• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Observation of hopping transitions for delocalized electrons by temperature-dependent conductance in silicon junctionless nanowire transistors?

    2019-11-06 00:46:08YangYanGuo郭仰巖WeiHuaHan韓偉華XiaoSongZhao趙曉松YaMeiDou竇亞梅XiaoDiZhang張曉迪XinYuWu吳歆宇andFuHuaYang楊富華
    Chinese Physics B 2019年10期
    關(guān)鍵詞:富華

    Yang-Yan Guo(郭仰巖),Wei-Hua Han(韓偉華),?,Xiao-Song Zhao(趙曉松),Ya-Mei Dou(竇亞梅),Xiao-Di Zhang(張曉迪),Xin-Yu Wu(吳歆宇),and Fu-Hua Yang(楊富華),3

    1Engineering Research Center for Semiconductor Integrated Technology&Beijing Engineering Center of Semiconductor Micro-Nano Integrated Technology,Institute of Semiconductors,Chinese Academy of Sciences,Beijing 100083,China

    2Center of Materials Science and Optoelectronics Engineering,University of Chinese Academy of Sciences,Beijing 100049,China

    3State Key Laboratory for Superlattices and Microstructures,Institute of Semiconductors,Chinese Academy of Sciences,Beijing 100083,China

    Keywords:junctionless nanowire transistors,temperature-dependent conductance,variable range hopping,localization length

    1.Introduction

    The prospect of atom-scale transistor has been initially indicated by single atom transistor,in which a single phosphorus atom as a quantum dot is high-precisely positioned between source and drain leads by the probe lithography.[1–5]Many notable approaches toward atomic electronic devices have also been explored.[6–9]As the channel width of the silicon transistor is scaled down to several nanometers,few ionized dopant atoms randomly distributed in the channel can work as quantum dots(QDs)and play a significant role in the electron transport behaviors.[10–14]In recent years,singleelectron tunneling through the dopant-induced QD array has attracted much attention in the study of the silicon junctionless nanowire transistors(JNTs),which may provide a onedimensional bulk channel with an adjustable width by the gate electric field.[7,15,16]The conducting path in the center of the silicon nanowire,which is effectively confined by the surface depletion potentials,can be gradually broadened to the whole conduction channel region with the increase of the gate voltage.[17]Few dopant atoms would be discrete in the extremely narrow channel at the initial gate voltages. Therefore,it is very necessary to further understand the thermally activated electron hopping through discrete dopant-induced QDs in the extremely narrow channel.At low temperatures,the silicon JNTs show that the conductance features evolve from clear oscillatory peaks to several steps with the channel broadening,which reflect the electrons successively passing through the impurity levels of the dopant-induced QDs and the conduction subbands of the quantum wire.[18,19]With temperature increasing,the conductance features can be smeared due to thermal broadening by the scattering of thermally activated electrons,which are delocalized from the ionized dopant atoms.[20]In this paper,we demonstrate transitions of hopping behaviors for delocalized electrons through the discrete dopant-induced quantum dots in n-doped silicon junctionless nanowire transistors by the temperature-dependent conductance characteristics.We find two obvious transition platforms within the critical temperature regimes for the experimental conductance data,which are extracted from the unified transfer characteristics for different temperatures at the gate voltage positions of the initial transconductance gmpeak in Vg1and valley in Vg2.The crossover temperatures of electron hopping behaviors are analytically determined by the temperaturedependent conductance at the gate voltages Vg1and Vg2.

    2.Device fabrication and characterization

    The schematic structure of the silicon JNT device for investigation is provided in Fig.1(a). The fabrication of the silicon JNT device started from a boron-doped(1015cm?3)(100)-oriented silicon-on-insulator(SOI)wafer with 55-nmthick top silicon layer and 145-nm-thick buried oxide layer.After growing a 18-nm-thick thermal oxidation layer,the top silicon layer was uniformly doped by phosphorus ion implantation with a dose of 2×1012cm?2at an energy of 33 keV.A silicon nanowire was defined alongdirection by electron beam lithography(EBL)and inductively coupled plasma(ICP)etching,followed by a sacrificial oxidation to eliminate the etching-induced damages. Then 22-nm-thick gate oxide layer was grown by thermal oxidation at the temperature of 900?C in dry oxygen. The 200-nm-thick polysilicon layer was deposited by low-pressure chemical vapor deposition(LPCVD).After heavily doped by boron ion implantation,the sample was rapidly annealed in nitrogen ambient at 1000?C for 10 s. The polysilicon gate with the length of 280 nm was then defined by electron beam overlay exposure and dry etching,conformally wrapping the Si/SiO2core–shell nanowire. Finally,it was followed by the deposition of 200 nm-thick SiO2passivation layer,standard metal contact formation,and sintering.The SEM image of the singlechannel JNT in Fig.1(b)shows the width of 58 nm for the Si/SiO2core–shell nanowire. As a result,we may estimate that the silicon core has the physical width of about 14 nm and the height of about 26 nm. The dopant concentration in the silicon channel after several times annealing is estimated to be 4.16×1017cm?3according to the implantation dose of phosphorus ions.The fabricated device was measured in a vacuum chamber which can be cooled down to the low temperature of 6 K with the help of Lakershore-340 temperature controller.

    Fig.1. (a)The schematic structure of silicon JNT.(b)The top-view SEM image of silicon JNT after gate formation.

    3.Results and discussion

    We study the thermally activated electrons transport behaviors through the discrete dopant-induced QDs in the impurity band of the silicon JNT within the temperature range from 6 K to 250 K by the temperature-dependent conductance characteristics of the silicon JNT.The thermally activated electron transport is dominated by phonon-assisted hopping through several dopant-induced QDs.[21]Mott believed that a hopping electron with activation energy Eawould always try to find a lower energy state around the Fermi level by the variable range hopping(VRH)in the absence of longrange Coulomb interaction.[22]At high temperatures,the temperature dependence of conductance G for the nearest neighbor hopping(NNH)exhibits as G ∝exp(?Ea/kBT),where kBis the Boltzmann constant.[23]If the activation energy at low temperatures is reduced as large as the Coulomb interaction energy,the VRH conductance which has been predicted by Efros and Shklovskii(ES)should obey the 1/2 exponent law given bywhere TESis the temperatureindependent ES coefficient.[24]Therefore,with temperature increasing,three kinds of electron hopping transports would be observed in the following consequence: ES-type VRH,Mott-type VRH,and NNH.[21]In our experiment,we find two obvious transition platforms within the critical temperature regimes of A and B for the experimental conductance data,which are extracted from the unified transfer characteristics at the gate voltage positions of the initial transconductance gmpeak in Vg1and valley in Vg2.One crossover temperature TAin the higher temperature regime A corresponds to the transition of thermally-activated-electron transport behaviors from NNH to Mott-type VRH.[25]The other crossover temperature TCin the lower temperature regime B corresponds to the VRH transition for the delocalized electrons from Mott law to the ES law under the influence of Coulomb interaction.[26]The quantitative analysis on the experimental temperaturedependent conductance data has been taken by linear fitting of lnG ∝?Ea/kBT for NNH,lnG ∝?(TM/T)1/4for Mott-type VRH,and lnG ∝?(TES/T)1/2for ES-type VRH.

    Figure 2(a)presents the temperature-dependent conductance G(i.e.,G=IDS/VDS)curves obtained from the transfer characteristics at low source–drain bias VDS=1 mV.The clear quantized current steps below the temperature of 75 K indicate the population of the individual sub-bands caused by the quantum confinement effect.[27]Above the temperature of 75 K,the thermal energy is greater than the subbands spacing,resulting in the smearing of the current steps.Figure 2(b)illustrates the corresponding transconductance gm–VGcharacteristics at different temperatures. We define the onset gate voltage Vgtas the initial point of the first gmpeak,where the drain current in the conduction channel is at the onset state.The onset gate voltage Vgtincreases from 6 K to 20 K and decreases from 100 K to 250 K,resulting from the interaction of the induced image charges in the dielectric interface with the impurity and the subband states in the channel.[13]To explore the conductance characteristics under the same filled energy level,we take the onset gate voltage Vgtto unify the transfer characteristics in Fig.2(a)for the alignment of energy levels at different temperatures.In order to clarify the electron hopping transport in the impurity band,figure 2(c)shows the IDS–Vgcurves(upper part)and the corresponding transconductance gm–Vgcurves(lower part)at the temperature of 6 K under the bias VDSvarying from 1 mV to 10 mV.The clear oscillatory current with several splitting peaks(upper part)identifies the coupling of dopant-induced QDs in the impurity band.With the gate voltage increasing,the Fermi energy level of electrons in the quantum confined channel is allowed to enter the conduction subbands,resulting in the current steps.[28,29]

    In order to study the temperature-dependent conductance G characteristics in Fig.2(a),we firstly extract the experimental conductance data for different temperatures according to the initial gmpeak at the gate voltage Vg1,in which the effective mobility of hopping electrons is the highest in the impurity band.For comparison,we also provide the temperaturedependent conductance data according to the initial gmvalley at the gate voltage Vg2,in which the electron hopping behavior is suppressed by the Coulomb interaction.Figure 2(d)provides the Arrhenius conductance plots(G vs.1/T)at the gate voltages of Vg1and Vg2within the temperature range from 6 K to 250 K.Interestingly,it is found that the conductance at the temperature of 6 K is much larger than that of 10 K,which may be related with the Coulomb interaction.As the temperature increases,the incomplete ionized donors in the channel are gradually transformed into ionized donors,which result in stronger impurity scattering to reduced the electron mobility.[30]The inset G–T diagrams in Fig.2(d)show two apparent platforms of the conductance for the gate voltages Vg1and Vg2within the temperature regions of around 200 K and around 100 K,as the color marked A and B.The platform of the temperature-dependent conductance for the gate voltage Vg1within the temperature range from 50 K to 100 K is more evident than that of the gate voltage Vg2within the temperature range from 75 K to 125 K,resulting from the stronger quantum confinement at the initial stage of the conduction channel in the silicon JNT.

    Fig.2.(a)The temperature-dependent conductance G(i.e.,G=IDS/VDS)curves of the device at VDS=1 mV within the temperature range from 6 K to 250 K.(b)The temperature-dependent transconductance gm–VG characteristics at VDS=1 mV,where the transconductance is given by gm=dIDS/dVG.(c)IDS–Vg curves(upper part)and the corresponding transconductance gm–Vg curves(lower part)at the temperature of 6 K under the bias VDS varying from 1 mV to 10 mV.(d)The Arrhenius conductance plots(G vs.1/T)on logarithmic scale at the gate voltages of Vg1 and Vg2 within the temperature range from 6 K to 250 K,The inset shows the corresponding temperature-dependent conductance data(G vs.T),which are extracted from panel(a)after unified by the onset gate voltage Vgt at different temperatures.

    Fig.3.Arrhenius plot of conductance in lnG vs.1/T scales for NNH within the temperature range from 175 K to 250 K.The inset shows Mott-type VRH temperature dependence of the conductance in lnG vs.(1/T)1/4 scales.

    In order to precisely determine the transition temperatures TAin temperature region A,we replot the Arrhenius curves of temperature-dependent conductance at high temperature regime as the curves of lnG vs.1/T in Fig.3 for the gate voltages Vg1and Vg2respectively.The inset shows the Motttype VRH temperature dependence of the conductance in lnG vs.(1/T)1/4scales.Here,we are interested in the hopping behaviors of the thermally activated electrons from the ionized dopant atoms.The linearly fitting by lnG ∝?Ea/kBT is shown in Fig.3 for the thermally activated electrons by NNH above the crossover temperature TA,in which the electrons have enough thermal activation energy Eato overcome the potential barriers between the nearest neighbor states.The hopping distance r in NNH is supposed to be equivalent to the mean distance d between neighbored dopant atoms,which can be determined by the doping concentration Ndas

    According to the doping concentration Nd=4.16×1017cm?3,the hopping distance between the nearest neighbored dopant atoms is estimated to be 13.4 nm.According to the linearly fitting of the experimental conductance data in Fig.3 within the temperature range from 175 K to 250 K,the activation energies Eafor the hopping electrons are extracted to be 45.2 meV and 33.7 meV respectively for the curves at the gate voltages Vg1and Vg2.[31]According to Mott’s theory,the activation energy Eafor electron hopping is related to the constant density of states(DOS)g0at the Fermi level and the hopping distance

    r as[32]

    The probability P for hopping is proportional to the conductance G of the device,which depends on the overlap integral of the wavefunctions within the localization radius a and the activation energy Ea,[26]i.e.,

    Taking the expression of Ea(Eq.(2))into Eq.(3),one may get the relation between the probability and the hopping distance,P ∝G ∝exp(?2r/a ?3/(4πg(shù)0r3kBT)).After taking the derivative of the hopping probability dP/dr=0,the optimal electron hopping distanceMis obtained to be[33]

    where aMis the localization length in the Mott hopping regime.At the crossover temperature TA,the electron hopping distance of VRH is assumed to be equal to that of NNH,

    which is determined by the localization length aMand the density of states g0. In order to determine the localization length aM,we may use the Mott-type VRH conductance expression by substituting Eqs.(2)and(4)into Eq.(3),i.e.,G ∝P ∝exp(?(TM/T)1/4).The temperature factor TMis related to the localization length aMbyAccording to the fitting results from 175 K to 250 K of lnG vs. T ?1/4 scales in the inset of Fig.3,the temperature factor TMextracted from the slopes is 38.784K for the gate voltage Vg1and 28.94K and for the gate voltage Vg2.Therefore,the localization length aMcan be obtained from the expression of TMbe about 3.47 nm and 4.66 nm respectively for the gate voltages Vg1and Vg2.The density of states g0at the Fermi energy can be estimated to be 2.2×1018eV?1·cm?3and 2.96×1018eV?1·cm?3from Eqs.(2)and(5)by taking the activation energies of 45.2 meV and 33.7 meV respectively for the gate voltages Vg1and Vg2,both of which have the same magnitude as reported in silicon nanowires.[19]As expected from Eq.(6),we obtain the crossover temperatures of TA1=203 K and TA2=202 K respectively for the gate voltages Vg1and Vg2,which are consistent with the experimental observation in the conductance platform A of Fig.2(d).The result shows that the crossover temperature TAfrom NNH to VRH is independent of the gate electric field,which may result from the stronger interactions of the thermally activated electrons.

    whose curve is shown in the inset of Fig.4.At the crossover temperature TCfor the VRH transition from Mott-type law to ES-type law,the activation energy Eashould be equivalent to the Coulomb interaction energy ?,i.e.,

    The DOS at the condition of Ea=?would remain constant as g0in Mott VRH,which is given by

    in which the localized length aESin ES hopping regime indicates the average modulation length of long-range Coulomb interaction between the dopant-induced QDs in the conduction channel.In order to determine the localization length aES,we substitute Eqs.(8)and(10)into Eq.(3)to get the ES-type VRH conductance expression

    The temperature factor TESis related to the localization length aES by

    The temperature factor TESextracted from the slopes is 34.8 K for the gate voltage Vg1and 31.4 K for the gate voltage Vg2.Therefore,the localization length aESfor ES-type VRH can be obtained from Eq.(12)to be about 323 nm and 358 nm respectively for the gate voltages Vg1and Vg2.The result indicates that the localization length aESis enhanced with the increase of the gate voltage due to screening of the trapping potentials of the dopant atoms. Considering the expressions from Eq.(7)to Eq.(10),we finally obtain the expression of

    which is determined by the constant DOS g0and the localized length aES.As a result,the crossover temperature of the VRH conductance transition from Mott-type law to ES-type law can be estimated to be TC1=85 K at the gate voltage Vg1and TC2=126 K at the gate voltage Vg2. Both the two crossover temperatures TC1and TC2are consistent with the experimental observation of conductance platform B of Fig.2(d).The crossover temperature TC2of 126 K is much higher than TC1of 85 K,which may result from the stronger Coulomb interaction at the gate voltage Vg2of the gmvalley.

    Fig.4.Arrhenius plot of conductance in lnG vs.(1/T)1/2 scales for ES-type VRH,with the inset for the density of states near the Fermi energy level.

    4.Conclusion

    We present an experimental evidence of hopping transition for the delocalized electrons in silicon JNT by the temperature-dependent conductance characteristics.The theoretical models of Mott-type VRH and ES-type VRH agree well with the experimental data of temperature-dependent conductance,which are extracted from transfer characteristics for different temperatures at the gate voltage positions of the initial transconductance gmpeak in Vg1and the valley in Vg2. The crossover temperature TAfrom NNH to Mott VRH is analytically determined to be 203 K and 202 K constantly for the gate voltages Vg1and Vg2by the conductance transition of the thermally activated electrons.Another crossover temperature TCof VRH behavior from Mott-type law to ES-type law is theoretically determined to be 85 K and 126 K respectively for the gate voltages Vg1and Vg2by considering the Coulomb interactions.As expected,stronger Coulomb interaction at the gate voltage Vg2of the gmvalley leads to the obvious increase of the crossover temperature TCfor the VRH transition behavior.Our finding provides essential evidence for the hopping electron behaviors under the influence of thermal activation and long-range Coulomb interaction.

    Acknowledgment

    The authors acknowledge Dr. Hao Wang,Dr. Liuhong Ma,and Mr.Xiaoming Li for their supports in device fabrication.

    猜你喜歡
    富華
    花動(dòng)菊城,風(fēng)起中山
    Observation of source/drain bias-controlled quantum transport spectrum in junctionless silicon nanowire transistor
    Who Is Better?
    深度解析國內(nèi)盤剎空懸應(yīng)用現(xiàn)狀
    ——專訪富華國內(nèi)銷售部部長古嘉杰
    專用汽車(2020年11期)2020-11-23 09:24:58
    年產(chǎn)車橋200萬根,富華全新世界頂級(jí)產(chǎn)線年底或亮相
    ——訪富華銷售總監(jiān)張航博士
    專用汽車(2020年10期)2020-10-26 01:11:48
    Temperature-dependent subband mobility characteristics in n-doped silicon junctionless nanowire transistor?
    百尺竿頭 更進(jìn)一步富華驅(qū)動(dòng)橋獲得福特重卡Q1認(rèn)證
    專用汽車(2016年11期)2017-01-11 02:31:40
    微言微語:用標(biāo)準(zhǔn)和實(shí)驗(yàn)數(shù)據(jù)說話的富華
    專用汽車(2016年5期)2016-03-01 04:14:46
    志存高遠(yuǎn),從未止步——訪富華集團(tuán)副總經(jīng)理譚嘉驊
    專用汽車(2015年4期)2015-07-08 03:21:04
    豈止于大
    ——走進(jìn)廣東富華重工制造有限公司
    成人特级av手机在线观看| 少妇 在线观看| 青春草国产在线视频| 精品亚洲成国产av| 最近中文字幕2019免费版| 免费人妻精品一区二区三区视频| 国产欧美日韩综合在线一区二区 | 精品少妇久久久久久888优播| a级毛片免费高清观看在线播放| 国产精品秋霞免费鲁丝片| 人人澡人人妻人| 国产精品99久久99久久久不卡 | 伦理电影大哥的女人| 在线观看av片永久免费下载| 一本—道久久a久久精品蜜桃钙片| 校园人妻丝袜中文字幕| 亚洲国产成人一精品久久久| 伦精品一区二区三区| 亚洲精品自拍成人| 中国国产av一级| 男人爽女人下面视频在线观看| 欧美成人精品欧美一级黄| 久久av网站| 日韩一本色道免费dvd| 国产精品人妻久久久影院| 毛片一级片免费看久久久久| 高清在线视频一区二区三区| 亚洲电影在线观看av| www.色视频.com| 亚洲色图综合在线观看| 中文字幕免费在线视频6| 内射极品少妇av片p| 只有这里有精品99| 久久久久久久精品精品| 免费黄网站久久成人精品| 伊人久久精品亚洲午夜| 最新中文字幕久久久久| 99九九在线精品视频 | 亚洲综合色惰| 99久国产av精品国产电影| 极品少妇高潮喷水抽搐| 久久人妻熟女aⅴ| 久久久久久伊人网av| 91精品伊人久久大香线蕉| 女的被弄到高潮叫床怎么办| 成人亚洲精品一区在线观看| 一本色道久久久久久精品综合| 黄色毛片三级朝国网站 | 十分钟在线观看高清视频www | 日韩在线高清观看一区二区三区| freevideosex欧美| 9色porny在线观看| 在线观看www视频免费| 国产精品人妻久久久久久| 国内少妇人妻偷人精品xxx网站| 99久久中文字幕三级久久日本| 国精品久久久久久国模美| 亚洲国产欧美日韩在线播放 | 卡戴珊不雅视频在线播放| 国产精品伦人一区二区| 久久久久久久久久成人| 欧美日韩精品成人综合77777| 亚洲国产精品一区三区| 欧美丝袜亚洲另类| 人人妻人人澡人人爽人人夜夜| 免费观看a级毛片全部| 天美传媒精品一区二区| 狠狠精品人妻久久久久久综合| 人人妻人人爽人人添夜夜欢视频 | 一本大道久久a久久精品| 丁香六月天网| 亚洲精品aⅴ在线观看| 最近最新中文字幕免费大全7| 久久人人爽人人爽人人片va| 久久人人爽人人爽人人片va| 欧美日韩视频高清一区二区三区二| 久久青草综合色| 久久6这里有精品| 午夜91福利影院| a 毛片基地| 少妇熟女欧美另类| 欧美丝袜亚洲另类| 日日啪夜夜爽| 男人添女人高潮全过程视频| 亚洲精品一二三| 精品人妻熟女毛片av久久网站| 99re6热这里在线精品视频| 女性生殖器流出的白浆| 亚洲欧美成人综合另类久久久| 久久青草综合色| 久久久久久人妻| 久久毛片免费看一区二区三区| 成人免费观看视频高清| xxx大片免费视频| 中文乱码字字幕精品一区二区三区| 观看免费一级毛片| 91午夜精品亚洲一区二区三区| 亚洲内射少妇av| 欧美日韩av久久| 久久久欧美国产精品| 免费人妻精品一区二区三区视频| av国产精品久久久久影院| 国产精品蜜桃在线观看| 高清午夜精品一区二区三区| 有码 亚洲区| 99热6这里只有精品| 欧美老熟妇乱子伦牲交| 最黄视频免费看| 男男h啪啪无遮挡| 日日啪夜夜爽| freevideosex欧美| av国产久精品久网站免费入址| 国产在线一区二区三区精| 99视频精品全部免费 在线| 国产精品国产三级国产av玫瑰| 日韩欧美精品免费久久| 赤兔流量卡办理| 国产极品天堂在线| 毛片一级片免费看久久久久| 免费人成在线观看视频色| freevideosex欧美| 亚洲婷婷狠狠爱综合网| 一级毛片aaaaaa免费看小| 亚洲精品日韩在线中文字幕| 男男h啪啪无遮挡| 国产高清三级在线| 免费高清在线观看视频在线观看| 久久 成人 亚洲| 十八禁高潮呻吟视频 | 热99国产精品久久久久久7| 97在线人人人人妻| 一级,二级,三级黄色视频| 人人澡人人妻人| 九九爱精品视频在线观看| 国产有黄有色有爽视频| 中国国产av一级| 中文字幕制服av| 夫妻性生交免费视频一级片| 多毛熟女@视频| 国产精品久久久久久精品古装| 91精品一卡2卡3卡4卡| 五月伊人婷婷丁香| 大片免费播放器 马上看| 欧美精品高潮呻吟av久久| av网站免费在线观看视频| 在线观看国产h片| 中文字幕制服av| 国产精品久久久久久久电影| 偷拍熟女少妇极品色| 中文字幕制服av| 免费观看在线日韩| 99九九线精品视频在线观看视频| 成年av动漫网址| 国产男女超爽视频在线观看| av免费观看日本| 亚洲av.av天堂| 最近中文字幕2019免费版| 一区二区三区精品91| 精品久久久久久久久av| 国产免费一区二区三区四区乱码| 国产片特级美女逼逼视频| 久久精品夜色国产| 又黄又爽又刺激的免费视频.| 国产午夜精品一二区理论片| 大陆偷拍与自拍| 少妇人妻一区二区三区视频| 日本猛色少妇xxxxx猛交久久| 啦啦啦中文免费视频观看日本| 精品一区二区三区视频在线| 久久精品国产a三级三级三级| 久久毛片免费看一区二区三区| 久久久久久久久久人人人人人人| 欧美精品人与动牲交sv欧美| 国产一区二区在线观看av| av国产精品久久久久影院| 韩国av在线不卡| 亚洲三级黄色毛片| 中文字幕人妻丝袜制服| 黄色怎么调成土黄色| 老女人水多毛片| 91午夜精品亚洲一区二区三区| 少妇裸体淫交视频免费看高清| 中文字幕制服av| 寂寞人妻少妇视频99o| 久久久久人妻精品一区果冻| 日本91视频免费播放| 男女边摸边吃奶| 国产av国产精品国产| 少妇精品久久久久久久| 69精品国产乱码久久久| 熟女人妻精品中文字幕| 久久女婷五月综合色啪小说| 男女国产视频网站| 老女人水多毛片| 蜜臀久久99精品久久宅男| 99久久综合免费| 在线观看人妻少妇| 免费观看av网站的网址| 色哟哟·www| 亚洲av不卡在线观看| 成年美女黄网站色视频大全免费 | 亚洲av电影在线观看一区二区三区| 亚洲精品456在线播放app| 国产av精品麻豆| 欧美少妇被猛烈插入视频| 亚洲精品国产av蜜桃| 色网站视频免费| 亚洲美女视频黄频| 秋霞伦理黄片| 99视频精品全部免费 在线| 日本午夜av视频| 人人澡人人妻人| 少妇人妻精品综合一区二区| 中文字幕久久专区| 亚洲电影在线观看av| 一本—道久久a久久精品蜜桃钙片| 亚洲情色 制服丝袜| 久久人人爽人人片av| 精品久久久噜噜| 欧美精品一区二区大全| 亚洲精品色激情综合| 大香蕉97超碰在线| 少妇精品久久久久久久| 肉色欧美久久久久久久蜜桃| 丰满人妻一区二区三区视频av| 午夜免费鲁丝| 中文字幕亚洲精品专区| 免费大片黄手机在线观看| 校园人妻丝袜中文字幕| 亚洲丝袜综合中文字幕| 99久久中文字幕三级久久日本| 狂野欧美激情性bbbbbb| 寂寞人妻少妇视频99o| 久久97久久精品| 午夜免费观看性视频| 国产伦精品一区二区三区视频9| 成年人午夜在线观看视频| 国产欧美亚洲国产| 久久综合国产亚洲精品| 久久久国产欧美日韩av| 亚洲精品日韩av片在线观看| 麻豆成人午夜福利视频| av.在线天堂| 久久青草综合色| 国产伦精品一区二区三区四那| 欧美bdsm另类| 国产精品国产三级国产专区5o| 老司机影院毛片| 国产精品一区二区在线不卡| 在线观看一区二区三区激情| www.色视频.com| 国产亚洲一区二区精品| 日韩av不卡免费在线播放| 18禁在线无遮挡免费观看视频| 人妻 亚洲 视频| 精品久久久久久电影网| 在线观看www视频免费| 高清黄色对白视频在线免费看 | 国产淫语在线视频| 色吧在线观看| 久久精品国产a三级三级三级| 亚洲精品乱码久久久久久按摩| 久久 成人 亚洲| 18+在线观看网站| 一本—道久久a久久精品蜜桃钙片| 色视频www国产| 人妻夜夜爽99麻豆av| 久久国产亚洲av麻豆专区| 两个人免费观看高清视频 | 精品一品国产午夜福利视频| 中国三级夫妇交换| 精品亚洲乱码少妇综合久久| freevideosex欧美| 日日爽夜夜爽网站| 又粗又硬又长又爽又黄的视频| 日本av免费视频播放| 一区二区av电影网| 综合色丁香网| 免费看日本二区| 亚洲在久久综合| 国产精品无大码| 国产黄片视频在线免费观看| 超碰97精品在线观看| 欧美激情国产日韩精品一区| 欧美日韩精品成人综合77777| 国产伦精品一区二区三区视频9| 人体艺术视频欧美日本| 一区在线观看完整版| 黄色毛片三级朝国网站 | 久久人人爽人人片av| 久久久久国产网址| 久久久久久伊人网av| 97在线视频观看| 日本黄色片子视频| 久久av网站| 黑人高潮一二区| 观看美女的网站| 伊人久久国产一区二区| 三级国产精品欧美在线观看| 观看美女的网站| 极品少妇高潮喷水抽搐| 日韩av在线免费看完整版不卡| 又粗又硬又长又爽又黄的视频| 亚洲国产精品成人久久小说| 色5月婷婷丁香| 国产精品无大码| 激情五月婷婷亚洲| 涩涩av久久男人的天堂| 日韩av在线免费看完整版不卡| 777米奇影视久久| 18禁动态无遮挡网站| 日本-黄色视频高清免费观看| 久久人人爽人人爽人人片va| 国产精品一二三区在线看| 亚洲成色77777| 亚洲精品国产色婷婷电影| 99热这里只有精品一区| 久久久久久久久久人人人人人人| av又黄又爽大尺度在线免费看| 中文字幕精品免费在线观看视频 | 亚洲精品色激情综合| 男人爽女人下面视频在线观看| 国产免费又黄又爽又色| 在线观看免费日韩欧美大片 | 人人妻人人添人人爽欧美一区卜| 妹子高潮喷水视频| av有码第一页| 五月玫瑰六月丁香| 最近的中文字幕免费完整| 黄色一级大片看看| 一本—道久久a久久精品蜜桃钙片| 国产高清有码在线观看视频| 丝袜喷水一区| 午夜av观看不卡| 在线免费观看不下载黄p国产| 插逼视频在线观看| 国模一区二区三区四区视频| h日本视频在线播放| 啦啦啦视频在线资源免费观看| 国产又色又爽无遮挡免| √禁漫天堂资源中文www| 一级爰片在线观看| 国产国拍精品亚洲av在线观看| av线在线观看网站| 视频区图区小说| 狂野欧美激情性bbbbbb| 女性生殖器流出的白浆| 人妻一区二区av| av在线观看视频网站免费| av国产精品久久久久影院| 观看免费一级毛片| 少妇猛男粗大的猛烈进出视频| 51国产日韩欧美| 国产伦理片在线播放av一区| 国产一区亚洲一区在线观看| 国产视频内射| 成人亚洲欧美一区二区av| 欧美少妇被猛烈插入视频| 在线亚洲精品国产二区图片欧美 | 岛国毛片在线播放| 国产欧美另类精品又又久久亚洲欧美| 久久久久网色| 伦精品一区二区三区| 亚洲国产欧美在线一区| 欧美日韩av久久| 亚洲经典国产精华液单| 国产精品久久久久久av不卡| 亚洲中文av在线| 在线观看免费高清a一片| 欧美激情极品国产一区二区三区 | 九色成人免费人妻av| 国产色爽女视频免费观看| 一本—道久久a久久精品蜜桃钙片| 乱人伦中国视频| www.色视频.com| 国产乱人偷精品视频| 亚洲国产av新网站| 亚洲国产毛片av蜜桃av| 精品久久国产蜜桃| 中文资源天堂在线| 久久久久久久精品精品| 色94色欧美一区二区| 91精品国产国语对白视频| 看十八女毛片水多多多| 国模一区二区三区四区视频| 欧美xxⅹ黑人| 狂野欧美白嫩少妇大欣赏| 天天躁夜夜躁狠狠久久av| 黄色视频在线播放观看不卡| 亚洲精品日韩在线中文字幕| 婷婷色av中文字幕| 搡女人真爽免费视频火全软件| 91精品国产九色| 3wmmmm亚洲av在线观看| 老熟女久久久| 精品午夜福利在线看| 日韩视频在线欧美| 伦理电影免费视频| 免费看光身美女| 黄色毛片三级朝国网站 | 亚洲欧洲日产国产| 精品一区二区三卡| 91久久精品国产一区二区三区| 99热这里只有是精品50| 亚洲av福利一区| 伊人久久国产一区二区| 欧美日韩精品成人综合77777| 99热6这里只有精品| 国产黄色免费在线视频| 亚洲国产精品成人久久小说| 一级毛片黄色毛片免费观看视频| 中文字幕精品免费在线观看视频 | 国产在线免费精品| 一本久久精品| 中文天堂在线官网| 色视频www国产| 亚洲天堂av无毛| 久久久久久人妻| 久久久久久久久大av| 乱人伦中国视频| 免费不卡的大黄色大毛片视频在线观看| videos熟女内射| 日韩伦理黄色片| 亚洲欧美日韩另类电影网站| 亚洲三级黄色毛片| 日本欧美视频一区| 免费高清在线观看视频在线观看| 青春草亚洲视频在线观看| 欧美3d第一页| 夜夜看夜夜爽夜夜摸| 亚洲色图综合在线观看| 国产成人午夜福利电影在线观看| 69精品国产乱码久久久| 色婷婷久久久亚洲欧美| 十八禁网站网址无遮挡 | 高清不卡的av网站| 亚洲国产日韩一区二区| 啦啦啦在线观看免费高清www| 又爽又黄a免费视频| 国产亚洲5aaaaa淫片| 简卡轻食公司| 午夜福利网站1000一区二区三区| 国产熟女午夜一区二区三区 | 另类亚洲欧美激情| 国产成人91sexporn| 极品教师在线视频| 亚洲av国产av综合av卡| 曰老女人黄片| 久久人妻熟女aⅴ| 国产在视频线精品| 亚洲成色77777| 久久 成人 亚洲| 日韩,欧美,国产一区二区三区| 少妇的逼好多水| 国产成人精品一,二区| 国产一区二区在线观看av| 亚洲av不卡在线观看| 黄片无遮挡物在线观看| 韩国av在线不卡| 亚洲精品aⅴ在线观看| 2021少妇久久久久久久久久久| 国产在线免费精品| 观看美女的网站| 欧美老熟妇乱子伦牲交| 亚洲,一卡二卡三卡| 熟女电影av网| 亚洲人与动物交配视频| 日产精品乱码卡一卡2卡三| 亚洲精品国产av蜜桃| 各种免费的搞黄视频| 亚洲丝袜综合中文字幕| 久久青草综合色| 国产有黄有色有爽视频| 亚洲精品第二区| 少妇被粗大猛烈的视频| 国产免费又黄又爽又色| 综合色丁香网| 夜夜看夜夜爽夜夜摸| 少妇 在线观看| 欧美bdsm另类| 精品一区二区三卡| 日本av手机在线免费观看| 欧美区成人在线视频| 亚洲欧美一区二区三区国产| 精品久久久久久久久亚洲| 国产亚洲av片在线观看秒播厂| av又黄又爽大尺度在线免费看| 亚洲丝袜综合中文字幕| 久久青草综合色| 欧美日韩一区二区视频在线观看视频在线| 国产片特级美女逼逼视频| 久久99精品国语久久久| 97在线人人人人妻| 国产亚洲最大av| av有码第一页| 简卡轻食公司| 最黄视频免费看| 成人美女网站在线观看视频| 一级毛片久久久久久久久女| 在线天堂最新版资源| 免费黄色在线免费观看| 草草在线视频免费看| 成人综合一区亚洲| 日本av手机在线免费观看| 日本免费在线观看一区| 美女cb高潮喷水在线观看| 精品熟女少妇av免费看| 观看美女的网站| 我要看黄色一级片免费的| 十八禁网站网址无遮挡 | a级毛色黄片| 这个男人来自地球电影免费观看 | 成人特级av手机在线观看| h视频一区二区三区| 高清av免费在线| 人妻 亚洲 视频| 激情五月婷婷亚洲| 蜜桃在线观看..| 久久综合国产亚洲精品| 国产成人一区二区在线| 亚洲精品久久午夜乱码| 亚洲欧美日韩东京热| 久久 成人 亚洲| 老司机影院毛片| 亚洲综合精品二区| 精品熟女少妇av免费看| 国产精品嫩草影院av在线观看| 夫妻性生交免费视频一级片| 一级毛片我不卡| 精品熟女少妇av免费看| 天堂俺去俺来也www色官网| 亚洲综合色惰| 久久亚洲国产成人精品v| 精品久久久精品久久久| 水蜜桃什么品种好| 少妇人妻 视频| 80岁老熟妇乱子伦牲交| 王馨瑶露胸无遮挡在线观看| 亚洲av中文av极速乱| 高清毛片免费看| 久久久精品94久久精品| h日本视频在线播放| 亚洲人与动物交配视频| 亚洲伊人久久精品综合| 久久亚洲国产成人精品v| 亚洲va在线va天堂va国产| 国产精品福利在线免费观看| 亚洲国产毛片av蜜桃av| 美女xxoo啪啪120秒动态图| av天堂中文字幕网| 最近2019中文字幕mv第一页| 精品久久久久久电影网| 午夜免费男女啪啪视频观看| 色视频在线一区二区三区| 看十八女毛片水多多多| 麻豆成人午夜福利视频| 亚洲av成人精品一二三区| 久久毛片免费看一区二区三区| 国产成人免费无遮挡视频| 亚洲av欧美aⅴ国产| 亚洲精品乱码久久久v下载方式| 日韩av免费高清视频| 久久久国产精品麻豆| 人妻少妇偷人精品九色| 亚洲精品日韩在线中文字幕| 免费看日本二区| 日本vs欧美在线观看视频 | 最近最新中文字幕免费大全7| 精品亚洲成a人片在线观看| 桃花免费在线播放| 久久99热这里只频精品6学生| 国产淫语在线视频| 久久ye,这里只有精品| kizo精华| 国产av国产精品国产| 国产日韩欧美亚洲二区| 又粗又硬又长又爽又黄的视频| 人妻 亚洲 视频| 高清不卡的av网站| 国产成人精品久久久久久| 少妇人妻精品综合一区二区| 国产精品偷伦视频观看了| 亚洲不卡免费看| 看非洲黑人一级黄片| 在线观看一区二区三区激情| 夫妻午夜视频| 日韩电影二区| 国产精品女同一区二区软件| 人人妻人人澡人人爽人人夜夜| 午夜福利影视在线免费观看| 婷婷色麻豆天堂久久| 三上悠亚av全集在线观看 | 国产69精品久久久久777片| 亚洲精品自拍成人| 熟妇人妻不卡中文字幕| 在线观看三级黄色| 亚洲性久久影院| 六月丁香七月| 国产女主播在线喷水免费视频网站| 久久久久网色| 欧美日韩视频精品一区| 极品少妇高潮喷水抽搐| 日本猛色少妇xxxxx猛交久久| 久久久精品免费免费高清| 丰满迷人的少妇在线观看| av福利片在线观看| 午夜老司机福利剧场| 亚洲一区二区三区欧美精品| 国产欧美日韩一区二区三区在线 | 成人漫画全彩无遮挡| 老司机影院毛片| 99久国产av精品国产电影| 国产黄频视频在线观看| 九九爱精品视频在线观看| 久久久久久久久大av|