• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Observation of source/drain bias-controlled quantum transport spectrum in junctionless silicon nanowire transistor

    2022-01-23 06:35:10YangYanGuo郭仰巖WeiHuaHan韓偉華XiaoDiZhang張曉迪JunDongChen陳俊東andFuHuaYang楊富華
    Chinese Physics B 2022年1期
    關(guān)鍵詞:富華

    Yang-Yan Guo(郭仰巖) Wei-Hua Han(韓偉華) Xiao-Di Zhang(張曉迪)Jun-Dong Chen(陳俊東) and Fu-Hua Yang(楊富華)

    1Engineering Research Center for Semiconductor Integrated Technology,Institute of Semiconductors,Chinese Academy of Sciences,Beijing 100083,China

    2Center of Materials Science and Optoelectronics Engineering,University of Chinese Academy of Sciences,Beijing 100049,China

    3Beijing Academy of Quantum Information Science,Beijing 100193,China

    4State Key Laboratory for Superlattices and Microstructures,Institute of Semiconductors,Chinese Academy of Sciences,Beijing 100083,China

    Keywords: junctionless nanowire transistors, quantum transport spectrum, source and drain voltage, lowtemperature conductance

    1. Introduction

    The sub-7-nm downscaling of complementary metaloxide-semiconductor (CMOS) technology is reaching fundamental limits that could spell the end of Moore’s scaling law. Nowadays junctionless silicon nanowire field-effect transistor (JNT) is considered as a potential candidate for sub-7-nm CMOS node due to its simplified manufacturing technology and outstanding gate controllability.[1,2]In such nanoscale dimensions, the electronic transport characteristics of the device can perform quite differently from those in bulk silicon.[3,4]Indeed, the reduction of device dimensions enhances the importance of quantum mechanical effects.[2,5,6]For example,the conductance oscillation of nanowire transistors caused by inter-sub-band scattering in one-dimensional(1D) transport,[7,8]the single-electron tunneling current and quantum interference originated from the impurity energy levels of the dopants.[9-14]The transport characteristics of the nanoscale device are investigated more at low source/drain bias voltage belowkT/q(Tis temperature,kis Boltzmann constant, andqis electron charge, normallykT/q=0.5 mV atT=6 K)to keep stable performance and protect the device from failure.[15-17]However, studying the electrical transport behavior of nanowire transistors at higher bias voltages is of significant importance for comprehensively understanding the transport mechanism in nanoscale quantum devices in both saturation region and linear region,which is even potential for the moderation mechanism of the quantum device in the future. With a specially designed extremely thin but long junctionless nanowire, the risk of highVDSdestructive influence can be dramatically reduced. In our work, we investigated the source/drain-voltage-controlled quantum sub-band electrical transport spectrum in our 10-nm width and 485-nm length N-typed junctionless nanowire transistor under the temperature of 6 K. We observed that the drain-source voltage has a limited influence on the threshold voltage of the device and the single-electron tunneling below the threshold voltage. The transverse electric field introduced fromVDSplays the role of amplifying the gate restriction effect of the channel. The 1D sub-band dominated transport is demonstrated to be modulated byVDSin different ways in the saturation region and the linear region. We observed two sets of conductance fluctuations, which are related to the sub-band energy levels in the channel(Echannel)intersecting with the Fermi levels of the source (EfS) and the drain (EfD) in turn asVgincreases. We also find that the bias electric field has the effect to accelerate the thermally activated electrons in the channel,equivalent to thermal temperature on the increase of electrons energy.Our work provides a more comprehensive understanding of transport behaviors at nanoscale devices under the influence of changing source/drain bias voltages.

    2. Device fabrication

    Our device was based on the 55-nm-thick top silicon layer of the (100)-oriented silicon-on-insulator wafer. First,a 30-nm-thick oxidation layer was formed by thermal oxidation, following the phosphorus ion implantation of a dose of 1×1013cm-2on the top silicon layer with an energy of 33 keV. We used electron beam lithography (EBL) to define the silicon nanowire and then used inductively coupled plasma(ICP)etching to complete the pattern transfer process. To reduce the etching-induced damages,a sacrificial oxidation process after ICP etching was essential. During this step,we oxidized about 25-nm sacrificial SiO2layer under 900-°C dry oxygen and then removed the layer with HF corrosion to further reduce our silicon nanowire. Then the 10-nm-thick gate oxide layer was formed by thermal oxidation under 900-°C dry oxygen. Next,with the help of low pressure chemical vapor deposition (LPCVD) equipment, the gate material layer- the 200-nm-thick polysilicon layer was deposited on the oxide silicon nanowire. Then the sample was annealed in 1000-°C nitrogen ambient for 15 s after boron ion implantation. The 485-nm-long polysilicon gate which wrapped the Si/SiO2core-shell nanowire was defined by electron beam overlay exposure and ICP etching. Finally, the 200-nm-thick SiO2passivation layer was deposited,followed by the standard Ni/Al metal contact formation. The SEM image of the singlechannel JNT in the inset of Fig. 1 shows the width of 30 nm for the Si/SiO2core-shell nanowire. As a result, we can estimate the silicon core has a physical width of about 10 nm.The estimated height after three times thermal oxidation processes should also be around 10 nm. Besides,the dopant concentration of the silicon channel is estimated to be 1×1019cm-3according to the implantation dose of phosphorus ions. The fabricated device was measured in a vacuum chamber which can be cooled down to the low temperature of 6 K with the help of a Lakershore-340 temperature controller. Figure 1 shows the transfer characteristics of the device at room temperature. It can be seen that the subthreshold slope of the device at room temperature is 77 mV/dec,and the cut-off current is in the order of 10-13A.

    Fig.1. Transfer characteristics of the device at room temperature. The inset is the SEM image of our silicon nanowire after gate formation.

    3. Transport spectrum results and discussion

    3.1. Low-temperature current characteristics

    Figure 2 shows the currentversusgate voltage transfer curves under differentVDSbias voltages(VDS=0.4 V-2.3 V)at a low temperature of 6 K.Below the threshold region,a current peak is observed atVg=1 V for allVDSdrain biases. This current peak is attributed to single-electron tunneling between doping impurities in the channel,which has negligible dependence on the transverse electric field.[18]The current curves of allVDSbias voltages begin to increase dramatically above the threshold voltageVth=2 V,with several similar current steps(seen from the black circle in Fig.2).

    Fig. 2. (a) Transfer characteristic curves under the VDS bias voltages from 0.4 V to 2.3 V at the temperature of 6 K,with curves in log coordinate on the left side and linear coordinate on the right side.(b)The corresponding output curves of the device at the temperature of 6 K.

    The transverse electric field is indicated to have less influence on the turn-on position of the device. Interestingly,the conductive currents show obvious fluctuations after the device turning on. The positions of these conductance fluctuations shift to the right withVDSvoltage increasing. Figure 2(b)shows the corresponding output curves with the source/drain voltageVDSchanging from 0 V to 4 V,from which we can see that the transfer curves under the source/drain voltage range(0.4 V-2.3 V)in our main discussion part are absolutely in the safe conductive range of the device. The following part of our paper will focus on the influence of source and drain voltages on these interesting transfer characteristics of our device.

    3.2. Threshold characteristics with VDS voltage changing

    The threshold position of the device is also related to the position of the edge of the conduction band in the channel.The exact position of the conduction band edge can be obtained from the extended line of the activation energyEawith theVgaxis,where the energy of the electrons in the channel is already enough energy for jumping into the next state that does not need additional activation energy(Ea=0). Figure 3 shows the activation energyEaplots under differentVDSbias voltages from 0.5 V to 2.0 V,with the comparison of the corresponding current curves. The activation energiesEaare extracted from the temperature-dependent conductance of the device at the room-temperature segment(T=250 K-300 K)which are proportionated to exp(-Ea/kBT),wherekBis the Boltzmann constant. Interestingly, the tangent lines of the activation energy(Ea) of all bias voltage settings intersect with the horizontal axis(Vg)at the same position,i.e.,the edge of the conduction band, atVg=2.0 V,[19]indicating that the conduction band edge in the channel is highly dependent on the gate voltage,but has less dependence on the source/drain voltages. Correspondingly, the current curves also start to increase rapidly from this conduction band edge position for all bias voltages,which is exactly the evidence of the position of the threshold voltage(Vth).[20]Generally,the highest Fermi energy position in the channel should reach the Fermi level of the source pool atVg=Vth, where the energy barrier between the source and the channel should diminish,resulting in the device turning on.The transverse electric field introduced from source and drain voltage has quite limited influence on the highest channel energy level close to the source region, as well as the energy barrier between the channel and the source pool, resulting in the independence of theVthposition onVDSvoltage. Besides,we also noticed that the room-temperature activation energy at the highVgconductive region decreases from 176.5 meV to 95.9 meV withVDSbias voltage increasing from 0.5 V to 2.0 V.This is due to that the bias electric field can highly accelerate the thermally activated electrons in the channel,equivalent to thermal temperature on the increase of electron energy.

    Fig.3. The current with corresponding activation energy curves for various VDS bias voltages,VDS=0.5 V,1.0 V,1.5 V,2.0 V.

    3.3. Transport spectrum beyond the threshold voltage under the influence of VDS

    To further explore the mechanism of the current fluctuations in Fig. 2 after the threshold voltage, figure 4 shows the three-dimensional(3D)transconductance(gm)data for variousVgfrom 0 V to 8 V andVDSfrom 0.4 V to 2.3 V at the temperature of 6 K.Clearly,the regular transconductance fluctuations with the stableVgspacing (ΔVg) of 0.81 V, 0.81 V, 0.59 V,0.83 V, 1.07 V, respectively (marked in red arrows in Fig. 4)move linearly to higherVgsection withVDSbias voltage increasing. Let us first focus on these consistent set of fluctuation spacings. The corresponding energy intervals between sub-bands are calculated by[5]

    as 91.3 meV,91.3 meV,66.5 meV,93.6 meV,and 120.6 meV,where the oxide layer thicknessdoxinCoxis 10 nm. To study these energy spacings, we calculate the theoretical spacings between discrete sub-bands of silicon nanowire caused by 1D quantum confinement[21]through

    where the effective mass of electronm*is 0.2m0.WandHare the channel width and height, andm,nare quantum numbers in two directions (m,n=1,2,3,...). From this equation,the 1D theoretical energy intervals are calculated as 92.6 meV, 92.6 meV, 61.7 meV, 92.6 meV, 123.5 meV, supposingW=H=8 nm. We can find that the theoretical results are highly consistent with the sub-band energy level spacing observed in the inset of Fig.4. Therefore,we demonstrate that these regular fluctuations are caused by inter-sub-band scattering originated from 1D quantum confinement.

    Fig. 4. The transconductance characteristics gm for various Vg from 0 V to 8 V and VDS from 0.4 V to 2.3 V at the temperature of 6 K.The inset shows the sub-bands intervals extracted from the transconductance experiment data and calculated from 1D transport theory.

    Fig. 5. (a) The current curves at the temperature of 6 K and corresponding transconductance at VDS =1.0 V.The inset shows the transconductance characteristics at the threshold region for various Vg and VDS voltages at the temperature of 6 K.(b)Energy band diagram for the three operation regimes along the nanowire direction.

    Figure 5(a)shows the transconductance and corresponding current curves at the temperature of 6 K atVDS=1.0 V.Here we can clearly observe the two sets of fluctuations,with similar spacing as the 1D energy sub-band level intervals. The second set of fluctuations is exactly what we have demonstrated in Fig. 4 as the 1D transform and the positions shift withVDSincreasing. While the first set of transconductance fluctuations from the position aroundVth=2 V do not migrate withVDS, shown from the enlargedgmcharacteristics at the region around threshold voltage in the inset of Fig.5(a).Here, the two sets of conductance fluctuations are related to the sub-band energy levels in the channel (Echannel)intersecting with the Fermi levels of the source (EfS) and drain Fermi energy level(EfD)in turn asVgincreases.[22]The first sub-band in the channel intersects the source Fermi level(EfS=Echannel) at the position ofVth(the conduction band edge),resulting in the current starting to rise rapidly as the first transconductance peak appearing.[23-25]The energy level in the channel and the energy barrier between the source and the channel are strongly controlled by the gate voltage. The transverse electric field induced fromVDScan merely influence the intersection ofEfSandEchannel,therefore,do not influence the threshold voltage. AsVgincrease aboveVth, there come two kinds of situations-the liner region and the saturation region,depending on the relative position ofEchanneland the Femi energy level of the drain poolEfD. Figure 5(b)shows the energy band diagram for the three operation regimes. Here we name“Vg-sat”as the position of gate voltage whereEchannel=EfD.Keeping an unchanged value ofVDS, whenVgis high enough thanVg-sat, the first sub-level in the channel must go below both the drain and source Fermi levels,i.e.,EfS>EfD>Echannel, there comes the linear region. The channel is highly conductive and the current can be expressed as

    whereVd-satis theVDSat the saturation point,Lsatis the effective channel length. As we mentioned above,theVg-related exponential factorαis larger than 1, which means current at saturation region is highly dependent onVg, which can also be observed in the current curve of Fig. 5(a) in the region ofVth

    We can use the general formula:y=a(x-b)cfor the currents in both linear and saturation regions according to Eqs.(3)and(4),where the parameterbindicates the threshold voltagesVthwhich should be uniform in both regions,and the exponential fitting factorcin the saturation region isα,and supposed to beα/2 in the linear region. Figure 6(a) shows the fitting results of the two transport regions atVDS=1.0 V. The inset of Fig.6(a)shows the factorsbcorresponding toVthfrom all the transfer characteristics under differentVDSfrom 0.4 V to 2.3 V, which remain quite stable at exactly the position nearVth=2 V.

    Fig.6. (a)The fitting results of the saturated region and the linear region at the temperature of 6 K under VDS=1.0 V.The inset shows the fitting factors b, which is corresponding to Vth according to the theory. (b)The Vg-related exponential fitting factor c extracted by fitting results from the transfer characteristics of different VDS voltages at the temperature of 6 K.This parameter c in the saturation region is supposed to be twice that in linear region.

    Figure 6(b) shows theVgrelated exponential coefficientcfor both operation regions, which is twice in the saturation region than that in the linear region as our model. This indicates that in the saturation region, the relatively high transverse electric field makes the current highly limited by gate potential. While in the linear region, the Fermi energy level is under both source and drain Fermi levels, the conductive current in the channel is almost dependent on the energy gap between the drain and the source,which is less influenced by the gate voltage. Another characteristic we should notice from Fig.6(b)is that theVg-related exponential factorcin both regions increases withVDS. The transverse electric field induced fromVDSis supposed to have the role of amplification the gate restriction effect of the channel.

    Figure 7 shows the positions ofVg-satshift linearly withVDS,with the data extracted from the transfer curves under theVDSfrom 0.4 V to 2.3 V.As discussed above,Vg-satindicates the turning point from the saturation region to the linear region where the energy satisfies the equationEfD=Echannel. The Fermi energy level of the drain regionEfDis mostly dependent on theVDSvoltage and will certainly go down with theVDSvoltage increase. Correspondingly, the turning pointVg-satwillshift to higher gate voltage to upraise the Femi energy level of the channel to rebalance the energy toEfD=Echannelwith theVDSincrease. The inset of Fig. 7 shows the output curves for different gate voltages ofVg=2.5 V, 3.5 V, 4.5 V,5.5 V, 6.5 V at the temperature of 6 K. The turning points of the output currents from the linear region to saturation region are marked as triangles in color, which are exactly consistent with theVg-satpoints fromID-Vgcurves(marked as arrows in color in Fig.7).

    Fig.7.The Vg-sat versus VDS data points.Vg-sat is the turning point extracted from the transfer characteristics under differentVDS at the temperature of 6 K.The inset shows the output curves of the device at 6 K under different gate voltages of 2.5 V,3.5 V,4.5 V,5.5 V,6.5 V.The triangles point to the turning position from linear region to saturation region.

    The transconductance curves at room temperature for differentVDSfrom 0.4 V to 2.3 V all exhibit two obvious peaks in Fig.8(a),indicating the position ofVthandVg-satwhich have been discussed above. Besides,the positions of the first peaks(Vth)stay fixed for differentVDS,as the transverse electric field has less influence on the energy barrier between the source and channel to turn on the device. While the second peaks(Vg-sat)shift right withVDSincrease because the higher Femi energy level of the channel required to meet the situation ofEfD=Echannelwhere the transport mode transform from linear mode to saturation mode. We should notice that the regularly transconductance fluctuations almost disappear in contrast to what we have observed before at the temperature of 6 K seen from Fig.8(b). This is because the energy of the electrons at room temperature is high enough to overcome the 1D quantum energy sub-band intervals.

    Fig.8.(a)The transconductance curves of the device at room temperature under different VDS voltages. (b)The combo chart of the 3D transconductance curves of the device at the temperature of 300 K and 6 K under different VDS voltages.

    4. Conclusion

    In our work,we studied the influence of source and drain bias voltage on the quantum sub-band transport spectrum in our 10-nm width N-typed junctionless nanowire transistor at the low temperature of 6 K. We observed the single electron tunneling current peaks below the edge of the conducting band which shows the independence ofVDS. We demonstrated that the transverse electric field introduced fromVDShas less influence on the threshold voltage of the device.Above the conduction band edge,the transverse electric field is supposed to have the role of amplifying the gate restriction effect of the channel. The 1D sub-band dominated transport is demonstrated to be modulated byVDSin different ways in the saturation region and the linear region. The turning point from the linear region to the saturation region(Vg-sat)shifts right withVDSincrease because the higher Femi energy level of the channel is required to satisfyEfD=Echannel.We also find that the bias electric field has the effect to accelerate the thermally activated electrons in the channel,equivalent to thermal temperature on the increase of electrons energy. Our work provides a more comprehensive understanding of transport behaviors at nanoscale devices under the influence of changing source/drain bias voltages.

    Acknowledgement

    Project supported by the National Key Research and Development Program of China(Grant No.2016YFA0200503).

    猜你喜歡
    富華
    花動菊城,風(fēng)起中山
    Who Is Better?
    深度解析國內(nèi)盤剎空懸應(yīng)用現(xiàn)狀
    ——專訪富華國內(nèi)銷售部部長古嘉杰
    專用汽車(2020年11期)2020-11-23 09:24:58
    年產(chǎn)車橋200萬根,富華全新世界頂級產(chǎn)線年底或亮相
    ——訪富華銷售總監(jiān)張航博士
    專用汽車(2020年10期)2020-10-26 01:11:48
    Observation of hopping transitions for delocalized electrons by temperature-dependent conductance in silicon junctionless nanowire transistors?
    Temperature-dependent subband mobility characteristics in n-doped silicon junctionless nanowire transistor?
    百尺竿頭 更進(jìn)一步富華驅(qū)動橋獲得福特重卡Q1認(rèn)證
    專用汽車(2016年11期)2017-01-11 02:31:40
    微言微語:用標(biāo)準(zhǔn)和實驗數(shù)據(jù)說話的富華
    專用汽車(2016年5期)2016-03-01 04:14:46
    志存高遠(yuǎn),從未止步——訪富華集團(tuán)副總經(jīng)理譚嘉驊
    專用汽車(2015年4期)2015-07-08 03:21:04
    豈止于大
    ——走進(jìn)廣東富華重工制造有限公司
    a级片在线免费高清观看视频| 国产精品欧美亚洲77777| 操美女的视频在线观看| 午夜av观看不卡| 天天操日日干夜夜撸| 90打野战视频偷拍视频| 亚洲精品美女久久久久99蜜臀 | 美国免费a级毛片| 99九九在线精品视频| 亚洲成人手机| 中文字幕高清在线视频| 国产1区2区3区精品| 啦啦啦在线免费观看视频4| 久久久久精品国产欧美久久久 | 久久久久久免费高清国产稀缺| 九色亚洲精品在线播放| 水蜜桃什么品种好| 热99国产精品久久久久久7| 亚洲国产最新在线播放| 大片免费播放器 马上看| 国精品久久久久久国模美| 国产成人免费无遮挡视频| 亚洲精品av麻豆狂野| 天堂8中文在线网| 久久久久久久精品精品| 校园人妻丝袜中文字幕| 精品少妇久久久久久888优播| 欧美久久黑人一区二区| 久久影院123| 国精品久久久久久国模美| 美女福利国产在线| 久久韩国三级中文字幕| 精品一区二区三区av网在线观看 | 国产黄色免费在线视频| 亚洲精品视频女| 国产黄色免费在线视频| 又大又爽又粗| 大香蕉久久成人网| 国产福利在线免费观看视频| 亚洲人成电影观看| 香蕉国产在线看| 菩萨蛮人人尽说江南好唐韦庄| 国产97色在线日韩免费| 高清av免费在线| √禁漫天堂资源中文www| 日韩av免费高清视频| 成人18禁高潮啪啪吃奶动态图| 两个人看的免费小视频| 黄片播放在线免费| 精品一区二区三区av网在线观看 | 一区二区三区精品91| 国产色视频综合| bbb黄色大片| 久久久国产成人精品二区| aaaaa片日本免费| 精品午夜福利视频在线观看一区| 黄色丝袜av网址大全| 免费不卡黄色视频| 日本撒尿小便嘘嘘汇集6| 可以免费在线观看a视频的电影网站| 亚洲av电影不卡..在线观看| 午夜久久久久精精品| 免费在线观看日本一区| 女警被强在线播放| 在线观看午夜福利视频| 在线观看午夜福利视频| 99在线视频只有这里精品首页| 欧美日韩一级在线毛片| 欧美中文日本在线观看视频| 欧美黄色淫秽网站| 一卡2卡三卡四卡精品乱码亚洲| 亚洲男人的天堂狠狠| 午夜福利成人在线免费观看| 欧美一级毛片孕妇| 午夜成年电影在线免费观看| 欧美另类亚洲清纯唯美| 国产精品一区二区在线不卡| 一级毛片精品| 老司机深夜福利视频在线观看| 国产免费男女视频| 曰老女人黄片| 亚洲成人免费电影在线观看| 女人被躁到高潮嗷嗷叫费观| 伊人久久大香线蕉亚洲五| 欧美激情久久久久久爽电影 | 欧美日本亚洲视频在线播放| 曰老女人黄片| 又紧又爽又黄一区二区| 国语自产精品视频在线第100页| 动漫黄色视频在线观看| 国产一区二区三区视频了| 成人av一区二区三区在线看| 国产亚洲精品第一综合不卡| 午夜a级毛片| 国产91精品成人一区二区三区| 亚洲精品美女久久久久99蜜臀| 午夜福利免费观看在线| 国产亚洲精品久久久久5区| 大型av网站在线播放| 午夜福利在线观看吧| 精品欧美国产一区二区三| 亚洲人成伊人成综合网2020| av片东京热男人的天堂| 亚洲欧美精品综合久久99| 国产日韩一区二区三区精品不卡| 国产激情欧美一区二区| 免费一级毛片在线播放高清视频 | 91成年电影在线观看| 欧美成人性av电影在线观看| 在线观看免费日韩欧美大片| 女人精品久久久久毛片| 精品日产1卡2卡| 欧美国产日韩亚洲一区| 日日夜夜操网爽| 精品福利观看| 亚洲成人免费电影在线观看| 亚洲电影在线观看av| 999久久久国产精品视频| 亚洲欧美日韩无卡精品| 国产精品久久久久久精品电影 | 久久天堂一区二区三区四区| 日本精品一区二区三区蜜桃| videosex国产| 大型av网站在线播放| 别揉我奶头~嗯~啊~动态视频| 国产麻豆69| 熟女少妇亚洲综合色aaa.| 国产日韩一区二区三区精品不卡| 一级毛片高清免费大全| 一本大道久久a久久精品| 一区二区三区激情视频| ponron亚洲| 日韩精品免费视频一区二区三区| 亚洲精品美女久久久久99蜜臀| 黄色视频,在线免费观看| cao死你这个sao货| 91国产中文字幕| 性少妇av在线| 国产精品一区二区在线不卡| 中文字幕av电影在线播放| 国产伦一二天堂av在线观看| 老熟妇乱子伦视频在线观看| 成人特级黄色片久久久久久久| 神马国产精品三级电影在线观看 | 99久久精品国产亚洲精品| 久久草成人影院| 一级毛片高清免费大全| 老熟妇乱子伦视频在线观看| 12—13女人毛片做爰片一| 在线视频色国产色| 欧美老熟妇乱子伦牲交| 一个人免费在线观看的高清视频| 母亲3免费完整高清在线观看| 国产色视频综合| 精品午夜福利视频在线观看一区| 精品第一国产精品| 亚洲一区二区三区不卡视频| 在线观看www视频免费| 国产一区在线观看成人免费| 国产黄a三级三级三级人| 一边摸一边抽搐一进一小说| 一进一出抽搐动态| 国产精品永久免费网站| 亚洲国产欧美网| 侵犯人妻中文字幕一二三四区| 亚洲伊人色综图| 欧美老熟妇乱子伦牲交| 91av网站免费观看| 精品卡一卡二卡四卡免费| 无限看片的www在线观看| 亚洲精品国产区一区二| 亚洲国产精品999在线| 免费在线观看完整版高清| 午夜亚洲福利在线播放| 一区在线观看完整版| 午夜久久久在线观看| 精品国产国语对白av| 日本黄色视频三级网站网址| 色在线成人网| 岛国视频午夜一区免费看| 色播亚洲综合网| 国产欧美日韩一区二区精品| 人妻久久中文字幕网| 男男h啪啪无遮挡| 国产精品亚洲一级av第二区| 久久久国产欧美日韩av| 国产91精品成人一区二区三区| 男女之事视频高清在线观看| 99香蕉大伊视频| 日韩欧美在线二视频| 亚洲av片天天在线观看| 精品国产亚洲在线| 亚洲美女黄片视频| 国产午夜精品久久久久久| 亚洲国产欧美一区二区综合| 三级毛片av免费| 精品第一国产精品| 搞女人的毛片| 日韩免费av在线播放| 国产一卡二卡三卡精品| 99国产精品一区二区蜜桃av| 无人区码免费观看不卡| 久久影院123| 777久久人妻少妇嫩草av网站| 99国产极品粉嫩在线观看| 欧美黑人欧美精品刺激| 国产精品久久视频播放| av片东京热男人的天堂| 国内精品久久久久精免费| 老司机在亚洲福利影院| 人人妻人人澡欧美一区二区 | 黄色丝袜av网址大全| 欧美乱码精品一区二区三区| 女人被躁到高潮嗷嗷叫费观| 亚洲第一青青草原| 99在线人妻在线中文字幕| 777久久人妻少妇嫩草av网站| av超薄肉色丝袜交足视频| 久久久久久免费高清国产稀缺| 夜夜夜夜夜久久久久| 国产男靠女视频免费网站| 国产在线观看jvid| 国产午夜精品久久久久久| 视频在线观看一区二区三区| 国产精品亚洲av一区麻豆| 脱女人内裤的视频| 精品国产亚洲在线| 国产免费av片在线观看野外av| 99国产精品一区二区蜜桃av| 欧美丝袜亚洲另类 | 久久午夜亚洲精品久久| 欧美日韩亚洲国产一区二区在线观看| 一区二区三区国产精品乱码| 国产成人欧美| 亚洲,欧美精品.| 免费看十八禁软件| 精品久久久久久成人av| 757午夜福利合集在线观看| 大型黄色视频在线免费观看| 午夜免费观看网址| 亚洲黑人精品在线| 欧美另类亚洲清纯唯美| 搞女人的毛片| 亚洲国产精品999在线| 99国产综合亚洲精品| 三级毛片av免费| 久久 成人 亚洲| 天天躁夜夜躁狠狠躁躁| 亚洲精品美女久久av网站| 亚洲成av人片免费观看| 在线播放国产精品三级| 亚洲va日本ⅴa欧美va伊人久久| 日本五十路高清| av有码第一页| 一区在线观看完整版| 夜夜躁狠狠躁天天躁| 亚洲一区二区三区色噜噜| 欧美老熟妇乱子伦牲交| 视频在线观看一区二区三区| 国产精品久久电影中文字幕| 女性被躁到高潮视频| 精品一品国产午夜福利视频| 亚洲国产精品成人综合色| 老司机福利观看| 亚洲午夜精品一区,二区,三区| 日韩精品免费视频一区二区三区| 亚洲av熟女| 色av中文字幕| 日韩国内少妇激情av| 无遮挡黄片免费观看| 俄罗斯特黄特色一大片| 欧美黄色淫秽网站| 国产精品乱码一区二三区的特点 | 成年人黄色毛片网站| 欧美一级a爱片免费观看看 | 男人操女人黄网站| 两个人看的免费小视频| 在线观看免费视频日本深夜| 亚洲片人在线观看| 中亚洲国语对白在线视频| 日本三级黄在线观看| 精品福利观看| 午夜影院日韩av| 午夜福利免费观看在线| 热99re8久久精品国产| 国产1区2区3区精品| 日韩免费av在线播放| 欧美日韩中文字幕国产精品一区二区三区 | 啦啦啦免费观看视频1| av有码第一页| 国产亚洲av嫩草精品影院| 91老司机精品| 欧美日韩黄片免| 岛国视频午夜一区免费看| 好男人在线观看高清免费视频 | 久久 成人 亚洲| 国产精品久久久久久亚洲av鲁大| 国内毛片毛片毛片毛片毛片| 性欧美人与动物交配| 久久精品亚洲熟妇少妇任你| 欧美av亚洲av综合av国产av| 满18在线观看网站| 国产亚洲欧美精品永久| 欧美国产精品va在线观看不卡| 美女大奶头视频| 国产成人精品无人区| 亚洲avbb在线观看| 777久久人妻少妇嫩草av网站| 久久精品aⅴ一区二区三区四区| 电影成人av| 精品久久蜜臀av无| 老司机深夜福利视频在线观看| 亚洲国产毛片av蜜桃av| 国产亚洲精品久久久久5区| 成年女人毛片免费观看观看9| 欧美乱色亚洲激情| 一a级毛片在线观看| av视频在线观看入口| www国产在线视频色| 亚洲一区中文字幕在线| av在线播放免费不卡| 亚洲一码二码三码区别大吗| www.精华液| 亚洲精品在线美女| 色综合站精品国产| 可以免费在线观看a视频的电影网站| 亚洲va日本ⅴa欧美va伊人久久| 国产一卡二卡三卡精品| 国产av又大| 男男h啪啪无遮挡| 国产野战对白在线观看| 久久精品国产亚洲av高清一级| 一卡2卡三卡四卡精品乱码亚洲| 一级a爱视频在线免费观看| 88av欧美| 国产精品秋霞免费鲁丝片| 99国产精品一区二区三区| 久久精品国产亚洲av香蕉五月| 禁无遮挡网站| 麻豆一二三区av精品| 亚洲国产看品久久| 久久精品成人免费网站| 99精品在免费线老司机午夜| 天天躁狠狠躁夜夜躁狠狠躁| 99国产精品一区二区蜜桃av| 久久午夜综合久久蜜桃| 国产男靠女视频免费网站| 国产精品久久久久久人妻精品电影| 国产在线精品亚洲第一网站| 国产精品综合久久久久久久免费 | 午夜福利视频1000在线观看 | 亚洲成av片中文字幕在线观看| 三级毛片av免费| 99国产精品一区二区三区| 久久精品国产亚洲av香蕉五月| 久久九九热精品免费| 看片在线看免费视频| 亚洲欧美日韩无卡精品| 日韩高清综合在线| 一级毛片精品| 亚洲第一av免费看| 欧美成人性av电影在线观看| www.精华液| 亚洲中文字幕一区二区三区有码在线看 | 亚洲色图av天堂| 深夜精品福利| 99久久精品国产亚洲精品| 美女国产高潮福利片在线看| 国产精品久久久久久精品电影 | 99在线视频只有这里精品首页| 成人精品一区二区免费| 亚洲欧美日韩无卡精品| 又大又爽又粗| 在线国产一区二区在线| 精品一品国产午夜福利视频| 午夜福利视频1000在线观看 | 久久久久久久午夜电影| 可以免费在线观看a视频的电影网站| 麻豆成人av在线观看| 久久久国产精品麻豆| 久久草成人影院| 一二三四在线观看免费中文在| 免费高清视频大片| 免费不卡黄色视频| 老熟妇乱子伦视频在线观看| 91精品三级在线观看| 国产精品亚洲av一区麻豆| 中文亚洲av片在线观看爽| 亚洲中文av在线| 一卡2卡三卡四卡精品乱码亚洲| 久久婷婷成人综合色麻豆| 18禁美女被吸乳视频| 两个人看的免费小视频| 99国产极品粉嫩在线观看| 亚洲一码二码三码区别大吗| 人妻丰满熟妇av一区二区三区| 无遮挡黄片免费观看| 欧美成狂野欧美在线观看| 搞女人的毛片| 中文字幕人妻丝袜一区二区| 亚洲成国产人片在线观看| 国产一级毛片七仙女欲春2 | 国产精品av久久久久免费| 两个人看的免费小视频| 涩涩av久久男人的天堂| www.www免费av| 亚洲av片天天在线观看| 88av欧美| 亚洲成国产人片在线观看| 国产99白浆流出| 69av精品久久久久久| 国产成人免费无遮挡视频| 久久天堂一区二区三区四区| e午夜精品久久久久久久| 午夜两性在线视频| 精品国产乱码久久久久久男人| av在线天堂中文字幕| 日韩欧美国产在线观看| 久久人人精品亚洲av| 亚洲成av人片免费观看| 在线观看舔阴道视频| 99国产精品免费福利视频| 亚洲欧美精品综合久久99| 亚洲专区中文字幕在线| 久久精品国产亚洲av高清一级| 亚洲欧美日韩高清在线视频| 亚洲国产毛片av蜜桃av| 国产色视频综合| 韩国av一区二区三区四区| 亚洲第一青青草原| 成年女人毛片免费观看观看9| 亚洲精品中文字幕在线视频| 少妇裸体淫交视频免费看高清 | 动漫黄色视频在线观看| 性色av乱码一区二区三区2| 国内精品久久久久精免费| 国产真人三级小视频在线观看| 波多野结衣一区麻豆| 国产精品国产高清国产av| 日韩欧美免费精品| 桃色一区二区三区在线观看| 亚洲五月色婷婷综合| 视频区欧美日本亚洲| 色尼玛亚洲综合影院| 国产av在哪里看| 国产欧美日韩一区二区精品| 美女国产高潮福利片在线看| 久久久久久大精品| 国产精品一区二区在线不卡| 午夜福利18| 可以在线观看的亚洲视频| 一二三四在线观看免费中文在| av在线天堂中文字幕| 国产精品一区二区在线不卡| 村上凉子中文字幕在线| 欧美日韩一级在线毛片| av免费在线观看网站| 免费看美女性在线毛片视频| 脱女人内裤的视频| 一进一出好大好爽视频| 国产区一区二久久| 久久久久久免费高清国产稀缺| 18禁美女被吸乳视频| 啦啦啦观看免费观看视频高清 | 非洲黑人性xxxx精品又粗又长| 女同久久另类99精品国产91| 搡老妇女老女人老熟妇| 看片在线看免费视频| 亚洲av美国av| 午夜福利成人在线免费观看| 久久久久亚洲av毛片大全| 国产色视频综合| 午夜激情av网站| 午夜亚洲福利在线播放| 亚洲国产日韩欧美精品在线观看 | 淫妇啪啪啪对白视频| 亚洲片人在线观看| 两人在一起打扑克的视频| 亚洲成人久久性| 亚洲人成电影观看| 美女国产高潮福利片在线看| 亚洲av电影在线进入| 亚洲欧美日韩高清在线视频| 国产蜜桃级精品一区二区三区| 操美女的视频在线观看| 午夜精品国产一区二区电影| 桃红色精品国产亚洲av| 国产精品国产高清国产av| 丝袜美腿诱惑在线| 两个人看的免费小视频| 国产主播在线观看一区二区| 欧美丝袜亚洲另类 | 精品久久久久久久人妻蜜臀av | 亚洲精品久久国产高清桃花| 欧美绝顶高潮抽搐喷水| 一个人免费在线观看的高清视频| xxx96com| 少妇被粗大的猛进出69影院| 国产97色在线日韩免费| 伊人久久大香线蕉亚洲五| 午夜精品在线福利| 少妇 在线观看| 满18在线观看网站| 精品久久久精品久久久| 淫秽高清视频在线观看| 欧美最黄视频在线播放免费| 午夜免费观看网址| 国产亚洲欧美精品永久| 成人三级黄色视频| 日本vs欧美在线观看视频| 精品电影一区二区在线| 亚洲五月婷婷丁香| 亚洲专区国产一区二区| 久久亚洲真实| 欧美激情久久久久久爽电影 | 精品高清国产在线一区| www.999成人在线观看| 精品第一国产精品| 18禁国产床啪视频网站| 国产高清videossex| 黄色女人牲交| 欧美国产日韩亚洲一区| 日本 av在线| √禁漫天堂资源中文www| 午夜a级毛片| 午夜久久久在线观看| 国产精品香港三级国产av潘金莲| 国产成人欧美在线观看| 搡老岳熟女国产| 久久精品国产99精品国产亚洲性色 | 麻豆久久精品国产亚洲av| 久久午夜亚洲精品久久| 黄网站色视频无遮挡免费观看| 这个男人来自地球电影免费观看| 一级a爱视频在线免费观看| 中国美女看黄片| 国产精品98久久久久久宅男小说| 国产精品 国内视频| 曰老女人黄片| 最近最新中文字幕大全免费视频| 日韩国内少妇激情av| 男女之事视频高清在线观看| 超碰成人久久| 男女之事视频高清在线观看| 熟妇人妻久久中文字幕3abv| 国产伦人伦偷精品视频| 少妇熟女aⅴ在线视频| av视频在线观看入口| 欧美不卡视频在线免费观看 | 动漫黄色视频在线观看| 桃红色精品国产亚洲av| 夜夜看夜夜爽夜夜摸| 成年人黄色毛片网站| 正在播放国产对白刺激| 在线观看一区二区三区| 午夜福利成人在线免费观看| 久热这里只有精品99| 亚洲天堂国产精品一区在线| 久久精品国产清高在天天线| 欧美久久黑人一区二区| 99精品欧美一区二区三区四区| 国内精品久久久久精免费| 国产一区二区三区综合在线观看| 欧美最黄视频在线播放免费| 久久久久久国产a免费观看| 亚洲中文日韩欧美视频| 黄色视频,在线免费观看| 午夜福利影视在线免费观看| 免费观看人在逋| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲欧美精品综合久久99| 国产不卡一卡二| 成人18禁在线播放| 岛国视频午夜一区免费看| 人妻丰满熟妇av一区二区三区| 国产午夜精品久久久久久| 国产成人精品久久二区二区免费| 国产一区二区三区在线臀色熟女| 精品国产国语对白av| 18禁美女被吸乳视频| 国产精品国产高清国产av| 久久久久国内视频| 精品国产超薄肉色丝袜足j| 国产熟女午夜一区二区三区| 成人国产一区最新在线观看| 操美女的视频在线观看| 在线视频色国产色| 一卡2卡三卡四卡精品乱码亚洲| 久久精品国产亚洲av香蕉五月| 最近最新中文字幕大全电影3 | 老熟妇仑乱视频hdxx| 日本vs欧美在线观看视频| 国产在线观看jvid| √禁漫天堂资源中文www| 亚洲男人天堂网一区| 日日爽夜夜爽网站| 视频区欧美日本亚洲| 韩国av一区二区三区四区| 精品免费久久久久久久清纯| 午夜激情av网站| 禁无遮挡网站| 大型黄色视频在线免费观看| 成人国语在线视频| 午夜a级毛片| 国产片内射在线| 99国产精品免费福利视频| 亚洲中文日韩欧美视频| 国产高清有码在线观看视频 | av有码第一页| 亚洲午夜理论影院| 亚洲精品中文字幕一二三四区| 色婷婷久久久亚洲欧美| 母亲3免费完整高清在线观看| 变态另类成人亚洲欧美熟女 | 97人妻天天添夜夜摸|