The comparisons between the proposed device and previous published devices are conducted as shown in Table 1.Some researches reported dual-functional terahertz metamaterial devices with absorber and polarization converter. Here,by treating the IMT of VO2material,we realize the two functions of LTL and LTC in a single metasurface device. Furthermore,compared with the previously reported polarization converters,the proposed device possesses the advantages of efficient linear-to-linear and linear-to-circular polarization conversion through using the single metasurface structure.

    The proposed structure has a wide range of practical applications. For example,in broadcast communication with the mid-wave frequency band, linear polarization is usually used to transmit information,while in many cases,circular polarization is generally used in complex climate environments. This is mainly because the circular polarization has the advantage of being easier to adapt to complex electromagnetic environment than linear polarization. The metasurface device can be used to change the polarization of electromagnetic waves to meet the needs of different communication scenarios. In addition, with the rapid progress of high-speed optical communication systems, increasing capacity has become a research hotspot. Orbital angular momentum (OAM) generation is an important application of metasurface and can be widely used in mode division multiplexing of future communication. The OAM generation can be realized by introducing gradient phase discontinuity of the proposed metasurface structure.

    4. Conclusions and perspectives

    A dual-functional terahertz metadevice with wideband LTL polarization conversion and LTC polarization conversion in a single VO2-based metasurface structure is proposed. At room temperature, VO2is dielectric. The design can be used as a wideband LTL polarization converter under normal incidence in the frequency band of 0.90 THz-2.11 THz. When the temperature increases above 68°C a wideband LTC polarization converter, converting a TE-polarized wave into a right-hand circularly polarized wave, can be realized. In the frequency band of 1.07 THz-1.67 THz, the ellipticity is almost-1, while the axis ratio is lower than 3. In addition,the wideband and highly efficient dual-functional polarization converter provides a large angle tolerance and large manufacturing tolerance.In this design,the wideband LTL polarization conversion and LTC polarization conversion can be converted into each other based on the ITM transition of VO2. The designed metadevice has a high potential applications in the fronthaul of terahertz communication and stealth technology.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant No. 62001444), the Natural Science Foundation of Zhejiang Province, China(Grant No. LQ20F010009), the Basic Public Welfare Research Project of Zhejiang Province, China (Grant No.LGF19F010003),and the State Key Laboratory of Crystal Materials,Shandong University,China(Grant No. KF1909).

    猜你喜歡
    國(guó)華
    Data-Centric Approach to Digital Twin Modeling of Production Lines
    Tetrapartite entanglement measures of generalized GHZ state in the noninertial frames
    Order Allocation in Industrial Internet Platform for Textile and Clothing
    甘為藝術(shù)付平生
    國(guó)華印電DEH系統(tǒng)伺服閥故障處理與分析
    世相
    金秋(2020年12期)2020-10-21 01:56:06
    A well-balanced positivity preserving two-dimensional shallow flow model with wetting and drying fronts over irregular topography *
    氣電樣本:國(guó)華京燃熱電的智與能
    能源(2018年6期)2018-08-01 03:41:52
    打麻將
    Structure and Dynamic Characters of New Radar Stabilized Platform
    亚洲久久久国产精品| 国产精品人妻久久久久久| 成人亚洲精品一区在线观看| 亚洲av欧美aⅴ国产| 免费观看a级毛片全部| 久久ye,这里只有精品| 欧美日韩国产mv在线观看视频| 国产黄色视频一区二区在线观看| 成年女人在线观看亚洲视频| 交换朋友夫妻互换小说| 欧美人与性动交α欧美精品济南到 | xxxhd国产人妻xxx| 亚洲成人一二三区av| h视频一区二区三区| 成年美女黄网站色视频大全免费 | 日韩视频在线欧美| 夜夜看夜夜爽夜夜摸| 欧美bdsm另类| 高清不卡的av网站| 亚洲美女搞黄在线观看| 人体艺术视频欧美日本| 中国三级夫妇交换| 最后的刺客免费高清国语| 亚洲人成网站在线播| 久久久精品免费免费高清| 人体艺术视频欧美日本| 97超视频在线观看视频| 日本欧美国产在线视频| 大又大粗又爽又黄少妇毛片口| 国产av码专区亚洲av| 国产 一区精品| 亚洲av电影在线观看一区二区三区| 亚洲国产色片| 涩涩av久久男人的天堂| 大话2 男鬼变身卡| 男女高潮啪啪啪动态图| 少妇熟女欧美另类| 久久久久久久久久成人| 国产午夜精品久久久久久一区二区三区| 丰满乱子伦码专区| 久久久久国产精品人妻一区二区| 91精品一卡2卡3卡4卡| 日韩av不卡免费在线播放| 久久人人爽人人爽人人片va| 亚洲欧美一区二区三区国产| 精品视频人人做人人爽| 中文天堂在线官网| 免费久久久久久久精品成人欧美视频 | 国产精品99久久99久久久不卡 | 极品人妻少妇av视频| 两个人的视频大全免费| 日韩av不卡免费在线播放| 成人亚洲欧美一区二区av| 亚洲精品亚洲一区二区| 日本午夜av视频| 国产伦精品一区二区三区视频9| 97超视频在线观看视频| 边亲边吃奶的免费视频| 18+在线观看网站| 一边摸一边做爽爽视频免费| 校园人妻丝袜中文字幕| 久久久亚洲精品成人影院| 亚洲av日韩在线播放| 最近中文字幕2019免费版| 亚洲精品美女久久av网站| 国产成人精品福利久久| 精品酒店卫生间| 午夜福利,免费看| 亚洲精华国产精华液的使用体验| 国产精品国产av在线观看| 亚洲丝袜综合中文字幕| 久久久久久久亚洲中文字幕| 国产老妇伦熟女老妇高清| 国产精品熟女久久久久浪| 91精品伊人久久大香线蕉| 观看美女的网站| 大码成人一级视频| 日韩不卡一区二区三区视频在线| 亚洲av国产av综合av卡| 免费高清在线观看日韩| 日日摸夜夜添夜夜添av毛片| 97在线人人人人妻| 丝袜在线中文字幕| 亚洲国产精品成人久久小说| 在线观看免费高清a一片| 男女高潮啪啪啪动态图| av又黄又爽大尺度在线免费看| 99热国产这里只有精品6| 亚洲精品自拍成人| 国产精品一区二区三区四区免费观看| 一级毛片aaaaaa免费看小| 九九爱精品视频在线观看| 国产日韩欧美视频二区| 99久久精品国产国产毛片| 久久韩国三级中文字幕| 成人影院久久| 成人影院久久| 97在线视频观看| av又黄又爽大尺度在线免费看| 精品久久久久久电影网| 国产一区二区在线观看日韩| 国产精品秋霞免费鲁丝片| 亚洲综合色惰| 亚洲av成人精品一二三区| 97超视频在线观看视频| 九色成人免费人妻av| 少妇人妻久久综合中文| 视频在线观看一区二区三区| 国产精品不卡视频一区二区| 国产亚洲精品第一综合不卡 | 欧美日韩精品成人综合77777| 亚洲精品aⅴ在线观看| 热99久久久久精品小说推荐| 美女中出高潮动态图| 男女无遮挡免费网站观看| 亚洲三级黄色毛片| 久久久久国产网址| 女性生殖器流出的白浆| 十八禁网站网址无遮挡| 亚洲在久久综合| 91精品一卡2卡3卡4卡| 在线播放无遮挡| 亚洲国产毛片av蜜桃av| 国产日韩欧美亚洲二区| 亚洲欧美日韩另类电影网站| 蜜桃国产av成人99| 内地一区二区视频在线| 久久久久久久大尺度免费视频| 欧美丝袜亚洲另类| 一边摸一边做爽爽视频免费| 一边摸一边做爽爽视频免费| 免费黄色在线免费观看| 亚洲人与动物交配视频| 超碰97精品在线观看| 丰满饥渴人妻一区二区三| 久久精品夜色国产| 久久精品国产a三级三级三级| 亚洲少妇的诱惑av| 精品人妻在线不人妻| 亚洲经典国产精华液单| 久久久久久久久久人人人人人人| 精品人妻熟女毛片av久久网站| 秋霞伦理黄片| 国产亚洲精品第一综合不卡 | a级毛片黄视频| 麻豆乱淫一区二区| 国产精品一二三区在线看| 91精品国产九色| 丝瓜视频免费看黄片| 在线观看一区二区三区激情| 国产欧美日韩一区二区三区在线 | 久久国产精品大桥未久av| 免费av不卡在线播放| 久久国产精品大桥未久av| av有码第一页| av有码第一页| 国产高清不卡午夜福利| 黑丝袜美女国产一区| 亚洲欧美一区二区三区黑人 | 一级二级三级毛片免费看| 国产高清有码在线观看视频| 久久综合国产亚洲精品| 99九九线精品视频在线观看视频| 黄色怎么调成土黄色| av卡一久久| 少妇 在线观看| 狂野欧美白嫩少妇大欣赏| 99热全是精品| 婷婷成人精品国产| 伊人久久国产一区二区| 黄色欧美视频在线观看| 蜜桃在线观看..| 久久久a久久爽久久v久久| 一级毛片aaaaaa免费看小| 欧美激情 高清一区二区三区| 久久精品人人爽人人爽视色| .国产精品久久| 最近中文字幕2019免费版| 久久99一区二区三区| 精品人妻偷拍中文字幕| 久久免费观看电影| av在线观看视频网站免费| 超色免费av| 亚洲国产av新网站| 人人妻人人澡人人看| 国产欧美另类精品又又久久亚洲欧美| 成人影院久久| 一二三四中文在线观看免费高清| 国精品久久久久久国模美| 高清欧美精品videossex| av女优亚洲男人天堂| 丝袜在线中文字幕| 一个人免费看片子| 欧美97在线视频| 三上悠亚av全集在线观看| 女的被弄到高潮叫床怎么办| 99久久人妻综合| 国产成人一区二区在线| 亚洲精品日韩在线中文字幕| 免费人妻精品一区二区三区视频| 亚洲美女视频黄频| 桃花免费在线播放| 亚洲欧美日韩卡通动漫| 一级毛片我不卡| 一级黄片播放器| 99久久人妻综合| 18+在线观看网站| 人体艺术视频欧美日本| 这个男人来自地球电影免费观看 | 性高湖久久久久久久久免费观看| 国产精品 国内视频| 亚洲欧美成人综合另类久久久| 久久久久视频综合| 最近中文字幕高清免费大全6| 国产精品久久久久久精品古装| 夜夜爽夜夜爽视频| 国产探花极品一区二区| 国产有黄有色有爽视频| 日韩av不卡免费在线播放| 成人国产麻豆网| 男女国产视频网站| 一本大道久久a久久精品| 久久久久久久国产电影| 精品一品国产午夜福利视频| 插逼视频在线观看| 亚洲综合色惰| 男男h啪啪无遮挡| 老司机影院成人| 午夜激情av网站| 亚洲av不卡在线观看| av在线老鸭窝| 日本黄色日本黄色录像| 高清黄色对白视频在线免费看| 日韩av在线免费看完整版不卡| 亚洲av成人精品一二三区| 伦理电影免费视频| 日韩免费高清中文字幕av| 亚洲欧美日韩另类电影网站| 老熟女久久久| 热99久久久久精品小说推荐| 久久久欧美国产精品| 成人毛片60女人毛片免费| 午夜激情久久久久久久| 国产精品久久久久久精品电影小说| 亚洲第一av免费看| 纵有疾风起免费观看全集完整版| 高清av免费在线| 最近的中文字幕免费完整| 熟女av电影| 亚洲色图 男人天堂 中文字幕 | 国产精品一国产av| 午夜福利视频精品| 亚洲av在线观看美女高潮| 在线天堂最新版资源| 少妇的逼好多水| 少妇人妻精品综合一区二区| 免费看光身美女| 亚洲av成人精品一二三区| 色婷婷久久久亚洲欧美| 美女脱内裤让男人舔精品视频| 亚洲情色 制服丝袜| 欧美97在线视频| 草草在线视频免费看| 国产亚洲一区二区精品| 亚洲av国产av综合av卡| 熟女人妻精品中文字幕| 久久国产精品大桥未久av| 免费大片18禁| 国产精品不卡视频一区二区| 欧美另类一区| 又黄又爽又刺激的免费视频.| 亚洲天堂av无毛| 亚洲欧美中文字幕日韩二区| 亚洲第一区二区三区不卡| av在线播放精品| 久久毛片免费看一区二区三区| 国产精品国产三级国产av玫瑰| 嘟嘟电影网在线观看| 亚洲精品自拍成人| 简卡轻食公司| 欧美xxⅹ黑人| 一本大道久久a久久精品| 欧美激情极品国产一区二区三区 | 亚洲精品成人av观看孕妇| av.在线天堂| 午夜福利视频精品| 亚洲国产日韩一区二区| 18禁在线播放成人免费| 久久毛片免费看一区二区三区| 一本色道久久久久久精品综合| 中文字幕亚洲精品专区| 观看av在线不卡| 99热全是精品| 亚洲精品日韩在线中文字幕| 亚洲人与动物交配视频| 22中文网久久字幕| 五月天丁香电影| 亚洲成人av在线免费| 午夜免费鲁丝| 欧美激情国产日韩精品一区| 国产精品女同一区二区软件| a级片在线免费高清观看视频| 777米奇影视久久| 国产乱人偷精品视频| 精品久久久久久久久亚洲| 美女cb高潮喷水在线观看| 国产亚洲av片在线观看秒播厂| 热re99久久国产66热| 欧美丝袜亚洲另类| 久久精品国产亚洲av涩爱| 久久99精品国语久久久| 免费观看性生交大片5| 黑人巨大精品欧美一区二区蜜桃 | 久久亚洲国产成人精品v| 国产又色又爽无遮挡免| 91精品三级在线观看| 国产极品粉嫩免费观看在线 | 啦啦啦啦在线视频资源| 赤兔流量卡办理| 亚洲精品日韩在线中文字幕| 亚洲综合色网址| 国产成人aa在线观看| 人妻一区二区av| 菩萨蛮人人尽说江南好唐韦庄| 中文乱码字字幕精品一区二区三区| 尾随美女入室| av免费在线看不卡| 少妇人妻精品综合一区二区| .国产精品久久| 97在线视频观看| 三上悠亚av全集在线观看| 看免费成人av毛片| 国产精品一区二区三区四区免费观看| 国产毛片在线视频| 777米奇影视久久| 蜜桃久久精品国产亚洲av| freevideosex欧美| 欧美 亚洲 国产 日韩一| 欧美激情国产日韩精品一区| 九色成人免费人妻av| 蜜桃久久精品国产亚洲av| 男女边摸边吃奶| 国产免费一区二区三区四区乱码| 熟女av电影| 久久久久视频综合| 中文字幕亚洲精品专区| 18在线观看网站| 国内精品宾馆在线| 亚洲在久久综合| a级毛片免费高清观看在线播放| 91精品国产九色| 在线看a的网站| 啦啦啦视频在线资源免费观看| 秋霞伦理黄片| 99热网站在线观看| 免费观看的影片在线观看| 青春草国产在线视频| 在线天堂最新版资源| 中文字幕人妻丝袜制服| 日本av手机在线免费观看| 99久久精品一区二区三区| 日日撸夜夜添| 欧美3d第一页| 男女免费视频国产| 观看美女的网站| 一级爰片在线观看| 国产欧美日韩综合在线一区二区| av不卡在线播放| 另类亚洲欧美激情| 亚洲国产欧美在线一区| 建设人人有责人人尽责人人享有的| 制服丝袜香蕉在线| 丰满少妇做爰视频| 国产精品一区二区三区四区免费观看| 久久午夜综合久久蜜桃| 日韩电影二区| 成人国产av品久久久| 国产精品一区二区在线不卡| 黑人巨大精品欧美一区二区蜜桃 | 一区在线观看完整版| a 毛片基地| 亚洲第一区二区三区不卡| 久久国产亚洲av麻豆专区| 黄色欧美视频在线观看| 在线播放无遮挡| 亚洲av成人精品一二三区| 久久久久国产精品人妻一区二区| 狠狠婷婷综合久久久久久88av| 日日爽夜夜爽网站| 日韩欧美一区视频在线观看| 女人精品久久久久毛片| 香蕉精品网在线| 高清黄色对白视频在线免费看| 青青草视频在线视频观看| 亚洲三级黄色毛片| 久久久久精品久久久久真实原创| 狂野欧美白嫩少妇大欣赏| 一级毛片黄色毛片免费观看视频| 日本爱情动作片www.在线观看| 亚洲精品久久成人aⅴ小说 | 18禁在线无遮挡免费观看视频| a级片在线免费高清观看视频| 2018国产大陆天天弄谢| av在线app专区| 男人操女人黄网站| 国产精品99久久99久久久不卡 | 18禁裸乳无遮挡动漫免费视频| 国产精品蜜桃在线观看| av网站免费在线观看视频| 一区二区三区乱码不卡18| 国产在线免费精品| 欧美性感艳星| 亚洲丝袜综合中文字幕| 国产国语露脸激情在线看| 国产精品蜜桃在线观看| 亚洲综合色惰| 日韩电影二区| 黑人欧美特级aaaaaa片| 日韩熟女老妇一区二区性免费视频| videossex国产| 久久人妻熟女aⅴ| 亚洲欧美中文字幕日韩二区| 国产精品偷伦视频观看了| 亚洲精品中文字幕在线视频| 国产一区二区在线观看av| 丝袜喷水一区| √禁漫天堂资源中文www| 久久亚洲国产成人精品v| 精品少妇久久久久久888优播| 成人免费观看视频高清| 久久国内精品自在自线图片| 男的添女的下面高潮视频| 99热全是精品| 久久精品久久久久久噜噜老黄| 高清在线视频一区二区三区| 少妇的逼好多水| 亚洲欧美成人精品一区二区| 黄色毛片三级朝国网站| 精品熟女少妇av免费看| 亚洲五月色婷婷综合| 免费人妻精品一区二区三区视频| 国产爽快片一区二区三区| 成人国产av品久久久| 精品亚洲成国产av| av免费在线看不卡| 国产av一区二区精品久久| 人人澡人人妻人| 欧美激情极品国产一区二区三区 | 午夜福利视频在线观看免费| 精品久久国产蜜桃| 亚洲久久久国产精品| 亚洲成人手机| 人妻夜夜爽99麻豆av| 韩国av在线不卡| 3wmmmm亚洲av在线观看| 精品亚洲成国产av| 伊人亚洲综合成人网| 看十八女毛片水多多多| 一级二级三级毛片免费看| 久久久精品免费免费高清| av又黄又爽大尺度在线免费看| 免费黄网站久久成人精品| 国产一区二区三区av在线| 欧美xxxx性猛交bbbb| 两个人的视频大全免费| 99久久精品国产国产毛片| 99国产综合亚洲精品| 大片免费播放器 马上看| 人妻制服诱惑在线中文字幕| 黄色怎么调成土黄色| 尾随美女入室| 成人影院久久| 99久久精品一区二区三区| 高清av免费在线| 亚洲第一av免费看| 成人国产av品久久久| 在线观看www视频免费| 视频区图区小说| 午夜影院在线不卡| 黑人欧美特级aaaaaa片| 欧美最新免费一区二区三区| 精品人妻熟女av久视频| 亚洲精品日韩av片在线观看| 涩涩av久久男人的天堂| 亚洲精品国产色婷婷电影| www.av在线官网国产| 最近手机中文字幕大全| 免费高清在线观看视频在线观看| 老熟女久久久| 黑人猛操日本美女一级片| 成年人免费黄色播放视频| 中文字幕精品免费在线观看视频 | 亚洲国产精品一区三区| 老司机影院毛片| 简卡轻食公司| 欧美日韩精品成人综合77777| 国产高清三级在线| 久久久久人妻精品一区果冻| 国产成人精品在线电影| 一本一本综合久久| 亚洲精品视频女| 纯流量卡能插随身wifi吗| 国产精品人妻久久久影院| 在线播放无遮挡| 在线观看免费高清a一片| 国产免费一级a男人的天堂| 妹子高潮喷水视频| 一本色道久久久久久精品综合| 久久久欧美国产精品| 国产免费视频播放在线视频| av网站免费在线观看视频| 飞空精品影院首页| xxx大片免费视频| 欧美激情国产日韩精品一区| 久久国内精品自在自线图片| 欧美精品一区二区免费开放| 老女人水多毛片| 国产日韩一区二区三区精品不卡 | 视频中文字幕在线观看| 搡女人真爽免费视频火全软件| 99热全是精品| 极品人妻少妇av视频| 久久久精品免费免费高清| av国产精品久久久久影院| 国产成人精品久久久久久| 韩国高清视频一区二区三区| 一级毛片 在线播放| 在线播放无遮挡| 亚洲国产最新在线播放| 超色免费av| 乱码一卡2卡4卡精品| 精品久久国产蜜桃| 色94色欧美一区二区| 水蜜桃什么品种好| 草草在线视频免费看| 考比视频在线观看| 国产免费一区二区三区四区乱码| 久久久午夜欧美精品| 久久精品国产亚洲av天美| 有码 亚洲区| 性高湖久久久久久久久免费观看| 九色亚洲精品在线播放| 日韩不卡一区二区三区视频在线| 日韩欧美一区视频在线观看| 亚洲成人手机| 国产黄色免费在线视频| 精品亚洲成a人片在线观看| 国产精品一区二区在线不卡| 99国产综合亚洲精品| 99热这里只有是精品在线观看| 日韩不卡一区二区三区视频在线| 欧美变态另类bdsm刘玥| 欧美日韩国产mv在线观看视频| 2022亚洲国产成人精品| 涩涩av久久男人的天堂| 人人澡人人妻人| 寂寞人妻少妇视频99o| 91精品国产九色| 色吧在线观看| 亚洲丝袜综合中文字幕| 中文字幕最新亚洲高清| 国产精品国产av在线观看| 男女免费视频国产| 精品久久蜜臀av无| 日韩欧美一区视频在线观看| 制服人妻中文乱码| 国产欧美亚洲国产| 亚洲欧洲日产国产| 熟女av电影| xxxhd国产人妻xxx| 人体艺术视频欧美日本| 下体分泌物呈黄色| 日韩中字成人| 欧美成人午夜免费资源| 国产精品免费大片| 国产成人一区二区在线| 国产免费视频播放在线视频| 人妻一区二区av| 人人妻人人添人人爽欧美一区卜| 精品国产一区二区三区久久久樱花| 大香蕉97超碰在线| videos熟女内射| 国产片内射在线| 成人亚洲精品一区在线观看| 亚洲欧美中文字幕日韩二区| 男人操女人黄网站| 国产高清三级在线| 国产日韩一区二区三区精品不卡 | 高清视频免费观看一区二区| 国精品久久久久久国模美| 狠狠婷婷综合久久久久久88av| 最近的中文字幕免费完整| 最新中文字幕久久久久| 精品人妻一区二区三区麻豆| 日本猛色少妇xxxxx猛交久久| 人人妻人人爽人人添夜夜欢视频| 少妇猛男粗大的猛烈进出视频| 日本免费在线观看一区| 51国产日韩欧美| 五月伊人婷婷丁香| 午夜福利视频在线观看免费| 伦理电影免费视频| 性高湖久久久久久久久免费观看| 亚洲四区av| 91国产中文字幕| 亚洲少妇的诱惑av| 一级a做视频免费观看| 欧美人与善性xxx| 性色avwww在线观看| 国产黄色免费在线视频| 成年av动漫网址| 99热国产这里只有精品6| 欧美97在线视频| 综合色丁香网| 你懂的网址亚洲精品在线观看|