• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Heterogeneous integration of InP HEMTs on quartz wafer using BCB bonding technology

    2022-01-23 06:35:18YanFuWang王彥富BoWang王博RuiZeFeng封瑞澤ZhiHangTong童志航TongLiu劉桐PengDing丁芃YongBoSu蘇永波JingTaoZhou周靜濤FengYang楊楓WuChangDing丁武昌andZhiJin金智
    Chinese Physics B 2022年1期
    關(guān)鍵詞:王博武昌

    Yan-Fu Wang(王彥富) Bo Wang(王博) Rui-Ze Feng(封瑞澤) Zhi-Hang Tong(童志航)Tong Liu(劉桐) Peng Ding(丁芃) Yong-Bo Su(蘇永波) Jing-Tao Zhou(周靜濤)Feng Yang(楊楓) Wu-Chang Ding(丁武昌) and Zhi Jin(金智)

    1University of Chinese Academic of Sciences,Beijing 100029,China

    2High-Frequency High-Voltage Device and Integrated Circuits Center,Institute of Microelectronics,Chinese Academy of Sciences,Beijing 100029,China

    3Guangxi Key Laboratory of Precision Navigation Technology and Application,Guilin University of Electronic Technology,Guilin 541004,China

    Keywords: heterogeneous integration,InP high electron mobility transistor,quartz,small-signal model

    1. Introduction

    InP-based high electron mobility transistors(HEMTs)are considered as one of the most competitive semiconductor devices for millimeter and terahertz monolithic integrated circuits. These applications are based on the excellent properties of the InP-based HEMTs, such as low noise, low power consumption and high gain performance.[1-6]However,owing to the high dielectric constant of InP,the transmission loss of InP-based monolithic integrated circuits is large, and the application of InP-based HEMTs in the high-frequency field is restricted. Therefore,it is necessary to replace the substrate of InP HEMTs through heterogeneous integration.

    In recent years, many structures and methods have been used to achieve the heterogeneous integration of InP-based transistors on Si and other substrates in order to gain better performance and larger application fields. Liuet al.[7]have reported the heterogeneous integration of InP-based heterojunction bipolar transistor (HBT) structures on Si substrates by using molecular beam epitaxy, which have the similar direct current (DC) and radio frequency (RF) performance to the device grown on lattice-matched InP substrate. Hayashiet al.[8]have investigated the layer transfer of GaAs,InP,GaSb,and InAs by using hydrogen ion exfoliation and wafer bonding. Kimet al.[9]have presented the InGaAs-on-insulator fabrication from an InGaAs layer grown on a Si donor wafer with a III-V buffer layer instead of growth on an InP donor wafer,and such transistors exhibit the high electron mobility and uniform distribution of the leakage current.

    Quartz has the features of low dielectric constant and insulation, so it is very suitable to serving as the substrate for high frequency circuits. The excellent RF characteristics of InP-based HEMTs and the low dielectric constant of quartz wafer can be combined on the same device by using heterogeneous integration.The heterogeneous integration of InP-based transistors on quartz wafer shows a promising future,and the design, fabrication and characteristics of heterogeneous integration of InP HEMTs on quartz wafer still need further studying.

    In the present research, we describe the design, fabrication, and characteristics of the heterogeneous integration of In0.52Al0.48As/In0.7Ga0.3As InP-based HEMTs on quartz wafer with 100-nm gate-length. The reverse-grown InP epitaxial structure is used to realize the layer transfer with the BCB bonding technology. The BCB bonding technology is chosen here in this work,for the BCB bonding is not sensitive to the surface morphology of the bonded wafer, the temperature during the bonding process is relatively low,and the BCB after bonding is robust again the attack from various strong acids, strong alkalis, and chemical solvents. A small signal equivalent circuit model is established to evaluate the mechanism of RF performance,and the excellent agreement between the measured and simulatedfT,fmax,andkis observed.

    2. Experiment

    Figure 1(a) shows the epitaxial structure of the HEMT used in this work and figure 1(b) shows a schematic crosssectional view of our heterogeneous integrated InP-based HEMT structure. All epitaxial layers were grown by molecular beam epitaxy (MBE) on a 3-inch (1 inch=2.54 cm)semi-insulating (100) InP substrate.[10,11]From bottom to top, the epitaxial layers constituting a 50-nm InP buffer were a 100-nm In0.53Ga0.47As etching stopper layer, a 10-nm InP etching stopper layer, a 40-nm Si-doped composite InGaAs cap layer, a 4-nm InP etching stopper layer, an 8-nm In0.53Al0.47As Schottky barrier layer,Si delta doping layer with 5×1012cm2doping concentration,a 3-nm In0.52Al0.48As spacer layer, a 10-nm In0.7Ga0.3As channel layer, and a 500-nm In0.52Al0.48As buffer. A 10-nm Si-doped In0.65Ga0.35As layer,a 15-nm Si-doped In0.53Ga0.47As,and a 15-nm Si-doped In0.53Al0.47As transition layer constituted the composite cap layer to facilitate the formation of non-alloyed Ohmic contacts. After device fabrication we could obtain the heterogeneous integration of InP HEMTs on quartz wafer as shown in Fig.1(b).

    The device fabrication started with interconnections of InP epitaxy and quartz through BCB (3022-46, Dow Chemical) adhesive bonding and InP substrate removing as shown in Fig. 2. The epi-wafer and quartz were first treated in oxygen plasma,and then placed on a hot plate to remove surface moisture. After that, the wafers were coated with BCB, precured for 10 min and finally placed in an oven filled with N2at 0.18 MPa pressure for curing BCB.

    Then the origin InP substrate and InP buffer were removed by using HCl:H2O =3:1, the InGaAs stopper layer was removed by using H3PO4:H2O2:H2O=3:1:50 and the InP etched stopper layer was removed by using HCI:H3PO4=1:4 to expose the InGaAs cap layer. After mesa-etching, Ohmiccontact formation,and T-shaped gate recess via e-beam lithography, the heterogeneous integration of InP HEMTs on a quartz wafer was fabricated.

    Detailed fabrication processes of the HEMT devices are similar to those of our previously reported devices.[12]And the process of heterogeneous integration is compatible with the process of CPWG MMIC.The specific contact resistivity was determined by transmission line method (TLM) to be about 1.09×10-7Ω·cm-2.

    Fig.1. (a)Schematic cross-sectional view of epitaxial structure and(b)heterogeneous integrated InP-based HEMTs.

    Fig.2. Process of BCB adhesive bonding and InP substrate removing.

    To characterize the device performance,DC performance was revealed through HP4142 semiconductor parameter analyzer at room temperature,and the RF performance was characterized via an Agilent E8363B PNA vector network analyzer from 0.1 GHz to 50 GHz at room temperature. After measurement theS-parameters were extracted and studied.

    3. Results and discussion

    3.1. DC characteristics

    Figure 3(a) shows the current-voltage (I-V) characteristics of a 100-nm gate length HEMT with a gate width of 2×20 μm at room temperature. The gate-source voltage(VGS) increases from-1.3 V to 0 V in steps of +0.1 V, and the drain-source voltage (VDS) is scanned from 0 V to 0.8 V.The heterogeneous integration of InP HEMTs on quartz wafer has good pinch-off characteristics,and we obtain a maximum drain current of 536.5 mA/mm which is achieved atVGS=0 V andVDS=0.8 V.The extrinsic transconductance(gm)and the drain current of the HEMT at a bias ofVDS=0.8 V are shown in Fig. 3(b). In addition, figure 3(c) shows the dependence ofgmon theVGSfor different values ofVDS. The device shows a pinch-off voltage of about-0.9 V. A maximum extrinsic transconductancegm,maxof 855.5 mS/mm is achieved atVGS=-0.6 V andVDS=0.8 V.Figure 3(d)shows the curve of gate leakage current of the HEMTsversus VGSforVDS=0 V in a range from-1.3 V to 0 V.The gate leakage current of the device is small enough for the LNA applications.

    Fig.3. DC performances of heterogeneous integration of InP HEMTs with Lg of 100 nm,shown by(a)IDS-VDS curve of InP-based HEMTs,(b)transfer curves of InP-based HEMTs measured at VDS =0.8 V,(c)dependence of transconductance on VGS and VDS,and(d)gate leakage current versus VGS with VDS=0 V of HEMTs.

    3.2. RF characteristics

    The device under test is measured by using on-wafer open and short patterns to subtract pad capacitances and inductances from the measured deviceSparameters. Figure 4 shows the RF characteristics of heterogeneous integration of InP HEMTs withLgof 100 nm, which is approximately biased at a peakgmpoint ofVGS=-0.6 V andVDS=0.8 V.The current gainH21and the maximum stable gain(MSG)/maximum available gain (MAG) of the HEMTs are determined by the measuredS-parameter. Because of the limit of measuring frequency,we have to extrapolate the current gain (H21) and the maximum available power gain(MAG)by using a least-squares fitting with a-20-dB/decade slope after the parasitic parameters have been de-embedded to acquire thefTandfmax.[13]The value offTextrapolated fromH21is 262 GHz, andfmaxextrapolated from MAG is 288 GHz. However,the device is still unstable(k<1)at the maximum test frequency of 50 GHz,so it can be inferred that the actualfmaxcan be larger. ThefTandfmaxare expressed as follows:

    whereCgsis the parasitic capacitance from gate to source,Cgdis the parasitic capacitance from gate to drain,andRg,Rd,andRsare the parasitic resistances of gate, drain, and source, respectively. Thegmis the transconductance,theGdsis conductance between the drain and the source,andfT,intis the value offTfor the core part of HEMTs without any parasitic resistances and capacitances. Equations (1) and (2) show thatfTandfmaxhave a positive correlation withgm, and thefTandfmaxwill be good because of the highgm.

    Fig.4. RF characteristics of heterogeneous integration of InP HEMTs with Lg of 100 nm.

    In order to characterize the properties and performance of device,a small signal equivalent circuit model of heterogeneous integration of InP HEMTs on quartz wafer is built. Figure 5 illustrates a small signal equivalent circuit model for the devices,biased atVDS=0.8 V andVGS=-0.6 V.For the short gate length, the drain-source voltage will cause the sourceside barrier to drop,resulting in the drain-induced barrier lowering effect(DIBL),which affects the channel current characteristics. Therefore,τdsis added into the model to characterize the influence of drain-source voltage on channel current.[14,15]

    Fig.5. Small signal equivalent circuit model of heterogeneous integration of InP HEMTs on quartz wafer.

    The extrinsic parameters contain parasitic capacitances,parasitic inductances, and parasitic resistances. We calculate the parasitic capacitances and parasitic inductances through theSparameters of the open structure and the short structure.Then we extracteRsby the YANG-LONG method and extracteRgandRdby the cold-FET method, and their expressions are as follows:

    After all parasitic parameters are extracted, the intrinsic parameters are extracted.First,we obtain theSparameters of the intrinsic part of the device by using open-short de-embedding technology. Then according to the equivalent circuit structure of the intrinsic part,the intrinsic parameters are extracted through theYparameters as shown below:

    Fig.6. Fitting result of(a)S parameters and(b)RF performances.

    Finally, we obtain all the values of the parameters in our model. And then the small signal equivalent circuit model topology of heterogeneous integration of InP HEMTs on quartz wafer is built in the Agilent’s advanced design system software(ADS),and the results are shown in Fig.5. After that, the topology is simulated and all values of parasitic parameters and intrinsic parameters are tuned to fit the model in ADS. The fitting result ofSparameters for the model is demonstrated in Fig.6. The parameters of small signal equivalent circuit of the device are given in Table 1. As we can see,the curved portion in the low frequency region ofSparameters and high frequency region ofSparameters can be fitted by the small signal equivalent circuit model,and the fitting results ofH21,MAG,andUgand stability factorkare all excellent.

    A summary of RF characteristics of InP-based HEMTs with the same gate lengths and channel but different substrates is given in Table 2. We can see that the value offTof this work is relatively high in Table 2 though ourVDSis smallest(just 0.8 V). If we increase the maximumVDSof the device,thefTwill be higher and the RF performance of device will be better. The values offTandfmaxof these devices are all outstanding,which means that the heterogeneous integrations of InP HEMTs on other substrates have a promising future because the heterogeneous integrated device can take the full advantages of various materials and structures.

    Table 1. Parameters of small signal equivalent circuit of device biased at fT,max.

    Table 2. Comparison aong published InP HEMTs on different substrates with gate length of 100 nm.

    In Ref. [20], the aging of InP HEMT is influenced by a diffusion mechanism, the diffused impurities from gate electrode will reduce the carrier concentration in the epitaxial layer and cause device to age. Aging occurs in the gate area,so the change of the substrate has no effect on the aging caused by diffusion mechanism. As the thermal conductivity of quartz is much smaller than that of InP,the heat generated in the working process of the device will accumulate in the device and accelerate the aging of the device. In order to reduce this effect,MMIC structure with via holes and backside metal,such as CPWG,will be used to assist in heat dissipation.

    4. Conclusions

    In this work,the InP epitaxies grown in reverse order are used for heterogeneous integration with quartz wafers. The In0.52Al0.48As/In0.7Ga0.3As HEMTs with 100-nm gate length and 2μm×20μm gate width on quartz substrates are successfully fabricated after BCB bonding. The HEMTs exhibit good DC and RF performances, each with a maximum drain current of 536.5 mA/mm,a maximum extrinsic transconductancegm,maxof 855.5 mS/mm,a cut-off frequency of 262 GHz,and a maximum oscillation frequency of 288 GHz. In the end,the small signal equivalent circuit model is built to characterize the device performance;the fitting results ofSparameters and the fitting results of RF performances are good. The excellent results of the heterogeneous integration of InP HEMTs show promising high frequency applications.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant No. 61434006). The authors would like to thank Li Yan-Kui for his assistance during the measurements. We are also grateful to all the members of High-Frequency High-Voltage Device and Integrated Circuits Center for their valuable help during the experiment.

    猜你喜歡
    王博武昌
    Electronic structure study of the charge-density-wave Kondo lattice CeTe3
    Circular dichroism spectra of α-lactose molecular measured by terahertz time-domain spectroscopy
    冷凍斷裂帶儲層預(yù)測研究
    Impact of gate offset in gate recess on DC and RF performance of InAlAs/InGaAs InP-based HEMTs
    武昌理工學(xué)院藝術(shù)設(shè)計學(xué)院作品選登
    武昌理工學(xué)院室內(nèi)設(shè)計作品選登
    王亞南與武昌中華大學(xué)
    夜登武昌封建亭(外二首)
    岷峨詩稿(2019年4期)2019-04-20 09:02:10
    STRONG COMPARISON PRINCIPLES FOR SOME NONLINEAR DEGENERATE ELLIPTIC EQUATIONS?
    童迷黑白秀
    童話世界(2017年34期)2017-12-04 09:09:48
    成人国产av品久久久| 欧美 日韩 精品 国产| 热re99久久国产66热| 亚洲欧美日韩另类电影网站| 国产免费又黄又爽又色| 免费观看av网站的网址| 一本色道久久久久久精品综合| 校园人妻丝袜中文字幕| 欧美亚洲日本最大视频资源| av在线老鸭窝| 亚洲国产欧美日韩在线播放| 午夜激情av网站| 麻豆乱淫一区二区| 国产精品不卡视频一区二区| 人成视频在线观看免费观看| 又粗又硬又长又爽又黄的视频| 午夜老司机福利剧场| 自线自在国产av| 久久av网站| 男女边摸边吃奶| 交换朋友夫妻互换小说| 全区人妻精品视频| 内地一区二区视频在线| 亚洲国产精品成人久久小说| 久久99一区二区三区| 日本免费在线观看一区| 成人毛片a级毛片在线播放| 精品熟女少妇av免费看| 日韩成人伦理影院| 熟女av电影| 91精品一卡2卡3卡4卡| 80岁老熟妇乱子伦牲交| 国产毛片在线视频| 久久人妻熟女aⅴ| 色婷婷av一区二区三区视频| xxxhd国产人妻xxx| 亚洲欧洲精品一区二区精品久久久 | 国产精品久久久久久久久免| 伦理电影大哥的女人| 一区在线观看完整版| 亚洲av电影在线观看一区二区三区| 亚洲精品第二区| h视频一区二区三区| 美女脱内裤让男人舔精品视频| 精品熟女少妇av免费看| 久久精品人人爽人人爽视色| 亚洲精品一二三| 亚洲人成网站在线观看播放| h视频一区二区三区| 久久这里有精品视频免费| 国产又色又爽无遮挡免| 免费看光身美女| 国产免费又黄又爽又色| 国产淫语在线视频| av专区在线播放| 一级爰片在线观看| 男人添女人高潮全过程视频| 精品亚洲成国产av| 丁香六月天网| 国产精品麻豆人妻色哟哟久久| 在线观看www视频免费| 美女国产高潮福利片在线看| 97超视频在线观看视频| 大香蕉97超碰在线| 最近的中文字幕免费完整| 丰满饥渴人妻一区二区三| 黑人巨大精品欧美一区二区蜜桃 | 久热久热在线精品观看| 99热这里只有是精品在线观看| 午夜激情av网站| 国产精品嫩草影院av在线观看| 国产黄色视频一区二区在线观看| 亚洲精品456在线播放app| 成年女人在线观看亚洲视频| 超色免费av| 欧美性感艳星| 十八禁高潮呻吟视频| 99国产综合亚洲精品| 久久久久久久久大av| 大片免费播放器 马上看| 极品少妇高潮喷水抽搐| 天天操日日干夜夜撸| 大片电影免费在线观看免费| 亚洲人与动物交配视频| 亚洲精品美女久久av网站| 欧美bdsm另类| 久久国内精品自在自线图片| 80岁老熟妇乱子伦牲交| 男人操女人黄网站| 午夜91福利影院| 国产亚洲av片在线观看秒播厂| 99精国产麻豆久久婷婷| 国产精品三级大全| 丰满饥渴人妻一区二区三| 不卡视频在线观看欧美| 一本色道久久久久久精品综合| 大香蕉97超碰在线| 亚洲无线观看免费| 亚洲美女视频黄频| 日韩欧美精品免费久久| 夜夜爽夜夜爽视频| 亚洲精品,欧美精品| 久久人人爽av亚洲精品天堂| 黑人巨大精品欧美一区二区蜜桃 | 一级毛片 在线播放| 日本欧美国产在线视频| 日日摸夜夜添夜夜添av毛片| 制服诱惑二区| 中文字幕精品免费在线观看视频 | 久久久久久久久久人人人人人人| 欧美日韩视频精品一区| 性色avwww在线观看| 久久久久国产精品人妻一区二区| 另类亚洲欧美激情| 亚洲av成人精品一二三区| av国产久精品久网站免费入址| 91成人精品电影| 国产免费福利视频在线观看| 18禁在线播放成人免费| 乱人伦中国视频| 亚洲欧美一区二区三区黑人 | 我的女老师完整版在线观看| a 毛片基地| 亚洲无线观看免费| 亚洲精品乱久久久久久| 另类精品久久| 插逼视频在线观看| 亚洲欧洲精品一区二区精品久久久 | 欧美激情 高清一区二区三区| 亚洲熟女精品中文字幕| 久久国产亚洲av麻豆专区| 伊人久久国产一区二区| 91久久精品电影网| 中文字幕最新亚洲高清| 国产深夜福利视频在线观看| 如日韩欧美国产精品一区二区三区 | 天堂8中文在线网| 亚洲国产成人一精品久久久| 久久99一区二区三区| 在线观看国产h片| 中文字幕制服av| 国产av精品麻豆| xxx大片免费视频| 欧美xxxx性猛交bbbb| 国产成人一区二区在线| 97超视频在线观看视频| 性色av一级| 女性生殖器流出的白浆| 国国产精品蜜臀av免费| 久久久久久久国产电影| 母亲3免费完整高清在线观看 | 街头女战士在线观看网站| 免费观看无遮挡的男女| 亚洲三级黄色毛片| 免费播放大片免费观看视频在线观看| 中文乱码字字幕精品一区二区三区| av视频免费观看在线观看| 91aial.com中文字幕在线观看| 久久国产亚洲av麻豆专区| 丝袜喷水一区| 欧美精品一区二区免费开放| 老司机影院成人| 在线播放无遮挡| 日韩不卡一区二区三区视频在线| 欧美日韩av久久| 午夜福利,免费看| 最新中文字幕久久久久| 国产精品久久久久久精品电影小说| 欧美老熟妇乱子伦牲交| 成人国产av品久久久| 亚洲精品乱码久久久久久按摩| 人人澡人人妻人| 乱人伦中国视频| 久久热精品热| 国模一区二区三区四区视频| 考比视频在线观看| 成人国产麻豆网| a级毛片黄视频| kizo精华| 亚州av有码| 99热全是精品| 全区人妻精品视频| av在线播放精品| 国产一区有黄有色的免费视频| 亚洲精品亚洲一区二区| 能在线免费看毛片的网站| 考比视频在线观看| 18禁裸乳无遮挡动漫免费视频| 久久久久国产精品人妻一区二区| 高清午夜精品一区二区三区| av在线播放精品| 夜夜爽夜夜爽视频| 精品国产一区二区久久| 亚洲欧美日韩另类电影网站| 肉色欧美久久久久久久蜜桃| 91在线精品国自产拍蜜月| 日本91视频免费播放| 亚洲精品乱码久久久久久按摩| 卡戴珊不雅视频在线播放| 亚洲欧美色中文字幕在线| 中文欧美无线码| 春色校园在线视频观看| 伊人久久精品亚洲午夜| 2018国产大陆天天弄谢| 国产乱来视频区| 老女人水多毛片| 亚洲婷婷狠狠爱综合网| 热re99久久精品国产66热6| 国产精品人妻久久久久久| 免费观看在线日韩| 美女国产视频在线观看| 久久青草综合色| 丝袜脚勾引网站| 精品亚洲成国产av| 两个人的视频大全免费| 五月玫瑰六月丁香| 性色av一级| 久久人妻熟女aⅴ| 黄色怎么调成土黄色| 久久国产精品男人的天堂亚洲 | 国产欧美另类精品又又久久亚洲欧美| 中文字幕免费在线视频6| 男的添女的下面高潮视频| 亚洲,一卡二卡三卡| 日本欧美视频一区| 色婷婷av一区二区三区视频| 亚洲国产成人一精品久久久| 日本与韩国留学比较| 丰满少妇做爰视频| 岛国毛片在线播放| 久久午夜综合久久蜜桃| av专区在线播放| 九九久久精品国产亚洲av麻豆| 最近的中文字幕免费完整| 国产男女超爽视频在线观看| 亚洲av电影在线观看一区二区三区| 午夜福利视频在线观看免费| 亚洲美女视频黄频| 如何舔出高潮| 国产黄色免费在线视频| 亚洲国产精品成人久久小说| 欧美日韩一区二区视频在线观看视频在线| av在线播放精品| 80岁老熟妇乱子伦牲交| 亚洲av福利一区| 亚洲国产欧美日韩在线播放| 男女边摸边吃奶| 人妻人人澡人人爽人人| 久久鲁丝午夜福利片| 欧美国产精品一级二级三级| 午夜福利视频在线观看免费| www.色视频.com| 热re99久久精品国产66热6| 色网站视频免费| 2018国产大陆天天弄谢| 亚洲欧美一区二区三区国产| 久久久精品免费免费高清| 高清黄色对白视频在线免费看| 亚洲欧洲日产国产| 99热全是精品| 欧美激情极品国产一区二区三区 | 亚洲国产欧美在线一区| 午夜福利视频精品| 国产亚洲av片在线观看秒播厂| 人妻制服诱惑在线中文字幕| 久久久久精品久久久久真实原创| 国语对白做爰xxxⅹ性视频网站| 日韩精品免费视频一区二区三区 | 国产成人精品福利久久| 成人国产av品久久久| 国产国拍精品亚洲av在线观看| 在线观看三级黄色| 国产片特级美女逼逼视频| 国产伦理片在线播放av一区| 人人妻人人澡人人看| 免费大片18禁| 久久精品国产亚洲av天美| 免费观看在线日韩| 久久久久人妻精品一区果冻| 国产 精品1| 久久久久久久亚洲中文字幕| av.在线天堂| 欧美少妇被猛烈插入视频| 久久精品国产亚洲网站| 久热这里只有精品99| 国产精品国产三级专区第一集| 色吧在线观看| 美女国产高潮福利片在线看| 色5月婷婷丁香| 国产一区二区三区av在线| 亚洲高清免费不卡视频| 男女无遮挡免费网站观看| 欧美精品一区二区免费开放| 美女cb高潮喷水在线观看| 欧美变态另类bdsm刘玥| 美女大奶头黄色视频| 欧美少妇被猛烈插入视频| 嘟嘟电影网在线观看| 伦精品一区二区三区| 久久久久精品久久久久真实原创| 大片免费播放器 马上看| 久久久久久久国产电影| 女性生殖器流出的白浆| 精品久久久久久电影网| 日韩 亚洲 欧美在线| 五月开心婷婷网| 国产男女内射视频| 国产精品一二三区在线看| 看免费成人av毛片| 免费不卡的大黄色大毛片视频在线观看| 我要看黄色一级片免费的| 久久av网站| xxx大片免费视频| 免费看av在线观看网站| 看免费成人av毛片| 欧美另类一区| 国产日韩欧美亚洲二区| 国产精品无大码| 中文精品一卡2卡3卡4更新| 高清欧美精品videossex| 欧美人与善性xxx| 亚洲伊人久久精品综合| 18禁在线无遮挡免费观看视频| 国产色婷婷99| 国产女主播在线喷水免费视频网站| 青青草视频在线视频观看| 日日啪夜夜爽| 免费高清在线观看视频在线观看| 一级毛片我不卡| 亚洲欧美成人精品一区二区| 日韩不卡一区二区三区视频在线| 久久久久精品性色| 少妇高潮的动态图| 精品久久久久久电影网| 在线 av 中文字幕| 蜜桃在线观看..| 亚洲av国产av综合av卡| 久久人人爽av亚洲精品天堂| 蜜桃久久精品国产亚洲av| 在线天堂最新版资源| 国产男女内射视频| 久热久热在线精品观看| 国产永久视频网站| 久久精品夜色国产| 一级,二级,三级黄色视频| 下体分泌物呈黄色| 国产精品 国内视频| 最近最新中文字幕免费大全7| 狂野欧美激情性bbbbbb| 一级,二级,三级黄色视频| a 毛片基地| 欧美精品一区二区大全| 久久精品夜色国产| 亚洲精品,欧美精品| 日韩一区二区三区影片| av播播在线观看一区| 国产亚洲一区二区精品| av免费观看日本| 亚洲精品456在线播放app| 欧美日韩在线观看h| 丰满饥渴人妻一区二区三| 免费人妻精品一区二区三区视频| 国产视频内射| 成人手机av| 国产日韩欧美视频二区| 国产精品一国产av| 狠狠精品人妻久久久久久综合| 少妇被粗大猛烈的视频| 国产深夜福利视频在线观看| 桃花免费在线播放| 午夜福利,免费看| 99久久中文字幕三级久久日本| 男女边吃奶边做爰视频| 成人无遮挡网站| 高清视频免费观看一区二区| 国产一区二区在线观看日韩| 午夜91福利影院| 精品少妇黑人巨大在线播放| 高清av免费在线| 在线亚洲精品国产二区图片欧美 | 国产男女内射视频| 老熟女久久久| 纵有疾风起免费观看全集完整版| 日日摸夜夜添夜夜爱| 亚洲性久久影院| 男女国产视频网站| 国产日韩欧美亚洲二区| 国产一区二区在线观看日韩| 欧美丝袜亚洲另类| 我的老师免费观看完整版| 亚洲国产精品一区三区| 十八禁高潮呻吟视频| 18在线观看网站| 精品国产国语对白av| 80岁老熟妇乱子伦牲交| 久久精品国产自在天天线| 99久久精品国产国产毛片| 精品一品国产午夜福利视频| 日韩中字成人| av女优亚洲男人天堂| 亚洲欧美精品自产自拍| 狂野欧美激情性bbbbbb| 91aial.com中文字幕在线观看| 91精品国产九色| 99热国产这里只有精品6| 自线自在国产av| 久久久久久久久大av| 国产日韩欧美在线精品| 91久久精品国产一区二区三区| 日韩一区二区视频免费看| 国产视频首页在线观看| 在线精品无人区一区二区三| 99久久综合免费| 成年女人在线观看亚洲视频| 久久久久久久久久久丰满| 九九在线视频观看精品| 又粗又硬又长又爽又黄的视频| 麻豆精品久久久久久蜜桃| 看十八女毛片水多多多| 亚洲国产精品一区三区| 国产免费又黄又爽又色| 人妻夜夜爽99麻豆av| 成人漫画全彩无遮挡| 久热这里只有精品99| 亚洲综合色惰| 欧美亚洲日本最大视频资源| 久久热精品热| 精品少妇内射三级| 精品视频人人做人人爽| 亚洲天堂av无毛| 最近手机中文字幕大全| 免费看光身美女| 日韩av免费高清视频| 另类亚洲欧美激情| 国产黄片视频在线免费观看| 人体艺术视频欧美日本| 午夜激情av网站| 亚洲精品,欧美精品| 女的被弄到高潮叫床怎么办| 一级毛片 在线播放| 精品视频人人做人人爽| 久久人人爽av亚洲精品天堂| 波野结衣二区三区在线| 日本欧美国产在线视频| 国产精品国产三级专区第一集| 国产精品久久久久久久久免| av免费在线看不卡| 亚洲av成人精品一区久久| 欧美另类一区| 看免费成人av毛片| 国产亚洲精品久久久com| 久久热精品热| 18禁动态无遮挡网站| 美女主播在线视频| 三级国产精品片| 超色免费av| 久久久久久久国产电影| 搡女人真爽免费视频火全软件| 久久精品久久久久久久性| 中文欧美无线码| 丝瓜视频免费看黄片| 最近最新中文字幕免费大全7| tube8黄色片| 中文精品一卡2卡3卡4更新| 97超碰精品成人国产| xxxhd国产人妻xxx| 在线天堂最新版资源| 亚洲人与动物交配视频| 99热国产这里只有精品6| 国产色爽女视频免费观看| a 毛片基地| 精品人妻偷拍中文字幕| 国产精品蜜桃在线观看| 各种免费的搞黄视频| 赤兔流量卡办理| av在线播放精品| 你懂的网址亚洲精品在线观看| 狂野欧美白嫩少妇大欣赏| 日本午夜av视频| 极品少妇高潮喷水抽搐| 91久久精品国产一区二区三区| 99国产精品免费福利视频| 精品少妇内射三级| 美女大奶头黄色视频| 国产一级毛片在线| 黑人高潮一二区| 亚洲欧美成人精品一区二区| 好男人视频免费观看在线| 男的添女的下面高潮视频| 亚洲精品456在线播放app| 我的女老师完整版在线观看| 国产精品人妻久久久久久| 卡戴珊不雅视频在线播放| 亚洲av日韩在线播放| 久久精品久久久久久久性| 极品人妻少妇av视频| 成年女人在线观看亚洲视频| 黄色怎么调成土黄色| 夜夜看夜夜爽夜夜摸| 51国产日韩欧美| 99热国产这里只有精品6| 国产色婷婷99| 久久精品久久精品一区二区三区| 寂寞人妻少妇视频99o| 妹子高潮喷水视频| 成人国语在线视频| 人妻一区二区av| 国产免费一区二区三区四区乱码| 91午夜精品亚洲一区二区三区| 三上悠亚av全集在线观看| 精品午夜福利在线看| 日韩在线高清观看一区二区三区| 午夜91福利影院| 亚洲一区二区三区欧美精品| 国产深夜福利视频在线观看| 一级毛片电影观看| .国产精品久久| 久久久久精品性色| 最新中文字幕久久久久| 秋霞伦理黄片| 热re99久久国产66热| 日韩一本色道免费dvd| 国产精品蜜桃在线观看| 国产亚洲欧美精品永久| 91精品三级在线观看| 久久国内精品自在自线图片| 制服诱惑二区| 国产日韩欧美在线精品| 最近中文字幕高清免费大全6| 制服丝袜香蕉在线| 如何舔出高潮| 精品久久久久久久久av| 岛国毛片在线播放| 亚洲欧美一区二区三区国产| 国产伦精品一区二区三区视频9| 美女中出高潮动态图| 国产av国产精品国产| 国产女主播在线喷水免费视频网站| 飞空精品影院首页| 一边亲一边摸免费视频| 看十八女毛片水多多多| 免费黄色在线免费观看| 亚洲av.av天堂| 国产伦理片在线播放av一区| 夜夜骑夜夜射夜夜干| 亚洲美女黄色视频免费看| 精品亚洲成国产av| 国产成人av激情在线播放 | 中文精品一卡2卡3卡4更新| 国产成人freesex在线| 中文乱码字字幕精品一区二区三区| 五月伊人婷婷丁香| h视频一区二区三区| 国产精品久久久久久av不卡| 亚洲av中文av极速乱| videos熟女内射| 人人澡人人妻人| 国产成人精品久久久久久| 欧美 日韩 精品 国产| 日本猛色少妇xxxxx猛交久久| 人妻制服诱惑在线中文字幕| 欧美精品亚洲一区二区| 人人妻人人澡人人看| 久久久欧美国产精品| 国产在视频线精品| 成人手机av| 成人综合一区亚洲| 在线观看免费高清a一片| 天天躁夜夜躁狠狠久久av| 亚洲精品乱码久久久v下载方式| 日韩强制内射视频| 免费观看在线日韩| 国产欧美日韩一区二区三区在线 | 伦理电影大哥的女人| 在线免费观看不下载黄p国产| 七月丁香在线播放| 高清视频免费观看一区二区| 亚洲精品日本国产第一区| 国产国语露脸激情在线看| 国产不卡av网站在线观看| 一本大道久久a久久精品| 亚洲美女黄色视频免费看| 男女无遮挡免费网站观看| 99久久综合免费| 日本与韩国留学比较| 日韩视频在线欧美| 99久久综合免费| 成人手机av| 久久婷婷青草| 午夜老司机福利剧场| 亚洲熟女精品中文字幕| 99久久精品一区二区三区| 日韩欧美精品免费久久| 午夜av观看不卡| 久热这里只有精品99| 亚洲综合精品二区| 欧美人与性动交α欧美精品济南到 | 男女高潮啪啪啪动态图| 亚洲人成77777在线视频| 免费看av在线观看网站| 一级a做视频免费观看| 人体艺术视频欧美日本| 亚洲国产欧美日韩在线播放| a级毛片免费高清观看在线播放| 久久久久久久久久人人人人人人| 超碰97精品在线观看| 多毛熟女@视频| 日本免费在线观看一区| 亚洲精品国产av蜜桃| 国产日韩一区二区三区精品不卡 | 欧美日韩国产mv在线观看视频| 国产精品无大码| 午夜视频国产福利| 一本久久精品| 最新中文字幕久久久久|