• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    State-flipped control and Q-learning algorithm for the stabilization of Boolean control networks

    2022-01-08 12:25:20LIUYangLIUZejiaoLUJianquan
    控制理論與應(yīng)用 2021年11期

    LIU Yang LIU Ze-jiao LU Jian-quan

    (1.College of Mathematics and Computer Science,Zhejiang Normal University,Jinhua Zhejiang 321004,China;2.College of Mathematical Medicine,Zhejiang Normal University,Jinhua Zhejiang 321004,China;3.Jinhua Intelligent Manufacturing Research Institute,Jinhua Zhejiang 321032,China;4.School of Mathematics,Southeast University,Nanjing Jiangsu 210096,China)

    Abstract:In this paper,the global stabilization of Boolean control networks under state-flipped control with respect to a given subset is addressed.For a given subset of the set of the nodes,the state-flipped control can change the values of some nodes from 1 or 0 to 0 or 1. Considering the flips as controls, Boolean networks under state-flipped control are studied.Combining control inputs with state-flipped controls, the concepts of joint control pair and the state-flipped-transition matrix are proposed. A necessary and sufficient condition is provided to check whether a Boolean control network under state-flipped control can be globally stabilized.An algorithm is developed to find the stabilizing kernel,which is the flip set with the minimal cardinal number.By using the reachable set,another method is provided for global stabilization and joint control pair sequences.Besides,if the system is a large scale network,a model-free reinforcement learning method called Q-learning algorithm,is used for the joint control pair sequences.A numerical example is given to illustrate the theoretical results.

    Key words: Boolean control networks; semi-tensor product; state-flippped control; global stabilization; Q-learning algorithm

    1 Introduction

    By modeling the gene as a binary (on-off) device,Kauffman in 1969 firstly proposed Boolean networks(BNs)for investigating different metabolic behaviors of genes[1]that enable to capture the properties of largescale complex networks [2]. In order to make the BNs applicable to more types of biological networks, control inputs are added into BNs, and they are extended to Boolean control networks (BCNs). Cheng et al.proposed the semi-tensor product (STP) [3], which is a powerful tool in studying BNs (BCNs). Under the framework of STP, BCNs are expressed as finite state discrete time nonlinear dynamic systems with matrix algebra form. On the basis of the matrix algebra form,many properties of BCNs have been investigated, such as stabilization, controllability, observability, fault detection,disturbance decoupling and so on[4-12].

    Stabilization problem is an important issue in control theory.In a BCN,stabilization is defined as finding feasible control sequences for any initial state to reach a target fixed point after finite time steps.There are many interesting results in the stabilization problems of BCNs.For example,Li et al.investigated state feedback stabilization for BCNs. Based on the concept of invariant subsets in [13], several necessary and sufficient conditions for set stabilization of BCNs have been presented.By using a minimal number of controllers, Lu et al. studied the pinning stabilization of BCNs in[14].

    State-flipped control is a newly control mechanism with little intervention on the system[15-16].It works by changing the value of some nodes in BCNs from 1 to 0, or from 0 to 1, which simulates turning on or off genes in biological systems.Thanks to its ease of operation, many researchers have adopted the state-flipped control. For instance, Rafimanzelat et al. [16] studied the attractor stabilizability of BNs by flipping some nodes of the state in attractors once, after the networks have passed their transient period in the attractors.Rafimanzelat et al.[15]investigated the attractor controllability of BNs by flipping a subset of nodes in the states of several attractors as well. Chen et al. provided the criteria of controllability and stabilization of BCNs by flipping a subset of nodes in some initial states, rather than flip the nodes of the attractors after the system has passed the transient period.More recently,Zhang et al.have applied the flipping mechanism to the stabilization and set stabilization of switched BCNs, which considers flipping a subset of nodes of initial state once[17].In addition, the weak stabilization of BNs with flip sequences is investigated in [18]. Up to now, many researchers have implemented state-flipped control into stabilization and controllability of BNs(BCNs).

    Reinforcement learning(RL)is one of the methodologies of machine learning, which is used to describe and solve the problems that agents use learning strategies to maximize returns or achieve specific goals in the process of interacting with the environment. As a breakthrough in reinforcement learning algorithms,Qlearning(QL)algorithm was first proposed by Watkins in 1992 [19].QL algorithm is a model-free RL algorithm,which can be used in the tracking control of autonomous surface vehicles[20],smart grid devices[21],and intelligent intersection traffic signal control [22]and so on.QL can be used to judge some properties of gene regulatory networks,which can reduce the computational complexity to a certain extent compared with the traditional STP method.An important concept inQL is theQtable, which is a mapping table between states-actions and estimated future rewards.Under some conditions,theQtable will converge to aQ?table where we can read the optimal policy from.QL algorithm was applied to probabilistic Boolean control networks(PBCNs),which shows the advantages of the algorithm in the case of model-free[23].It investigated the feedback stabilization problem of PBCNs,and compared the STP method with the value iteration method.Acernese et al. [24] also developed aQL algorithm about self-triggered control co-design for stabilization of PBCNs.

    The existing works in the state-flipped control mainly consider flipping a subset of nodes just once,no matter for the initial states or the states in attractors.In this paper, we consider the joint control pair, which consists of a state-flipped control and a control input.When studying the global stabilization of BCN under state-flipped control,we first give a set of nodes that can be flipped,and the actual state-flipped control depended on the subset of the given set.There exist many different joint control pairs, hence we propose the concept of joint control pair sequences.In our joint control pair sequences,sometimes the obtained state-flipped control is with respect to an empty set,which means that we do not need to add state-flipped control for the state and it is enough to just take a control input,i.e.,a normal case in BCNs. The contributions of this paper are summarized as follows:

    ? We propose the concept of joint control pair which consists of a state-flipped control and a control input,and apply it into BCNs.

    ? The global stabilization of BCNs under stateflipped control is studied, and several necessary and sufficient conditions are presented.

    ? For stabilizing a BCN under state-flipped control, aQL algorithm is designed to find the corresponding joint control pair sequence for every initial state.

    2 Preliminaries

    2.1 Notations

    2.2 BCN and its algebraic representation

    Consider a BCN as follows:

    Definition 1[3]For matricesA ∈Rp×qandB ∈Rs×t, the semi-tensor product (STP) with symbol “”is defined as

    2.3 State-flipped control

    This subsection introduces the state-flipped control and its algebraic representation.Before introducing the flip function, we need to choose a flip set, which is a subset of the nodes’set of a BCN.It can be specified in random, or it can be a collection of genes that we are able to control in the practical cases.

    Definition 2 LetA:={a1,a2,··· ,ar} ?[1 :n].The flip function with respect toAis defined as

    Definition 4 LetB:={b1,b2,··· ,bs} ?[1 :n]. The combinatorial flip matrix with respect toBis defined as paper, we first consider that all states in BCN (3) are flipped with respect to all subsets ofB. The new system that all states take one flip transition with respect to one subset ofBand one state transition with control input is called BCN(3)underBstate-flipped control.

    Here, we present a brief explanation of two setsAandB. For a given state,Ais the actual flip set, and every element inAcorresponding to the nodes of the given state has to be flipped.However,Bis a combinatorial flip set, and we select a subset ofBdenoted byAto flip.Next,we give a numerical example of a BCN(3)to illustrate the flip matrix and the combinatorial flip matrix.

    Example 1 Consider a BCN with three nodes,i.e.n= 3. If a subsetB ?[1 :n] is given byB={2,3}, we can find that all possible flip sets are subsets ofB, denoted byA1= ?,A2={2},A3={3},A4={2,3}. Then, flip matrices with flip setsAi,i=[1:4]can be calculated as

    3 Main results

    This section focuses on the stabilization of BCN(3)underBstate-flipped control. Several criteria are proposed to judge the stabilization.Note that the global state transition space may be changed under state-flipped control defined in Section 2. Hence, we present a new type of the state transition matrix,which is called stateflipped-transition matrix.

    According to ~G,the new system transformed from BCN(3)underBstate-flipped control is

    Therefore,z(t)is a Boolean vector with several entries equal to 1 and other entries equal to 0. Setz(0)=x(0) =x0. The state transition between two states is called a state-flipped transition in BCN (3) underBstate-flipped control with the combined action of a stateflipped control and a control input. Here, we use notation (η?A,δi2m) which is called the joint control pair to represent the combined action in one state-flipped transition step of BCN(3).D(z(t+1))represents the set of all states steered fromD(z(t))after one state-flipped transition step.

    Definition 7 Given a subsetB ?[1 :n]. For an initial statex0∈Δ2n, letx(k;uk,x0) be the state of BCN(3)at timek,whereuk={u0,u1,··· ,uk?1}is a control input sequence. Letx(k;Λk,x0) be the state of BCN(3)underBstate-flipped control at timek,whereΛkis the joint control pair sequence withkjoint control pairs.

    Theorem 1 For any joint control pair sequenceΛt, assume thatx0∈Δ2nis an initial state, then the state reached fromx0after some state-flipped transitions with joint control pairs is always inD(z(t)),i.e.,x(t;Λt,x0)∈D(z(t)).

    Now, we give an example to illustrate the validity of Theorem 2.

    Example 2 GivenB={2,3}as is mentioned in Example 1.Consider a BCN with three nodes and one control input, i.e.n= 3,m= 1 in [14]. Its algebraic representation is

    Next,after introducing matrix ~G,we are able to address the global stabilization of BCN(3)underBstateflipped control based on ~G.We derive the definition ofxdstabilizable for a BCN(3)underBstate-flipped control as follows, where the in-degree of the statexdis greater than 0.

    If BCN (3) underBstate-flipped control can achieve global stabilization, we call the setBstabilizing set.

    In Definition 8, we need to find properΛtfor the global stabilization. The result of Theorem 2 implies that the reachability between two states can be calculated by ~G.Therefore,we propose Theorem 3 as a prior condition to judge the global stabilizaion of BCN (3)underBstate-flipped control.If the global stabilization under state-flipped control cannot be achieved by a subsetB ?[1 :n]in Theorem 3,then we need to choose another set to replaceB.

    Theorem 3 For a given subsetB ?[1 :n]and a statexd=δd2n,BCN(3)underBstate-flipped control is globally stabilizable toxdif and only if the following two statements hold:

    1) (~G)dd>0;

    2) There exists a positive integerk ∈[1:2n ?1],such that Rowd((~G)k)>0.

    If we have verified that BCN (3) underBstateflipped control is globally stabilizable toxd,then BCN(3) can be also globally stabilizable toxdunder stateflipped control for any superset ofB. In order to reduce the control cost, we always expect that the cardinal number ofBachieving global stabilization is as small as possible.A stabilizing setBwith minimal cardinal number is said to be a stabilizing kernel of BCN(3)underBstate-flipped control,and the corresponding minimal “N” in Definition 8 is called stabilizing step.Since the subsetBis given in advance,it is used to prejudge whether BCN (3) underBstate-flipped control can achieve global stabilization to a given state. However, it is possible that a subset ofBmight be a better stabilizing set with smaller cardinal number. Hence, it inspires us to find a stabilizing kernel, which is a subset ofB, to give the state-flipped control. Algorithm 1 is developed to obtain a stabilizing kernel based on the givenB.

    Algorithm 1 An algorithm for finding a stabilizing kernel and the corresponding stabilizing step of BCN(3)based on a given set B to achieve global stabilization to δd2n Input: M,B Output: Bγi,k 1: Initialization 2: γ =1 3: i=1 4: Initialize θ and Cγ θ 5: If(MCBγi)dd >0,go to step 6 6: k =1 7: If Rowd[(MCBγi)k]>0,8: return Bγi,k,end 9: else k ←k+1 10:If k ≤2n ?1,go to step 7 11:else i ←i+1 12:If i ≤Cγθ,go to step 5 13:else go to step 14 14:If output is empty,γ ←γ+1 15:If γ ≤θ,go to step 3 16:else end 17:else end 18: else i ←i+1 19: If i ≤Cγθ,go to step 5 20: else γ ←γ+1 21:If γ ≤θ,go to step 3 22:else end

    Now, we give several explanations of the notations using in Algorithm 1. The cardinal number of given subsetBisθ, i.e.|B| =θ.Bγiis a subset ofBwith cardinal number beingγ.Cγθis a combinatorial number.IfBγiandkare returned,thenBγiis a stabilizing kernel andkis its corresponding stabilizing step.

    Based on the above analysis,for a traditional BCN(3), if it cannot achieve global stabilization to any state,we can consider adding some state-flipped controls. Given a subsetB ?[1 :n], the global stabilization with respect toxdcan be checked by Theorem 3 underBstate-flipped control.Then,Algorithm 1 presents a method for calculating the stabilizing kernel and the stabilizing step.In practical problems,we not only need to judge whether the network can be globally stabilizable,but also need to find the corresponding joint control pair sequences for each state.Thus,another method about reachable set for global stabilization is provided.

    In the construction ofkstep reachable set, we can obatin thatEi(d)∩Ej(d) = ?for any positive integersiandjsatisfying 1 ≤i ?=j≤2n ?1. Next,we can calculate thekstep reachable set ofxdto determine whether BCN(3)underBstate-flipped control is globally stabilizable toxd.

    Algorithm 2 An algorithm for finding a joint control pair sequence to steer δj2n to δi2n Intput: δj 2n,δi2n Output: Λ{δj2n,δi2n}1: Initialization 2: k =1 3: If k ≤2n ?1,do step 5 4: else end 5: If[(~G)k]ij >0,then let k?=k,do step 7 6: else k ←k+1,do step 3 7: Calculate Em(i),m ∈[1:k?]8: Find a path P = {x0 = δj 2n →x1 = δp12n →x2 = δp2 2n →···→xk?=δi2n}9: Calculate MHAr,r ∈[1:2θ]10: Find (MHArt)pt+1,pt > 0, then the state-flipped control for xt is η?Art,where t ∈[0:k??1],rt ∈[1:2θ]11: Find(GqtHArt)pt+1,pt = 1,then the control input for xt is ut =δqt 2m,where t ∈[0:k??1],qt ∈[1:2m]12: Λ{δj2n,δi2n} ={(η?Ar0,u0),(η?Ar1,u1),··· ,(η?Ark??1,uk??1)}13: end

    If we use BCNs to model large-scale gene regulatory networks, the STP-based approach will have high computational complexity.To this end,we present aQL algorithm,which can be applied in model-free cases and reduces computational complexity, to check whether a BCN(3)underBstate-flipped control is globally stabilizable to a given state.

    QL algorithm is a type of model-free reinforcement learning algorithm involving Markov decision processes(MDPs),and especially in this paper we only consider the case without any probability[23-24]. As a reinforcement learning method,QL algorithm can achieve goals through interactive learning and training between agents and the environment. Agents can be sensors,drones,power stations in smart grids,gene nodes in biological networks, and so on. The environment representing everything outside the subject can interact with and impact on the agents. Specifically, the agents and the environment constantly interact. The agents select actions,and in turn,the environment responds to those actions and provides new information to the agents. In the process of interaction,the environment generates rewards, namely specific values, which can reflects the quality of the current action. The essence of reinforcement learning is to find a series of actions that maximize the long-term rewards(return)to achieve a given goal.Besides,a policy is a mapping from states to the probability of choosing each possible action.Simply,a policy can be regarded as a choice of actions for a state at each step.

    In this paper,we regard a controller as an agent and the unknown system (the BCN) as the environment. A joint control pair is regarded as an action.The reward is set artificially based on a given goal, and the return is the sum of the rewards. After the qualitative introduction, we introduce some specific notations and necessary explanations for theQL algorithm.

    In BCN(1)underBstate-flipped control,Xt ∈Dndenotes the state attaftertstate-flipped transition steps.Xd ∈Dndenotes a given target state. Since both state-flipped controlη?Atand control inputUt ∈Dmare adopted, now we recall joint control pair(η?At,Ut)denoted byJtfor the sake of convenience.

    For theQL algorithm,some basic notations are introduced.Λ?(Xt,Xd) denotes the optimal policy (i.e.a joint control pair sequence achieving the given target state with maximal return) fromXttoXd.rtdenotes the reward used to calculate the immediate return value received by the agent, after the agent selects an action from the current state and moves to the next state. The reward function is set in advance according to our goals.With target of steering the BCN underBstate-flipped control to be globally stabilizable toXd, we give the setting of the rewardrt+1as follows:

    whereXi ∈Dnwithi ∈[1:2n].

    Based on the above settings, Algorithm 3 is proposed usingQL method to check the global stabilization of BCN underBstate-flipped control as follows.

    Now, we give the origin ofQtable in Algorithm 3. We setπto be the policy.vπ(Xt)denotes the value function forXt, which can estimate the long-term discounted return to show the performance of agent atXtand under policyπthereafter,namely:

    Algorithm 3 Global stabilization of BCN under B state-flipped control using QL method Intput:Xd,N,T,τ,?-greedy,ω Output:Λ?(Xt,Xd),if BCN under B state-flipped control is globally Xd stabilizable 1: Initialization: Q0(Xt,J t,Xd) ←0,?Xt,?Jt, Eτ(Xd)←?2: For ρ=0,1,··· ,N ?1 do 3:Xρ ←rand(Dn)4:αρ ←1/(ρ+1)ω,t ←0,Xt ←Xρ 5:While(t

    where P{X|Xt,J}is the conditional probability forXttoXby taking the joint control pairJ. Similarly, we set the action-value functionqπ(Xt,Jt) to be the expected return fromXt,underJtbased on policy

    whereQtable is in R2n×2n.Recalling conditions i)and ii),Qtable is convergent and converges toQ?table.Thus, for any initial stateX0, we can useQ?table to estimateq?, and hence we can find the optimal stateflipped transitions toXd.Finally,we can obtain the optimal joint control pair sequenceΛ?(X0,Xd).

    After introducing the update rule ofQfactor, we continue to introduce other necessary notations in Algorithm 3:Each episodeρ ∈[0,N ?1]is a complete training process from any initial stateX0to the target stateXd, whereNis the maximal number of episodes we consider.?-greedy strategy is a common algorithmic idea, which refers to choosing the actionJtwith the largestQtin the current view by probability 1??,i.e.Jt=arg maxQt.With probability?,the choice of the action is random. In each episodeρ, we denoteTas the maximum of actions taken by the agent. We setτ=2n?1 andT ?τ.In addition,we denoteEτ(Xd)as the set of states which arrive toXdafter (within)τstate-flipped transition steps.

    4 Simulations

    In this section,a simple BCN is used to demonstrate the obtained theoretical results.

    Example 3 Reconsider BCN(1), the state transition matrix of BCN(9)is given by

    Next,we adopt theQL Algorithm 3 to find the joint control pair sequences to steer the BCN under{2,3}state-flipped transition to achieve global stabilization toxd=δ78.Set the reward by(11),and letN=500000,ω=0.51,?=0.3.The convergedQ?table can be ob-

    The joint control pairs above and below the arrow are both allowed in the state-flipped transition between two states. Fig. 2 shows the state-flipped transitions considering all joint control pairs of BCN (9) under{2,3}state-flipped transition. For two states, we take any feasible joint control pair composing a state-flipped transition graph of BCN (9) under{2,3}state-flipped control,which is shown in Fig.3.Comparing Fig.1 and Fig.3,note that although BCN(9)is not globally stabilizable by free control sequences,BCN(9)under{2,3}state-flipped control is globally stabilizable to the target stateδ78after adding state-flipped control.

    Fig.1 The state transition graph of BCN(9)

    Fig.2 All paths about state-flipped transitions of BCN(9)under{2,3}state-flipped control

    Fig.3 One of the state-flipped transition graphs of BCN(9)under{2,3}state-flipped control

    5 Conclusion

    This paper addresses the global stabilization of BCNs under state-flipped control. We propose a BCN added with state-flipped control, called BCN under state-flipped control.The state-flipped-transition matrix is given to judge the reachability of states. Based on the state-flipped-transition matrix, several criteria are proposed for the global stabilization. We design an algorithm for finding a stabilizing kernel and the corresponding stabilizing step. Moreover, aQL algorithm is given for finding the joint control pair sequences to achieve global stabilization.Finally,an example is provided to illustrate the main results.

    69av精品久久久久久| 国产区一区二久久| 热re99久久精品国产66热6| 啪啪无遮挡十八禁网站| 日韩成人在线观看一区二区三区| 大码成人一级视频| 亚洲精品自拍成人| 人妻一区二区av| 一级毛片高清免费大全| 色精品久久人妻99蜜桃| 免费看a级黄色片| 国产成+人综合+亚洲专区| 欧美中文综合在线视频| 精品一区二区三区四区五区乱码| 国产男女超爽视频在线观看| 精品一区二区三区视频在线观看免费 | 国产精品免费大片| 精品人妻在线不人妻| 午夜精品国产一区二区电影| 王馨瑶露胸无遮挡在线观看| 黑人猛操日本美女一级片| 亚洲人成电影观看| 亚洲精品美女久久久久99蜜臀| videos熟女内射| 久久精品亚洲熟妇少妇任你| 精品第一国产精品| 一级片'在线观看视频| 操出白浆在线播放| 国产色视频综合| 免费观看a级毛片全部| 亚洲人成77777在线视频| 99re6热这里在线精品视频| 欧美av亚洲av综合av国产av| 极品少妇高潮喷水抽搐| 搡老熟女国产l中国老女人| av天堂久久9| 人妻久久中文字幕网| 俄罗斯特黄特色一大片| 成人国产一区最新在线观看| 亚洲va日本ⅴa欧美va伊人久久| 国产成人av激情在线播放| 别揉我奶头~嗯~啊~动态视频| 高清黄色对白视频在线免费看| 国产1区2区3区精品| 免费在线观看亚洲国产| 91成年电影在线观看| 精品亚洲成a人片在线观看| 多毛熟女@视频| 大香蕉久久成人网| 满18在线观看网站| 午夜影院日韩av| 国产精品久久久久久精品古装| 中文字幕最新亚洲高清| 国产区一区二久久| 欧美乱妇无乱码| 99国产极品粉嫩在线观看| 婷婷成人精品国产| 国产免费现黄频在线看| 午夜成年电影在线免费观看| 91精品三级在线观看| 女性被躁到高潮视频| 中出人妻视频一区二区| 久久性视频一级片| 国产免费现黄频在线看| 一二三四社区在线视频社区8| 国产在线观看jvid| 国产成+人综合+亚洲专区| 亚洲在线自拍视频| 夫妻午夜视频| 亚洲av欧美aⅴ国产| 国产xxxxx性猛交| 日本欧美视频一区| 成人国产一区最新在线观看| av不卡在线播放| 国产国语露脸激情在线看| 视频在线观看一区二区三区| 国产三级黄色录像| 久久久久久免费高清国产稀缺| 亚洲五月色婷婷综合| 又黄又粗又硬又大视频| 成人18禁高潮啪啪吃奶动态图| 欧美黄色淫秽网站| 久久99一区二区三区| 在线观看一区二区三区激情| 欧美在线黄色| 欧美黑人精品巨大| 久久天堂一区二区三区四区| 999精品在线视频| 午夜福利影视在线免费观看| 窝窝影院91人妻| 国产av精品麻豆| 日本欧美视频一区| 久久人人97超碰香蕉20202| 亚洲精品乱久久久久久| 国产精华一区二区三区| 亚洲精品粉嫩美女一区| 悠悠久久av| 在线观看免费视频日本深夜| 午夜福利影视在线免费观看| 成人黄色视频免费在线看| 最近最新中文字幕大全免费视频| 国产三级黄色录像| 一区二区日韩欧美中文字幕| 老熟女久久久| 嫩草影视91久久| 高清欧美精品videossex| 最新美女视频免费是黄的| 波多野结衣一区麻豆| 交换朋友夫妻互换小说| 丰满的人妻完整版| 韩国精品一区二区三区| 亚洲精品中文字幕在线视频| 久久国产精品影院| 女人爽到高潮嗷嗷叫在线视频| 亚洲欧美日韩高清在线视频| 校园春色视频在线观看| 久久精品国产99精品国产亚洲性色 | 欧美久久黑人一区二区| 国产区一区二久久| 亚洲色图 男人天堂 中文字幕| 久久久久久久精品吃奶| 91av网站免费观看| 久久中文看片网| 欧美黑人精品巨大| 一a级毛片在线观看| 久久亚洲精品不卡| 国产91精品成人一区二区三区| 日韩精品免费视频一区二区三区| 久久精品国产亚洲av香蕉五月 | 人人妻人人爽人人添夜夜欢视频| av视频免费观看在线观看| 免费看十八禁软件| 国产成人免费无遮挡视频| 黄片播放在线免费| 淫妇啪啪啪对白视频| 自拍欧美九色日韩亚洲蝌蚪91| 大片电影免费在线观看免费| 校园春色视频在线观看| 国产成人欧美在线观看 | 国产在线一区二区三区精| 久久久久久久国产电影| 国产深夜福利视频在线观看| 极品少妇高潮喷水抽搐| 丁香欧美五月| 在线观看一区二区三区激情| 1024香蕉在线观看| av有码第一页| 午夜亚洲福利在线播放| 在线天堂中文资源库| 天堂动漫精品| 日韩视频一区二区在线观看| 香蕉丝袜av| 欧美精品人与动牲交sv欧美| 桃红色精品国产亚洲av| 久久九九热精品免费| 久久久久久久久久久久大奶| 国产精品 国内视频| 久久久久国内视频| 国产精品av久久久久免费| 亚洲视频免费观看视频| 亚洲国产欧美日韩在线播放| 欧美日韩国产mv在线观看视频| 在线国产一区二区在线| tocl精华| 国内久久婷婷六月综合欲色啪| av国产精品久久久久影院| 欧美不卡视频在线免费观看 | 午夜福利欧美成人| 90打野战视频偷拍视频| 久久精品人人爽人人爽视色| 两性夫妻黄色片| 少妇的丰满在线观看| 亚洲中文日韩欧美视频| 免费黄频网站在线观看国产| 精品免费久久久久久久清纯 | 久久久国产欧美日韩av| 国产精品自产拍在线观看55亚洲 | 涩涩av久久男人的天堂| 成在线人永久免费视频| 色综合欧美亚洲国产小说| 欧美日韩国产mv在线观看视频| 国产亚洲精品第一综合不卡| 高清黄色对白视频在线免费看| 老司机午夜福利在线观看视频| av不卡在线播放| 婷婷精品国产亚洲av在线 | 夫妻午夜视频| 亚洲成人免费电影在线观看| 岛国毛片在线播放| 人人妻人人澡人人看| 久久人妻av系列| 国产精品免费大片| 捣出白浆h1v1| 久久香蕉精品热| 黄色毛片三级朝国网站| 国内久久婷婷六月综合欲色啪| 色综合欧美亚洲国产小说| 在线看a的网站| 99热只有精品国产| 亚洲男人天堂网一区| 黄色女人牲交| 国产亚洲一区二区精品| 天天操日日干夜夜撸| 脱女人内裤的视频| 法律面前人人平等表现在哪些方面| 少妇猛男粗大的猛烈进出视频| 一边摸一边抽搐一进一出视频| 国产亚洲一区二区精品| 国产一区有黄有色的免费视频| av欧美777| 午夜福利,免费看| 国产成人精品在线电影| 亚洲精品自拍成人| 在线观看免费午夜福利视频| 中文字幕最新亚洲高清| 咕卡用的链子| 身体一侧抽搐| 欧美午夜高清在线| 人成视频在线观看免费观看| 视频在线观看一区二区三区| 精品国产一区二区久久| 黄色怎么调成土黄色| 啦啦啦在线免费观看视频4| 国产成人免费无遮挡视频| 又黄又爽又免费观看的视频| 侵犯人妻中文字幕一二三四区| www日本在线高清视频| 日韩三级视频一区二区三区| 夫妻午夜视频| 淫妇啪啪啪对白视频| 精品久久久精品久久久| 国产精品亚洲一级av第二区| 极品少妇高潮喷水抽搐| 精品乱码久久久久久99久播| 免费观看人在逋| 欧美日韩成人在线一区二区| 色婷婷av一区二区三区视频| 欧美精品av麻豆av| 99精品在免费线老司机午夜| 亚洲精品久久成人aⅴ小说| 国产精品美女特级片免费视频播放器 | 国产在视频线精品| 老汉色av国产亚洲站长工具| 成人18禁在线播放| 十八禁高潮呻吟视频| 中国美女看黄片| 我的亚洲天堂| 国产精品香港三级国产av潘金莲| 欧美日韩一级在线毛片| 亚洲专区国产一区二区| 捣出白浆h1v1| 精品久久蜜臀av无| 亚洲精品国产区一区二| 亚洲九九香蕉| 午夜老司机福利片| 咕卡用的链子| 久久狼人影院| 国产av又大| 亚洲国产欧美网| 巨乳人妻的诱惑在线观看| 在线观看午夜福利视频| 人人澡人人妻人| 美女视频免费永久观看网站| 国产精品国产av在线观看| 日本vs欧美在线观看视频| 亚洲欧美精品综合一区二区三区| 中文字幕人妻丝袜制服| 看片在线看免费视频| 两个人免费观看高清视频| 久久久精品国产亚洲av高清涩受| 国产99白浆流出| 国内毛片毛片毛片毛片毛片| 看黄色毛片网站| 欧美午夜高清在线| www.精华液| 自线自在国产av| 狠狠婷婷综合久久久久久88av| 黑人猛操日本美女一级片| 大型黄色视频在线免费观看| 国产欧美日韩一区二区精品| 国产精品免费视频内射| 黄色视频,在线免费观看| 中出人妻视频一区二区| 在线观看66精品国产| 午夜福利,免费看| 亚洲人成电影观看| 美国免费a级毛片| 精品亚洲成国产av| 高清黄色对白视频在线免费看| 黄片播放在线免费| 亚洲第一av免费看| 久9热在线精品视频| 欧美 亚洲 国产 日韩一| 宅男免费午夜| 日本vs欧美在线观看视频| 在线观看66精品国产| 久久久久久久午夜电影 | 国产激情欧美一区二区| 中文亚洲av片在线观看爽 | 国产精品永久免费网站| 久久婷婷成人综合色麻豆| 精品免费久久久久久久清纯 | 一区二区日韩欧美中文字幕| 亚洲aⅴ乱码一区二区在线播放 | 亚洲五月天丁香| 脱女人内裤的视频| 日韩 欧美 亚洲 中文字幕| 国产精品成人在线| 久久精品国产综合久久久| 久久精品熟女亚洲av麻豆精品| 欧美色视频一区免费| 又黄又粗又硬又大视频| 亚洲熟妇中文字幕五十中出 | 极品少妇高潮喷水抽搐| 国产色视频综合| 亚洲欧美日韩高清在线视频| 亚洲伊人色综图| 欧美激情高清一区二区三区| 日日夜夜操网爽| 国产无遮挡羞羞视频在线观看| 午夜福利在线免费观看网站| 国产高清videossex| 99国产极品粉嫩在线观看| 露出奶头的视频| 久久久国产一区二区| 中文亚洲av片在线观看爽 | 久久人人爽av亚洲精品天堂| 亚洲国产精品sss在线观看 | 欧美老熟妇乱子伦牲交| 久久久久久亚洲精品国产蜜桃av| 老汉色∧v一级毛片| 男女之事视频高清在线观看| 高潮久久久久久久久久久不卡| 在线视频色国产色| 亚洲一区高清亚洲精品| 飞空精品影院首页| 亚洲色图 男人天堂 中文字幕| 国产精品98久久久久久宅男小说| 亚洲国产精品一区二区三区在线| 搡老熟女国产l中国老女人| 宅男免费午夜| 女人被狂操c到高潮| 黄色 视频免费看| 免费人成视频x8x8入口观看| 午夜日韩欧美国产| 免费在线观看完整版高清| 最新在线观看一区二区三区| 久久久久久人人人人人| 欧美日韩成人在线一区二区| 一本大道久久a久久精品| 国产不卡av网站在线观看| 99久久国产精品久久久| 一边摸一边做爽爽视频免费| 99精国产麻豆久久婷婷| 精品第一国产精品| 国产在线观看jvid| 日韩一卡2卡3卡4卡2021年| 国产亚洲av高清不卡| 国产av精品麻豆| 91老司机精品| 日韩欧美国产一区二区入口| 国产成人影院久久av| 看片在线看免费视频| 18禁国产床啪视频网站| av网站在线播放免费| 欧美+亚洲+日韩+国产| 欧美日韩亚洲综合一区二区三区_| 校园春色视频在线观看| 日韩欧美国产一区二区入口| 大香蕉久久成人网| 咕卡用的链子| 免费在线观看完整版高清| 高清av免费在线| 欧美+亚洲+日韩+国产| 国产精华一区二区三区| 国产精品免费视频内射| 亚洲aⅴ乱码一区二区在线播放 | 午夜久久久在线观看| 91字幕亚洲| 午夜福利在线观看吧| 国产成人免费无遮挡视频| 欧美激情 高清一区二区三区| 狂野欧美激情性xxxx| 女人被躁到高潮嗷嗷叫费观| 一级,二级,三级黄色视频| 又黄又粗又硬又大视频| 天天添夜夜摸| 一级毛片精品| 免费在线观看完整版高清| 午夜久久久在线观看| 热re99久久精品国产66热6| 日韩欧美免费精品| 在线国产一区二区在线| 欧美激情极品国产一区二区三区| 夜夜躁狠狠躁天天躁| 午夜福利一区二区在线看| 亚洲人成电影免费在线| 水蜜桃什么品种好| 久久中文字幕一级| 午夜91福利影院| 人人妻人人爽人人添夜夜欢视频| 9色porny在线观看| 精品乱码久久久久久99久播| 亚洲综合色网址| 国产日韩欧美亚洲二区| 国产成人av教育| 亚洲国产欧美日韩在线播放| 久久精品亚洲av国产电影网| 成人特级黄色片久久久久久久| 国产精品久久视频播放| 国产在视频线精品| 久久精品人人爽人人爽视色| 久久 成人 亚洲| 日本黄色日本黄色录像| 久久人妻av系列| 亚洲视频免费观看视频| 国产精品久久电影中文字幕 | 最新的欧美精品一区二区| 97人妻天天添夜夜摸| 男女之事视频高清在线观看| 午夜福利影视在线免费观看| 亚洲成av片中文字幕在线观看| 两个人看的免费小视频| 久久天堂一区二区三区四区| 久久久久精品国产欧美久久久| 国产精品香港三级国产av潘金莲| 国产男女内射视频| 国产一区在线观看成人免费| 精品久久蜜臀av无| 国产xxxxx性猛交| 老司机午夜福利在线观看视频| 久久久久久久国产电影| 欧美日韩成人在线一区二区| 日韩中文字幕欧美一区二区| 亚洲五月婷婷丁香| 久久香蕉精品热| 久久久久国内视频| 麻豆成人av在线观看| 亚洲五月天丁香| 欧美精品啪啪一区二区三区| 亚洲av电影在线进入| 少妇猛男粗大的猛烈进出视频| 国产欧美亚洲国产| 高清在线国产一区| 国产不卡av网站在线观看| 可以免费在线观看a视频的电影网站| 日韩制服丝袜自拍偷拍| 欧美日韩成人在线一区二区| 亚洲欧美激情在线| 黄片大片在线免费观看| 在线观看www视频免费| 视频在线观看一区二区三区| 国产亚洲av高清不卡| 又大又爽又粗| 欧美成人午夜精品| 亚洲av熟女| 精品高清国产在线一区| 亚洲av日韩精品久久久久久密| 国产精品一区二区免费欧美| 欧美黑人欧美精品刺激| av国产精品久久久久影院| 国产三级黄色录像| 亚洲中文日韩欧美视频| 91成年电影在线观看| 亚洲午夜理论影院| 香蕉丝袜av| 精品国产国语对白av| 国产三级黄色录像| 国产成人av激情在线播放| 一二三四社区在线视频社区8| 亚洲情色 制服丝袜| 91精品三级在线观看| 色综合婷婷激情| 在线看a的网站| 国产亚洲av高清不卡| 91在线观看av| 国产伦人伦偷精品视频| 精品福利观看| 欧美日韩福利视频一区二区| 波多野结衣av一区二区av| 成人18禁在线播放| 国产精品.久久久| 在线十欧美十亚洲十日本专区| 久久精品91无色码中文字幕| 女人被躁到高潮嗷嗷叫费观| 成人国语在线视频| 亚洲精品久久成人aⅴ小说| 黄色怎么调成土黄色| 黄色视频,在线免费观看| 777久久人妻少妇嫩草av网站| 成人手机av| 亚洲av成人不卡在线观看播放网| 久久久国产成人精品二区 | 日韩欧美一区视频在线观看| 久久久久国产一级毛片高清牌| 国产无遮挡羞羞视频在线观看| 欧美精品一区二区免费开放| 侵犯人妻中文字幕一二三四区| 亚洲av欧美aⅴ国产| 欧美日韩精品网址| 中国美女看黄片| 亚洲精品成人av观看孕妇| 老司机影院毛片| 又大又爽又粗| 在线观看www视频免费| 欧美亚洲 丝袜 人妻 在线| 又紧又爽又黄一区二区| 亚洲黑人精品在线| 一边摸一边抽搐一进一出视频| 亚洲一码二码三码区别大吗| 欧美乱码精品一区二区三区| 国产精品av久久久久免费| av电影中文网址| 国产精品av久久久久免费| 日韩免费高清中文字幕av| 中文字幕人妻丝袜制服| 两性午夜刺激爽爽歪歪视频在线观看 | 韩国av一区二区三区四区| 91成年电影在线观看| 亚洲午夜理论影院| 亚洲人成77777在线视频| 韩国av一区二区三区四区| 中文字幕人妻丝袜制服| 欧美性长视频在线观看| 天堂中文最新版在线下载| 久久精品亚洲精品国产色婷小说| 久久人妻熟女aⅴ| 下体分泌物呈黄色| 一边摸一边抽搐一进一小说 | 国产精华一区二区三区| 国产精品综合久久久久久久免费 | 国产欧美亚洲国产| 国产精品国产高清国产av | 99re在线观看精品视频| 高潮久久久久久久久久久不卡| 老司机影院毛片| 国产视频一区二区在线看| 日本wwww免费看| 精品人妻在线不人妻| 亚洲中文日韩欧美视频| 久久精品成人免费网站| 日本五十路高清| 国产高清videossex| 亚洲性夜色夜夜综合| 少妇 在线观看| 老司机午夜十八禁免费视频| 日韩精品免费视频一区二区三区| 欧美精品av麻豆av| 日本黄色日本黄色录像| av不卡在线播放| 欧美人与性动交α欧美精品济南到| 自线自在国产av| 国产精品亚洲av一区麻豆| 亚洲国产精品sss在线观看 | 757午夜福利合集在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 午夜福利欧美成人| 99国产精品99久久久久| 日韩大码丰满熟妇| 免费看a级黄色片| xxx96com| 天堂中文最新版在线下载| 飞空精品影院首页| 夫妻午夜视频| 极品教师在线免费播放| 在线观看www视频免费| 婷婷丁香在线五月| 女性生殖器流出的白浆| 国产精品一区二区精品视频观看| 国产麻豆69| 久久精品国产清高在天天线| 天天躁日日躁夜夜躁夜夜| 桃红色精品国产亚洲av| 国产精品久久久av美女十八| 亚洲精品av麻豆狂野| av超薄肉色丝袜交足视频| 亚洲伊人色综图| 黄片播放在线免费| 人成视频在线观看免费观看| 国产精品影院久久| 亚洲在线自拍视频| 99国产精品一区二区蜜桃av | 欧美日韩亚洲国产一区二区在线观看 | 久9热在线精品视频| 精品一区二区三卡| 国产1区2区3区精品| 18在线观看网站| 一级a爱片免费观看的视频| 99精品在免费线老司机午夜| 午夜福利在线观看吧| 午夜福利视频在线观看免费| av国产精品久久久久影院| 午夜福利在线观看吧| 日韩成人在线观看一区二区三区| 亚洲欧美日韩高清在线视频| 老鸭窝网址在线观看| 人人妻,人人澡人人爽秒播| 中文字幕最新亚洲高清| 亚洲欧美一区二区三区黑人| 久久人人97超碰香蕉20202| 国产日韩一区二区三区精品不卡| 在线看a的网站| 国产精品影院久久| 黄色a级毛片大全视频| av超薄肉色丝袜交足视频| 免费黄频网站在线观看国产| 一级毛片精品| 欧美日韩成人在线一区二区| 国产又色又爽无遮挡免费看| 午夜91福利影院| 69精品国产乱码久久久| 在线永久观看黄色视频| 国产精品乱码一区二三区的特点 | 久久午夜亚洲精品久久| 人妻 亚洲 视频|