• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Efficiency droop in InGaN/GaN-based LEDs with a gradually varying In composition in each InGaN well layer

    2022-01-23 06:35:10ShangDaQu屈尚達MingShengXu徐明升ChengXinWang王成新KaiJuShi時凱居RuiLi李睿YeHuiWei魏燁輝XianGangXu徐現(xiàn)剛andZiWuJi冀子武
    Chinese Physics B 2022年1期
    關(guān)鍵詞:李睿王成

    Shang-Da Qu(屈尚達) Ming-Sheng Xu(徐明升) Cheng-Xin Wang(王成新) Kai-Ju Shi(時凱居)Rui Li(李睿) Ye-Hui Wei(魏燁輝) Xian-Gang Xu(徐現(xiàn)剛) and Zi-Wu Ji(冀子武)

    1School of Microelectronics,Institute of Novel Semiconductors,Shandong University,Jinan 250100,China

    2Shandong Inspur Huaguang Optoelectronics Co.,Ltd.,Weifang 261061,China

    Keywords: InGaN/GaN, asymmetric triangular multiple quantum wells, structural and electroluminescence properties,efficiency droop

    1. Introduction

    Nowadays,InGaN/GaN multiple-quantum-well(MQW)-based light-emitting diodes(LEDs)are widely used in general lighting,displays,backlighting,and communications[1-3]due to the tenability of the emitted light from near-ultraviolet to visible and up to near-infrared spectral range by tuning the In composition in the InGaN well layers (WLs).[4]However,there remain many difficulties in achieving high-performance LEDs, which need to be overcome. One of the difficulties is the reduction of the external quantum efficiency (EQE)at high driving currents, that is, the so-called “efficiency droop”.[5,6]To explain this phenomenon and effectively suppress efficiency droop, some theories have been proposed,such as electron leakage,[7]carrier delocalization,[8,9]polarization fields,[10]and Auger recombination.[11,12]Meanwhile,several proposals have also been made,such as the use of the polarization-matched MQW,[13]a band-engineered electron blocking layer,[14]step-stage-MQW structures with Si-doped hole-blocking barriers,[15]and graded-composition multiple quantum barriers.[16]However, the origin of the efficiency droop remains controversial.

    Recently, LEDs with triangular-shaped (TAS) In-GaN/GaN MQW structures have received much attention,which originate from gradually increasing or reducing In composition in each WL along the [0001]-direction, and claimed to be able to suppress efficiency droop compared with conventional rectangular MQWs due to the quantum-confined Stark effect (QCSE) decreasing in the MQWs.[17-19]However, for a complete understanding of the carrier recombination mechanism, detailed experimental and theoretical investigations of InGaN/GaN LEDs with asymmetric triangular MQWs are required.

    In the present work, two different asymmetric triangular InGaN/GaN MQW-based LED samples (SA and SB) are fabricated in which the In composition in each WL gradually increases for SA and gradually decreases for SB along the[0001]-direction,and their structural and optical properties are investigated using high-resolution x-ray diffraction(HRXRD)and electroluminescence(EL)methods.

    2. Experiments

    Two different InGaN/GaN MQW-based LEDs were grown on thec-plane of sapphire substrates by using metalorganic chemical vapor deposition (MOCVD). First, the active region, which comprised seven periods of InGaN/GaN(2 nm/10 nm)MQWs,was grown after a GaN low-temperature layer with a thickness of 20 nm,an undoped GaN layer(2μm),and an Si-doped GaN layer (2.4 μm). Then, five periods of p-type AlGaN/InGaN (3 nm/1 nm) superlattice acting as an electron-blocking layer (EBL), followed by an Mg-doped GaN layer (140 nm) as a p-contact layer, were grown. The area of the LED chip was 1.16 mm×1.16 mm in both samples. The only difference between the two samples lay in the growth pattern of the WLs along the [0001]-direction: the trimethylindium (TMIn) flow rate was gradually modulated from an initial value of 100 sccm to a final value of 600 sccm for SA, and from the initial 600 sccm to the final 100 sccm for SB.The growth time of each WL was about 100 s,and the TMIn flow rate was precisely controlled by a mass flow controller (MFC), which was programmed to ensure that TMIn flow rate changed linearly with growth time of the WL.

    The structural properties of both samples were characterized by HRXRD(Bruker D8 Discover). For the EL measurements, the samples were mounted in a closed-cycle He cryostat to change the temperature from 6 K to 300 K,and a current source meter(Keithley 2400)was used as an excitation source to change the current from 0.01 mA to 350 mA.The EL signals from LEDs were dispersed by a monochromator(Jobin-Yvon,iHR320)and detected by a thermoelectrically cooled CCD detector(Synapse).

    3. Results and discussion

    According to the design scheme described in Section 2,the band diagrams of QW for both samples should show triangular shape,since the band gap of the WL for SA(SB)gradually narrows(broadens)along the[0001]direction due to the progressive increasing(reducing)In content. This leads to the fact that the narrowest band gap,that is,the band gap between the energy minimum of the conduction band and the energy maximum of the valence band, is located at the ending (beginning) of the WL for SA (SB), as shown in Fig. 1 (dashed lines).

    Fig.1. Energy band schematic diagrams of InGaN/GaN QW at zero forward bias for both samples, without((a)for SA and(b)for SB)and with((c)for SA and (d) for SB) considering polarization field. Dashed and solid lines represent energy band schematic diagrams,without and with considering In volatilization,respectively. IR and TR represent the initial region and terminal region of the well layer,respectively.

    Fig.2. HRXRD ω-2θ scan on GaN(002)plane of SA and SB.

    Figure 2 illustrates the HRXRDω-2θscan in the GaN(002)direction for these two samples. The main peaks located at about 34.7°are attributed to the GaN(002)plane.The satellite peaks are considered to originate from the InGaN/GaN MQWs. In addition, by comparison, the satellite peaks are sharper for SA than for SB.Figure 3 shows the HRXRD rocking curves along the (002) and (102) reflections for the two samples. As can be seen in Fig.3, the values of full width at half maximum(FWHM)for the HRXRD rocking curves along the(002)and(102)reflections of SA(SB)are 306 arcsec and 369 arcsec(324 arcsec and 396 arcsec), respectively, indicating that the values of FWHM for the HRXRD rocking curves of SA are narrower than those of SB.All the results obtained from Figs. 2 and 3 show that the SA should have sharper interfaces and better crystal quality than SB.[20-22]Furthermore,based on the aforementioned HRXRD data,such as the intensity ratio of the negative MQW satellite peaks to their positive counterparts-related to the ratio of the layer thickness values, the angular position of the MQW peak, and the angular distance between adjacent satellite peaks, both the thickness(well thickness plus barrier thickness)of one period of MQW and the In mole fraction in the WL can be estimated.[23-25]The thickness values of both samples are estimated to beca.12.4 nm, in approximate agreement with that designed; however, surprisingly, the estimated In mole fraction in the WL is larger for SB (ca. 25.0%) than for SA (ca. 22.5%). This can be explained as follows (see Fig. 1): since the terminal region(TR)of the WL in SB contains a smaller number of In atoms than in SA, the TR in SB should undergo less significant volatilization of In than in SA during the waiting period required for warming-up from the end of low-temperature WL growth to the beginning of high-temperature GaN barrier layer growth; at the same time, the TR with low-In-content, of the WL in SB, as a quasi-cap layer, can suppress the volatilization of In in the initial region(IR)with high-In-content during the waiting period.[26,27]These characteristics may result in SB having a higher average In content than SA, which arises mainly from the contribution of the IR with high-In-content of the WL.This results in the QW in SB presenting a more significant TAS band structure(i.e.,it has a deeper TAS potential well) as shown in Fig. 1 (solid lines), and poorer structural integrity (as mentioned above) due to the more significant In content fluctuations.[28,29]

    Fig.3. HRXRD rocking curves along(002)and(102)reflections for(a)SA and(b)SB.

    Fig. 4. Curves of temperature-dependent EL peak energy for SA and SB operated at 350 mA.

    To explore the transfer and recombination mechanism of the carriers inside the MQWs, figure 4 shows the curve of temperature-dependent EL peak energy of SA and SB at a fixed driving current of 350 mA. As shown in Fig. 4, the temperature-dependent peak energy curves for both the samples present the inverted“V-shape”forms: when the temperature increases,the peak energy first increases,reaching a maximum at a critical temperature due to the thermal broadening effect of the localized carriers, and then decreases due to temperature-induced band gap shrinkage.[30,31]Moreover,it is also found from Fig. 4 that, the temperature behavior of the peak energy exhibits a larger critical temperature(ca. 160 K)for SB than for SA (ca. 100 K); also, the depth of the localized states,which is estimated from the peak energy deviation between experimental data and Varshni’s equation at low temperatures as shown in Fig.4,is larger for SB(36.3 meV)than for SA(15.5 meV).[32,33]The results indicate that the MQWs in SB should have a stronger carrier localization effect than in SA due to the greater potential fluctuation induced by the greater In content fluctuations as mentioned above.

    Fig.5. Curves of EL peak energy and FWHM versus driving current for(a)SA and(b)SB at 300 K,respectively.

    Figure 5 shows the curves of EL peak energy and FWHM at 300 Kversusdriving current in a current range of 0.01 mA-350 mA for SA and SB. When the driving current increases from 0.01 mA to about 0.1 mA, both SA and SB exhibit a peak red-shift accompanied with an FWHM broadening, but the latter has a larger peak red-shift (16.5 meV) and FWHM broadening(15.88 meV)than their counterparts of the former(3.2 meV and 2.73 meV).This indicates that within the lowest current range and at 300 K,the emission process of the MQWs in both samples is dominated by non-radiative recombination centers thermally activated at a higher temperature of 300 K,[4]but the SB contains more numerous non-radiative centers than the SA because of the poor crystal quality as confirmed by the aforementioned HRXRD measurements; however, when the driving current is further increased from 0.1 mA to 350 mA as shown in Fig.5,the SA exhibits a monotonic increase in both the peak energy and FWHM,which is ascribed to the dominant localized states-related filling effect; by contrast, for SB, the peak energy remarkably shows a monotonic increase, while the FWHM first exhibits a considerable increase in a lower current range(0.1 mA-10 mA)due to the filling effect of the low-energy localized states, then a great decrease in an intermediate current range (10 mA-200 mA)due to the Coulomb screening effect of QCSE, and finally a slight increase in the highest current range exceeding 200 mA due to the onset of the intervention of the high-energy localized states-related filling effect.[34-36]Moreover,for comparison,it should be noted that the significant driving current-dependent Coulomb screening process as observed in SB, is not seen at all in the SA. This will be discussed later.

    Fig. 6. Curves of normalized relative EQE versus driving current at 300 K for SA and SB.

    Figure 6 shows the curves of relative EQEversusdriving current of these two samples, detected at 300 K. When the driving current increases from 0.01 mA to 350 mA, the EQE first increases,reaching a maximum value at the critical current and then exhibits a droop for each of the two samples, implying that the emission processes of the MQWs in both samples are dominated by the non-radiative recombination centers at the lower driving currents,and then by the possible electron leakage or Auger recombination at the higher driving currents.[34,37]Furthermore, it may also be seen from Fig.6 that the SB has a higher critical current(1 mA)than SA(0.2 mA), and as the driving current increases from 0.01 mA to 350 mA,the EQE of SB significantly increases in the lower current range and exhibits a less significant decrease in the higher current range than that of SA.These results reflect the fact that compared with SA,SB exhibits greater non-radiative recombination and a lower efficiency droop: the former can be ascribed to its more numerous non-radiative centers; the latter may be attributed mainly to its less significant electron leakage originating from the deeper TAS potential well of the QW, since the carriers are strongly confined within the IR of the WL as discussed in Figs.1-3,and this prevents them from leaking to the p-GaN side through the barrier-like TR. In addition,the less significant electron leakage for SB may also be due partially to its stronger localization effect as discussed in Fig.4. Furthermore,the significant driving current-dependent Coulomb screening process of SB as shown in Fig. 5, may also compensate partly for the efficiency droop; by contrast,the aforementioned absence of the Coulomb screening process of SA(Fig.5)is believed to be related to its more significant electron leakage,which is consistent with its more significant efficiency droop shown in Fig.6.[38]

    4. Conclusions

    The structural and optical properties of two different asymmetric triangular InGaN/GaN MQW-based LED samples,in which the In composition in each InGaN WL gradually increases(decreases)for SA(SB)along the growth direction,are investigated by the HRXRD method and the EL method at different driving currents and temperatures. The results show that due to the difference in growth pattern of the WL between these two samples,comparing with the SA,for the SB,the TR of the WL contains fewer In atoms, thus resulting in the less significant volatilization of In ingredient therein;furthermore,this low-In-content TR as a quasi-cap layer, can suppress the volatilization of In ingredient in the high-In-content IR,at the same time,it can also act as a barrier-like layer to prevent electrons from leaking to the p-GaN side. This causes the SB to have a higher In content and a deeper TAS potential well in the QW than SA.It is also consistent with the following measurement results: compared with the SA, the SB has a lower EL peak energy,a stronger structural defect-related non-radiative recombination and carrier localization effect because of the more significant In content fluctuations,and a less significant efficiency droop due to the stronger quantum confinement effect of the carriers inside the more significant TAS potential well. Moreover, the improvement in the efficiency droop for SB may be also attributed partly to its stronger carrier localization effect and Coulomb screening effect.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China(Grant Nos. 51872167 and 51672163)and the Major Science and Technology Innovation Project of Shandong Province,China(Grant No. 2019JZZY010210).

    猜你喜歡
    李睿王成
    美麗的柳樹姑娘
    Dynamics of magnetic microbubble transport in blood vessels
    Low-Velocity Impact Response of Stitched Multi-layer Foam Sandwich Composites
    基于ADAMS的洗衣機減速器多體動力學(xué)仿真
    冬天的蟲子去哪兒了
    Nonlinear oscillation characteristics of magnetic microbubbles under acoustic and magnetic fields
    奇妙的大自然
    只往壞處想
    GLOBAL WEAK SOLUTIONS TO A GENERALIZED BENJAMIN-BONA-MAHONY-BURGERS EQUATION?
    春節(jié)的“魚”
    美女大奶头视频| 性欧美人与动物交配| 精品乱码久久久久久99久播| 亚洲精品粉嫩美女一区| 日本免费a在线| 深爱激情五月婷婷| 最近视频中文字幕2019在线8| 久久久久久国产a免费观看| 婷婷六月久久综合丁香| 国产欧美日韩精品一区二区| 亚洲不卡免费看| 色av中文字幕| 成人鲁丝片一二三区免费| 啦啦啦啦在线视频资源| 校园春色视频在线观看| 老师上课跳d突然被开到最大视频| 麻豆一二三区av精品| 亚洲最大成人中文| 日本黄色视频三级网站网址| 日韩精品青青久久久久久| 91av网一区二区| 99久久精品热视频| 女生性感内裤真人,穿戴方法视频| 欧美日韩乱码在线| 亚洲四区av| 女的被弄到高潮叫床怎么办 | 精品一区二区三区av网在线观看| 国产一区二区三区在线臀色熟女| 亚洲精品粉嫩美女一区| 日本免费a在线| 久久久久久久精品吃奶| 亚洲欧美清纯卡通| 一本一本综合久久| xxxwww97欧美| 亚洲精品乱码久久久v下载方式| 亚洲在线自拍视频| 久久人妻av系列| 在线国产一区二区在线| 看十八女毛片水多多多| 欧美一区二区精品小视频在线| 深夜a级毛片| 久久精品影院6| 夜夜爽天天搞| 日韩 亚洲 欧美在线| 国产日本99.免费观看| 国产精品伦人一区二区| 人妻制服诱惑在线中文字幕| 日本 av在线| 91在线精品国自产拍蜜月| 性欧美人与动物交配| 成人永久免费在线观看视频| 午夜免费成人在线视频| 成人午夜高清在线视频| 人妻久久中文字幕网| 天天一区二区日本电影三级| 久久精品国产亚洲av香蕉五月| 欧美激情在线99| 精品日产1卡2卡| 成人高潮视频无遮挡免费网站| www日本黄色视频网| 男女之事视频高清在线观看| 啦啦啦啦在线视频资源| 免费av不卡在线播放| 成人国产麻豆网| 亚洲精华国产精华精| 亚洲精品乱码久久久v下载方式| 国产乱人伦免费视频| 午夜a级毛片| 99久久无色码亚洲精品果冻| 又黄又爽又刺激的免费视频.| 全区人妻精品视频| 国产一区二区在线av高清观看| 国产淫片久久久久久久久| 啦啦啦韩国在线观看视频| 成人av一区二区三区在线看| 国产精品三级大全| 99热这里只有是精品在线观看| 亚洲无线观看免费| 成人国产麻豆网| 欧美xxxx黑人xx丫x性爽| 乱码一卡2卡4卡精品| 中文亚洲av片在线观看爽| 国产精品国产三级国产av玫瑰| 午夜福利视频1000在线观看| 看黄色毛片网站| 老熟妇仑乱视频hdxx| 成年女人永久免费观看视频| 国内精品久久久久久久电影| 欧美日韩瑟瑟在线播放| 国产精品免费一区二区三区在线| 成人性生交大片免费视频hd| 在线观看舔阴道视频| 亚洲欧美日韩无卡精品| 精品久久久久久久末码| 成人一区二区视频在线观看| 亚洲乱码一区二区免费版| 一级毛片久久久久久久久女| 一卡2卡三卡四卡精品乱码亚洲| 黄色日韩在线| 99久久中文字幕三级久久日本| 男人的好看免费观看在线视频| 成人美女网站在线观看视频| 村上凉子中文字幕在线| 最后的刺客免费高清国语| 久久久久久久亚洲中文字幕| 99国产极品粉嫩在线观看| 99九九线精品视频在线观看视频| 亚洲男人的天堂狠狠| 亚洲专区国产一区二区| 久久精品综合一区二区三区| 干丝袜人妻中文字幕| 亚洲欧美日韩东京热| 欧美又色又爽又黄视频| 深夜精品福利| 亚洲成a人片在线一区二区| 国产大屁股一区二区在线视频| 色综合色国产| 国产男人的电影天堂91| 色视频www国产| 日本熟妇午夜| 97超视频在线观看视频| 少妇人妻精品综合一区二区 | 毛片一级片免费看久久久久 | 精品久久久久久,| 两个人视频免费观看高清| 内地一区二区视频在线| 亚洲第一区二区三区不卡| 长腿黑丝高跟| 国产精品伦人一区二区| 国产极品精品免费视频能看的| АⅤ资源中文在线天堂| 久久草成人影院| av天堂中文字幕网| 综合色av麻豆| 精品久久久久久成人av| 国产女主播在线喷水免费视频网站 | 在线天堂最新版资源| АⅤ资源中文在线天堂| 一卡2卡三卡四卡精品乱码亚洲| 日本成人三级电影网站| a级毛片免费高清观看在线播放| 啦啦啦啦在线视频资源| 999久久久精品免费观看国产| 麻豆国产97在线/欧美| 亚洲成a人片在线一区二区| 老熟妇乱子伦视频在线观看| 香蕉av资源在线| 亚洲精华国产精华精| 床上黄色一级片| 亚洲综合色惰| 一个人免费在线观看电影| 亚洲最大成人手机在线| 人妻久久中文字幕网| 国产精品亚洲美女久久久| 男女啪啪激烈高潮av片| 十八禁网站免费在线| 99riav亚洲国产免费| 99热这里只有精品一区| 天天一区二区日本电影三级| 精品人妻1区二区| 少妇的逼好多水| 久久九九热精品免费| 欧美国产日韩亚洲一区| 一个人看视频在线观看www免费| 亚洲真实伦在线观看| 国产一区二区激情短视频| 国产精品一区二区性色av| 欧美黑人欧美精品刺激| 午夜老司机福利剧场| 又爽又黄a免费视频| h日本视频在线播放| 国内揄拍国产精品人妻在线| 免费观看的影片在线观看| 在线国产一区二区在线| 国产91精品成人一区二区三区| 成人av在线播放网站| 国产伦在线观看视频一区| 色综合亚洲欧美另类图片| 午夜精品久久久久久毛片777| 欧美人与善性xxx| 国产免费av片在线观看野外av| 亚洲国产色片| .国产精品久久| 麻豆国产97在线/欧美| 国产精品久久久久久久久免| 亚洲一区二区三区色噜噜| 99九九线精品视频在线观看视频| 成人美女网站在线观看视频| 日韩精品有码人妻一区| 很黄的视频免费| 国产乱人伦免费视频| 国产黄a三级三级三级人| 成人二区视频| 老熟妇仑乱视频hdxx| 亚洲欧美日韩卡通动漫| 午夜精品一区二区三区免费看| 色在线成人网| 一边摸一边抽搐一进一小说| 伦精品一区二区三区| 99热网站在线观看| 中文字幕精品亚洲无线码一区| 国产精品1区2区在线观看.| 床上黄色一级片| 婷婷丁香在线五月| 免费在线观看影片大全网站| 97热精品久久久久久| 黄色欧美视频在线观看| 亚洲美女黄片视频| 97热精品久久久久久| 亚洲精华国产精华液的使用体验 | 在线a可以看的网站| 女生性感内裤真人,穿戴方法视频| 成熟少妇高潮喷水视频| av中文乱码字幕在线| 中国美女看黄片| 精品久久久久久久人妻蜜臀av| 国内揄拍国产精品人妻在线| 国产成人av教育| 免费av不卡在线播放| 日韩强制内射视频| 天堂网av新在线| 97人妻精品一区二区三区麻豆| 久久久色成人| 日本熟妇午夜| 听说在线观看完整版免费高清| 久久久久精品国产欧美久久久| 嫩草影视91久久| 日韩欧美精品免费久久| 欧美绝顶高潮抽搐喷水| 综合色av麻豆| 免费观看精品视频网站| 91麻豆精品激情在线观看国产| 97超级碰碰碰精品色视频在线观看| 99视频精品全部免费 在线| 听说在线观看完整版免费高清| 国产综合懂色| 亚洲美女视频黄频| 成年免费大片在线观看| 又粗又爽又猛毛片免费看| 色精品久久人妻99蜜桃| 免费看光身美女| 精品久久久久久久久av| 国产色爽女视频免费观看| 深夜a级毛片| 国产真实乱freesex| 免费无遮挡裸体视频| 欧美日韩中文字幕国产精品一区二区三区| 精品一区二区三区av网在线观看| 一进一出好大好爽视频| 蜜桃久久精品国产亚洲av| 神马国产精品三级电影在线观看| 亚洲av免费高清在线观看| 国产精品一区二区三区四区免费观看 | 国产一区二区激情短视频| 天堂√8在线中文| 成年女人毛片免费观看观看9| 1000部很黄的大片| 男女视频在线观看网站免费| 国产在线男女| 久久精品国产清高在天天线| 成人鲁丝片一二三区免费| 两个人的视频大全免费| 欧美黑人巨大hd| 亚洲成av人片在线播放无| 亚洲自偷自拍三级| 老司机福利观看| 亚洲专区中文字幕在线| 亚洲精品久久国产高清桃花| 欧美日本视频| 天堂动漫精品| 日本三级黄在线观看| 午夜福利18| 亚洲国产色片| 在线观看免费视频日本深夜| 免费观看人在逋| 成人欧美大片| 高清日韩中文字幕在线| 老司机午夜福利在线观看视频| ponron亚洲| 高清毛片免费观看视频网站| 日本熟妇午夜| 狂野欧美激情性xxxx在线观看| 又黄又爽又刺激的免费视频.| 少妇丰满av| 国产日本99.免费观看| 国产免费一级a男人的天堂| 精品久久久久久久末码| 欧美绝顶高潮抽搐喷水| 九九热线精品视视频播放| 真实男女啪啪啪动态图| 精品国产三级普通话版| 桃色一区二区三区在线观看| 国产免费一级a男人的天堂| 成人无遮挡网站| 国产探花极品一区二区| 国产精品一区二区三区四区久久| 国产成人av教育| 欧美激情国产日韩精品一区| 村上凉子中文字幕在线| 亚洲国产精品成人综合色| 欧美高清性xxxxhd video| 在线a可以看的网站| 床上黄色一级片| 桃色一区二区三区在线观看| 日韩精品中文字幕看吧| 亚洲一级一片aⅴ在线观看| 日韩 亚洲 欧美在线| 亚洲欧美日韩东京热| 高清日韩中文字幕在线| 久99久视频精品免费| 特级一级黄色大片| 一进一出好大好爽视频| x7x7x7水蜜桃| 日韩精品中文字幕看吧| 日本精品一区二区三区蜜桃| 国产日本99.免费观看| 国产黄片美女视频| 免费观看人在逋| 日韩欧美在线乱码| 国产黄a三级三级三级人| 亚洲欧美日韩高清在线视频| 草草在线视频免费看| 91麻豆av在线| 日本与韩国留学比较| 精品人妻熟女av久视频| 色哟哟哟哟哟哟| 日韩高清综合在线| 看十八女毛片水多多多| 91在线精品国自产拍蜜月| 中文资源天堂在线| 女生性感内裤真人,穿戴方法视频| 精品久久久久久久久久免费视频| 黄色女人牲交| 蜜桃久久精品国产亚洲av| 婷婷色综合大香蕉| 欧美中文日本在线观看视频| 午夜福利在线在线| bbb黄色大片| 两个人的视频大全免费| 亚洲四区av| 熟女电影av网| 亚洲五月天丁香| 白带黄色成豆腐渣| 国产精品自产拍在线观看55亚洲| 小蜜桃在线观看免费完整版高清| 国产黄a三级三级三级人| 国产色婷婷99| 97超视频在线观看视频| 乱码一卡2卡4卡精品| 国产精品久久久久久精品电影| 欧美高清性xxxxhd video| 少妇丰满av| 特大巨黑吊av在线直播| 亚洲自拍偷在线| 最新在线观看一区二区三区| 久久久午夜欧美精品| 午夜激情欧美在线| 日韩人妻高清精品专区| 国产真实乱freesex| 12—13女人毛片做爰片一| 好男人在线观看高清免费视频| 日本-黄色视频高清免费观看| 久久久久国内视频| 小说图片视频综合网站| 久久午夜福利片| 波野结衣二区三区在线| 亚洲精华国产精华精| 国产精品98久久久久久宅男小说| 99久久无色码亚洲精品果冻| 国产乱人伦免费视频| 毛片一级片免费看久久久久 | 亚洲国产欧美人成| 天堂av国产一区二区熟女人妻| 国产一区二区在线av高清观看| 成人一区二区视频在线观看| 99在线人妻在线中文字幕| 99热精品在线国产| 亚洲内射少妇av| 99精品在免费线老司机午夜| 国产国拍精品亚洲av在线观看| 欧美一级a爱片免费观看看| 波多野结衣高清作品| 人妻丰满熟妇av一区二区三区| 亚洲av美国av| 99热这里只有是精品50| 欧美精品国产亚洲| 日日夜夜操网爽| 变态另类丝袜制服| 国产伦精品一区二区三区四那| 国产一区二区在线av高清观看| 日日摸夜夜添夜夜添小说| 成年女人永久免费观看视频| 小蜜桃在线观看免费完整版高清| 综合色av麻豆| 中国美白少妇内射xxxbb| 超碰av人人做人人爽久久| 国产精品99久久久久久久久| 免费观看人在逋| 成人高潮视频无遮挡免费网站| 丝袜美腿在线中文| 国产精品98久久久久久宅男小说| videossex国产| 在线天堂最新版资源| 成年人黄色毛片网站| 亚洲成人久久性| 国产麻豆成人av免费视频| 国产精品久久久久久亚洲av鲁大| 两人在一起打扑克的视频| 日韩欧美精品v在线| 极品教师在线视频| 亚洲美女视频黄频| 中文字幕人妻熟人妻熟丝袜美| 少妇丰满av| 性欧美人与动物交配| 网址你懂的国产日韩在线| 日本黄色视频三级网站网址| 欧美一区二区国产精品久久精品| 亚洲精品456在线播放app | 国产欧美日韩精品亚洲av| 国产v大片淫在线免费观看| 国产精品一区二区性色av| 丝袜美腿在线中文| 免费av观看视频| 国产精品一区二区三区四区久久| 免费黄网站久久成人精品| 亚洲乱码一区二区免费版| 成人av在线播放网站| 精品一区二区三区视频在线观看免费| 成人午夜高清在线视频| 亚洲性久久影院| 国产一区二区激情短视频| 又黄又爽又刺激的免费视频.| 成人国产麻豆网| 女人被狂操c到高潮| 日韩精品青青久久久久久| 一区二区三区免费毛片| 日本熟妇午夜| 国产精品精品国产色婷婷| 国产欧美日韩精品一区二区| 日韩欧美三级三区| 精品久久久久久成人av| 国产精品无大码| 午夜激情欧美在线| 成人av一区二区三区在线看| 亚洲最大成人手机在线| 亚洲人成网站在线播放欧美日韩| 免费搜索国产男女视频| 天天一区二区日本电影三级| 69人妻影院| 伊人久久精品亚洲午夜| 床上黄色一级片| 久久精品国产亚洲av天美| 亚洲av.av天堂| 欧美潮喷喷水| 深爱激情五月婷婷| 看十八女毛片水多多多| 久久九九热精品免费| 又粗又爽又猛毛片免费看| 一级av片app| 欧美最黄视频在线播放免费| 免费看日本二区| 精品人妻偷拍中文字幕| 国模一区二区三区四区视频| 日本熟妇午夜| 偷拍熟女少妇极品色| 亚洲午夜理论影院| 女生性感内裤真人,穿戴方法视频| 国产色爽女视频免费观看| 他把我摸到了高潮在线观看| 特大巨黑吊av在线直播| 少妇人妻一区二区三区视频| 在线看三级毛片| 欧美+亚洲+日韩+国产| 麻豆国产av国片精品| 成年女人看的毛片在线观看| 亚洲精品影视一区二区三区av| 欧美日韩瑟瑟在线播放| 观看美女的网站| 韩国av一区二区三区四区| 国产精品日韩av在线免费观看| 欧美一级a爱片免费观看看| 久久久久久久久久黄片| 中文在线观看免费www的网站| 久久婷婷人人爽人人干人人爱| 亚洲人成网站在线播| 婷婷色综合大香蕉| 日本黄色视频三级网站网址| 国产精品美女特级片免费视频播放器| 一级a爱片免费观看的视频| 国产aⅴ精品一区二区三区波| 国国产精品蜜臀av免费| 免费看光身美女| 久久久久九九精品影院| 久久久午夜欧美精品| 欧美极品一区二区三区四区| 精品午夜福利在线看| 欧美日本视频| 一边摸一边抽搐一进一小说| 国产三级中文精品| 日本三级黄在线观看| 天堂√8在线中文| 欧美激情国产日韩精品一区| 男人的好看免费观看在线视频| 日韩精品青青久久久久久| 亚洲人成网站在线播| 欧美精品国产亚洲| 伊人久久精品亚洲午夜| 久久午夜亚洲精品久久| 精品人妻视频免费看| 国产综合懂色| 俄罗斯特黄特色一大片| 国产老妇女一区| 中文字幕精品亚洲无线码一区| 最新中文字幕久久久久| 联通29元200g的流量卡| 天美传媒精品一区二区| 国产午夜福利久久久久久| 久久精品国产亚洲网站| 国产伦精品一区二区三区视频9| 国产欧美日韩精品一区二区| 欧美zozozo另类| 亚洲一区二区三区色噜噜| 免费看av在线观看网站| 国产成年人精品一区二区| 国产成人一区二区在线| 午夜福利视频1000在线观看| 午夜福利18| 真实男女啪啪啪动态图| 免费观看人在逋| 动漫黄色视频在线观看| 免费看日本二区| 深夜精品福利| 亚洲va日本ⅴa欧美va伊人久久| 免费观看的影片在线观看| 午夜影院日韩av| 中文在线观看免费www的网站| 中文字幕熟女人妻在线| 国产老妇女一区| 欧美色欧美亚洲另类二区| 高清日韩中文字幕在线| 国产成人一区二区在线| 亚洲最大成人手机在线| 97碰自拍视频| 国产视频内射| 国产不卡一卡二| 久久人妻av系列| 哪里可以看免费的av片| 91在线观看av| 91久久精品国产一区二区成人| 一级黄色大片毛片| 中亚洲国语对白在线视频| 国产午夜福利久久久久久| 久久午夜亚洲精品久久| 国产精品一区二区性色av| 久久久久性生活片| 精品久久久久久久久亚洲 | 夜夜看夜夜爽夜夜摸| 久久午夜亚洲精品久久| 日日啪夜夜撸| 国产视频内射| 简卡轻食公司| 男人舔奶头视频| 如何舔出高潮| 国产精品国产三级国产av玫瑰| 啦啦啦观看免费观看视频高清| 狂野欧美激情性xxxx在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 91久久精品国产一区二区成人| 中文亚洲av片在线观看爽| 亚洲欧美日韩高清专用| 精品一区二区三区人妻视频| 国产欧美日韩一区二区精品| ponron亚洲| 麻豆国产av国片精品| 91午夜精品亚洲一区二区三区 | 亚洲专区中文字幕在线| 99热这里只有是精品在线观看| 国产一区二区在线观看日韩| 国产精品久久电影中文字幕| 国产精品,欧美在线| 99精品在免费线老司机午夜| 久久久精品欧美日韩精品| 黄色配什么色好看| 97热精品久久久久久| 人妻夜夜爽99麻豆av| 免费在线观看成人毛片| 精品久久久久久久久亚洲 | 香蕉av资源在线| 窝窝影院91人妻| 在线观看美女被高潮喷水网站| 国产白丝娇喘喷水9色精品| 免费观看的影片在线观看| 日韩一本色道免费dvd| 国产精品伦人一区二区| 久久久久久伊人网av| 可以在线观看毛片的网站| 美女xxoo啪啪120秒动态图| 国内精品一区二区在线观看| 最后的刺客免费高清国语| 欧美一区二区精品小视频在线| 日本黄色片子视频| 男女下面进入的视频免费午夜| 久久国产精品人妻蜜桃| 亚洲精品粉嫩美女一区| 午夜老司机福利剧场| 欧美精品啪啪一区二区三区| 国产精品久久视频播放| 免费在线观看影片大全网站| aaaaa片日本免费| 久久精品久久久久久噜噜老黄 | 亚洲av中文字字幕乱码综合| 超碰av人人做人人爽久久| 欧美最新免费一区二区三区| 99精品久久久久人妻精品| 自拍偷自拍亚洲精品老妇|