• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Bearing-based localization of multi-agent system with event-triggered strategy

    2022-01-08 12:26:06HUBinbinZHANGHaitao
    控制理論與應(yīng)用 2021年11期

    HU Bin-bin, ZHANG Hai-tao

    (Key Laboratory of Image Processing and Intelligent Control,School of Artificial Intelligence and Automation,Huazhong University of Science and Technology,Wuhan Hubei 430074,China;State Key Lab of Digital Manufacturing Equipment and Technology,Wuhan Hubei 430074,China)

    Abstract: This paper develops an event-based scheme to attain bearing-based localization of multi-agent system in arbitrary dimension.Essentially,an event-triggered localization law is designed accordingly to the bearing rigidity,which is to localize all the agents in a static network given the bearings of a subset of agents. The conditions guaranteeing asymptotically stability of the closed-loop MAS governed by the proposed controller are derived with the assistance of input-to-state stable (ISS) principle. Significantly, Zeno behavior is excluded as well. Finally, 2-D and 3-D numerical simulations are conducted to substantiate the effectiveness of the proposed event-triggered localization control scheme.

    Key words:localization;bearing rigidity;event-triggered control;multi-agent system

    1 Introduction

    In recent years,collective control of the multi-agent systems(MASs)has attracted more and more attention due to its extensive applications in multi-robot collaboration,multiple unmanned system localization,wireless sensor network optimization, and so on [1-14]. Taking the localization control of the networked system for example, the localization technology is indispensable for smuggling detection, contour mapping, environment surveillance,resources exploration,etc.

    The objective of MAS localization is to localize all the agents in a static network with the assistance of the locations of a subset agents and inter-neighbor relative measurements.According to the types of measurements utilized in the localization, the existing works can be classified into position-based[15-17],distancebased[18-21]and bearing-based strategies[22-25].

    Due to the associated theoretical challenges,initial efforts are devoted to the methods according to positions and distances[15-21],which are however heavily costly due to the high-accuracy binocular vision sensors and GPS devices.Moreover,in modern complex collective missions like aquatic resource exploration of multiunmanned surface vessels(USVs),efficient and precise position/distance sensors may not be always available,which intensifies the challenges in localization control.As a remedy,the bearing information(i.e.,bearing vectors or angles) only requires less costly onboard bearing sensors such as the pin-hole cameras and wireless sensor arrays[26], which is desirable in modern largescale applications to fulfill more and more complex marine missions.Therefore,it becomes an urgent tendency to develop a more practical and economic localization control scheme of the MASs merely based on relative bearing measurements.

    In localization control techniques with bearingbased measurements, one of the main challenges lies in the nonlinearity of the bearing controllers,and hence the early stage works only focused on subtended bearing angles.As one of the pioneer works,Basiri&Bishop[27]proposed a bearing-only control scheme which governs three mobile agents to form localization with evenly-distributed angular phases.Zhao&Lin[28]designed a bearing-only protocol to form a cyclic localization with angular constraints. Eren & Tolga [29]developed a pattern controller for the localization of robots and sensor networks. However, such subtended bearing-based control protocols[27-29]still lack flexibility due to the invariant angles in agent’s local coordinates, which thereby hinders their further applications.Afterwards,another research line of bearing rigidity emerged,which achieves a specified localization by setting desired bearing vectors with local calculation. In this pursuit,Franchi et al.[30]initially studied the concept of bearing rigidity. Zhao & Zelazo [31] designed a nonlinear distributed bearing-only controller without a global orientation. This scheme was afterwards [32]generalized to a protocol to form translational and scaling localizations considering external disturbances, input saturations, and collision avoidance, simultaneously. Following this research line, Tron & Thomas [33]developed a gradient-decent optimization control law to minimize the localization error and control cost of the bearing-only schemes.However,due to the increasingly pattern complexity to fulfill specific localization missions in real applications,more recent efforts have been devoted to bearing-only localization control for highorder MASs. As representive works, Zhao et al. firstly revealed necessary-sufficient conditions for network localizability with rigidity theoretic interpretations[34]and then designed a novel bearing-only control law to attain localization with a variety of agent dynamics including single-integrator, double-integrator, and unicycle models[35].

    So far, most of the existing bearing-only localization studies [22-35] just focused on the time-driven methods,which may not be suitable due to the widelyused embedded microprocessors with limited calculation resources. Moreover, data transmissions of currently available communication capability of bearing sensors further limit the applications to large-scale localization missions. As a remedy, event-triggered schemes [36-37] have attracted more and more attention, whose core idea is to trigger the controller only when a local measurement error exceeds a threshold.An event-triggered scheme basically consists of two elements, i.e., a distributed controller to govern each agent,and a triggering function determining what time to be updated[38-42].Compared with time-driven methods, event-triggered schemes could reduce calculation,communication and sampling cost whereas maintaining satisfactory control performances.However,due to the theoretical challenges in synthesizing the bearing input saturation constraints of bearing rigidity and eventbased dynamics, so far few efforts have been devoted to the event-triggered localization control with bearing rigidity. That naturally motivates us to develop a niche event-triggered bearing-only localization controller.

    As an initial exploration of bearing-based MAS localization control with event-triggered techniques, the main contribution of this paper is to propose an eventtriggered bearing-only controller to localize all the agents in arbitrary dimensions, where the Zeno behaviors[36]are theoretically guaranteed to be excluded in the proposed framework.

    The remainder of this paper is organized as follows:Section 2 presents problem formulation. Section 3 develops an event-triggered scheme for bearing-based localization.Moreover,the conditions are derived to guarantee both the closed-loop stability and the Zeno-free feature in the same section.Afterwards,numerical simulation are conducted to substantiate the effectiveness of the proposed method in Section 4. Conclusions are finally drawn in Section 5.

    Throughout the paper,R,R+denote sets of the real and positive real numbers,respectively.Rndenotes then-dimensional Euclidean space.‖?‖is the Euclidean norms, 1m:= [1···1]T∈Rm,In ∈Rn×nis the identity matrix.?denotes the Kronecker product,(?)i,jrepresents the(i,j)-th entry of matrix?,λmin(?)denotes the smallest eigenvalue of symmetric matrix(?), and?(f) is the gradient of a functionf. GivenPk ∈Rq×qfork= 1,··· ,m, diag{Pk} ∈Rmq×mqrepresents a block-diagonal matrix with diagonal entriesP1toPm.

    2 Problem formulation

    Consider a leader-follower MAS with the firstlagents as the leaders, i.e., Il:={ν1,ν2,··· ,νl}and the reminderf:=n ?lagents as the followers,i.e., If:={νl+1,νl+2,··· ,νn}, defineG(ν,ε) as the undirected interaction topology among agents withν= [ν1ν2··· νn] = Il ∪Ifthe vertex set andε ?ν×νthe edge set.Ni={j ∈ν,(i,j)∈ ε}denotes the neighbors of agenti,where the connection(i,j)represents agentihas access to agentj.

    Letpi ∈Rdbe the positions of agentiwith the dynamics formulated as below,

    Before deriving the control law, it is necessary to give the following definitions concerning bearing rigidity.

    Definition 1 (oriented graph [43]) An oriented Graph is an undirected graphG(ν,ε) with an assignment of a direction to each edge.

    Letmbe the number of undirected edges inG, it can be deduced that the oriented graph containsmdirected edges. Suppose the edge (ki,kj),ki,kj ∈νinGcorresponds to thek-th directed edge in the oriented graph withk ∈M:={1,··· ,m},in other words,

    In accordance to the definition of leader-follower MAS(Il ∪If),the bearing LaplacianBcould be partitioned into

    withBll∈Rdl×dl,Blf∈Rdl×df,Bfl∈Rdl×df, andBff∈Rdf×df.

    To propose the main technical result,it is still necessary to provide a definition concerning the unique target localization.

    Definition 3 (unique target localization [35])The desired target localization (G,p?(t)) is unique ifBffin the bearing LaplacianBis nonsingular.

    With the above definitions,it is ready to propose the main technical problem addressed by this paper.

    Problem 1(event-triggered bearing-based localization).With the given anchors leaders(i.e.,ui= 0,i ∈Il),design a coordinative event-triggered control signal

    for the followers in MAS governed by Eq. (1) andG(ν,ε) to achieve a unique localization given in Definition 3. Here,s= 0,1,2,···, are the discrete event-triggering time constants.The triggering time sequencests,s= 0,1,2,··· ,are calculated with a trigger functionf(·)designed afterwards.

    Remark 1 Distinct from previous time-driven bearing-only control methods [27-35] and eventtriggered position-based control strategies [37-42],Problem 1 considers both natural nonlinear bounded bearing values (i.e.,‖gi,j‖≤1 in Eq. (7)) and eventtriggered techniques for technical issues, which brings challenges in controller design, stability analysis and Zeno exclusion.

    3 Main results

    In this section,the event-triggered bearing-only localization control scheme is proposed with a guaranteed Zeno-free feature.Before presenting the main technical results,it is necessary to introduce some preliminaries.

    Assumption 1 For ann-agent MAS with communication topologyG(ν,?),it is assumed that the target localization(G,p?)in Definition 3 is unique.

    Assumption 1 guarantees the uniqueness of the final localization via bearing-only measurements.

    Lemma 1[35] Suppose no agents coincide in desired localizationp?or during the localization forming process,one has

    Remark 2 Due to the anchors or stationary leaders(i.e.,ui= 0,i ∈Il)and the unique target localization in Definition 3, it can be deduced that the desired positionp?is stationary, which implies that the center of all the desired positions ˉp?keeps stationary as well(i.e.,a constant)in Lemma 1.

    Assumption 2 [35] Under Assumption 1, it is assumed that the initial values of position errorsδpin Eq.(11)satisfy

    withβ>0 being a positive constant.

    Assumption 2 is a sufficient condition for initial noncoincidence of agents, which is indispensable for the exclusion of the Zeno behavior afterwards.

    Analogously, in accordance to the stationary anchor leaders i.e.,pi(t) =pi(0), i ∈Il, ?t> 0 in Problem 1,the proposed event-triggered control lawui, i ∈If,is formulated as,

    whereγi ∈R+,i ∈If,is the control gain, ands=0,1,2,···, are the discrete event-triggering time constants. The triggering time sequencests,s= 0,1,2,··· ,are designed as

    Now, the main technical result concerning Problem 1 is provided as below.

    Me: How s the salmon2?Server: Fantastic!Me: Does it come with rice?Server: Absolutely!Would a good and a yes have been sufficient? Undeniably!At Starbucks, the smallest coffee you can order is a Tall

    Theorem 1 For the leader-follower MAS governed by Eqs.(1)(12),and(14),Problem 1 is solved under Assumptions 1, 2. Moreover, the inter-event times satisfyts+1?ts≥τwithτ ∈R+being the threshold.

    Proof See Appendix.

    Remark 3 In the previous event-triggered control strategies [37-42], the input is generally designed based on the relative position, which implies that at least two kinds of sensors are required (distance measurement and bearing angle measurement) with high cost.However,the proposed controller in Eq.(12)is designed based on bearing-only information,which could measure bearings via only low-cost pin-hole cameras or wireless sensor arrays,and is hence more applicable in practice.Moreover,since the relative bearing is nonlinear and bounded,it brings challenging issues in the convergence analysis and exclusion of Zeno behavior when combining it with event-triggered technique.

    4 Numerical simulation

    In this section, we consider two kinds of localizations to validate the feasibility of Theorem 1. One is a 3-D localization,another is a sophisticated localization in a 2-D configuration space.

    For a 3-D localization scenario, we consider a leader-follower MAS consisting of 2 leaders and 10 followers,whose inter-agent interaction topologyGof the MAS is illustrated in Fig. 1(a) under Assumption 1.Moreover,with an arbitrary oriented graph of the topologyG, the target localization is set with the constant bearingg?and prescribed relative distance, as shown in Fig.1(a).The initial positions of the leader-follower MAS are set as

    Fig.1 MAS prescribed structure and trajectories evolution in 3-D localization

    with Assumption 2. In accordance to Theorem 1, the parameters for controller(12)are set asγi=10,i ∈Ifandσin Eq.(a6)is set as 0.5 satisfying 0<σ<1.

    The trajectories of the event-triggered bearing-only localization are illustrated in Fig.1(b),where the black circles denote the positions of followers and the red rectangles the positions of leaders. It is observed that the prescribed target 3-D localization is finally achieved by the followers in Fig.1(b).Compared with the timedriven bearing localization method [35], the evolution of bearing vector errorsg ?g?in Fig. 2 converge to zeros as well and hence the prescribed target localization is finally achieved, which substantiates the feasibility of Theorem 1. As shown in Fig. 3(a), with substantial reduction of the calculation,sampling and communication cost,there is nearly no control performance degradation of the tracking errors‖δp‖, which still converge asymptotically with the event-triggered controller. Moreover, as shown in Fig. 3(b), the temporal evolution of the event-triggered timests+1?tsimplies that there exists a minimum inter-event time interval ofτ= 0.02 s, which further verifies the feasibility and effectiveness of the control scheme Eq. (12) and Theorem 1.Fig.4 depicts the event-triggered phenomenon by the switching of the trigger functionf(r,δp).

    Fig.2 Temporal evolution of the bearing vector errors g ?g?in 3-D localization

    Fig.3 Performance evolution of MAS localization with event-triggered schemes in 3-D localization

    Fig.4 Temporal evolution of the triggering function f(r,δp)in 3-D localization

    For the scenario of 2-D localization case, we consider a leader-follower MAS consisting of 2 leaders and 14 followers,whose inter-agent interaction topologyGof the MAS is illustrated in Fig. 5(a) under Assumption 1.Meanwhile,the target localization is set with the constant bearingg?and prescribed relative distance,as shown in Fig. 5(a) as well. The initial positions of the leader-follower MAS are set as

    with Assumption 2. The parametersγi= 10,i ∈Ifandσin Eq.(a6)for controller(12)are the same as the 3-D case.

    Analogously,the trajectories of the event-triggered bearing-only localization are illustrated in Fig.5(b).It is observed that the prescribed target localization is finally achieved by the followers as well. The evolution of bearing vector errorsg ?g?in Fig.6 converge to zeros as well, which implies that the prescribed target localization is finally achieved. As shown in Fig. 7(a), the tracking errors‖δp‖still converge asymptotically with event-triggered controller,which is similar to Fig.4(a).Moreover, as shown in Fig. 7(b), the temporal evolution of the event-triggered timests+1?tsclearly imply that there exists a minimum inter-event time interval ofτ= 0.02 s, which verifies the feasibility and effectiveness of the control scheme (12) and Theorem 1 as well. In Fig. 8, it is observed that the event-triggered phenomenon implicitly exists by the switching of the trigger functionf(r,δp).

    Fig.5 MAS prescribed structure and trajectories evolution in 2-D localization

    Fig.7 Performance evolution of MAS localization with event-triggered schemes in 2-D localization

    Fig.8 Temporal evolution of the triggering function f(r,δp)in 2-D localization

    5 Conclusion

    In this paper, we propose an event-triggered bearing-only localization method for networked MASs.With such a localization protocol,the entire group forms a prescribed localization merely according to eventbased bearing-only measurements in arbitrary dimension. Essentially, the conditions are derived guaranteeing both the asymptotical stability of the proposed protocol and the exclusion of Zeno behavior. Numerical simulations are conducted to substantiate the effectiveness of the proposed method. Such an event-based bearing-only method has application potential in collective patrolling, reconnaissance, resource explorations,environmental monitoring,etc.,with abundant industrial multiple unmanned systems,mobile robots and vehicles.

    Appendix Proof of Theorem 1

    The proof consists of two claims,where the convergence of bearing-based localization and exclusion of the Zeno behavior are proved sequentially.

    Claim 1 Convergence of bearing-based localization.

    With the assistance of the incidence matrix ˉHin Eq. (9),rewrite the controller Eq.(12)in a compact form as

    According to the monotonically increasing property ofφ1,φ2in Eq.(a14),there exists a lower time boundaryτsuch that{ts+1?ts}≥τwith a parameter 0<σ< 1.The proof is thus completed.

    亚洲精品色激情综合| 草草在线视频免费看| 桃花免费在线播放| 国产免费一区二区三区四区乱码| 日日啪夜夜爽| 亚洲成人av在线免费| 观看av在线不卡| 国产视频首页在线观看| 亚洲欧美日韩另类电影网站| 少妇的逼水好多| 中文字幕人妻丝袜制服| 精品久久蜜臀av无| 亚洲国产精品成人久久小说| 午夜视频国产福利| videosex国产| 婷婷色麻豆天堂久久| 爱豆传媒免费全集在线观看| 热99国产精品久久久久久7| 国产乱人偷精品视频| 亚洲国产精品999| 欧美精品一区二区大全| 国产精品人妻久久久影院| 精品久久久精品久久久| 国产高清三级在线| 黑丝袜美女国产一区| 免费观看a级毛片全部| 国产日韩一区二区三区精品不卡 | 日韩视频在线欧美| 天天操日日干夜夜撸| 十分钟在线观看高清视频www| 嫩草影院入口| 三上悠亚av全集在线观看| 人妻一区二区av| 久久免费观看电影| 亚洲精品国产色婷婷电影| 五月天丁香电影| 免费黄频网站在线观看国产| 成人毛片60女人毛片免费| 爱豆传媒免费全集在线观看| av女优亚洲男人天堂| 少妇精品久久久久久久| 亚洲精品aⅴ在线观看| 中国三级夫妇交换| 亚洲av免费高清在线观看| 丁香六月天网| 人成视频在线观看免费观看| 91久久精品国产一区二区三区| 丝袜脚勾引网站| 精品久久久噜噜| 天堂中文最新版在线下载| 菩萨蛮人人尽说江南好唐韦庄| 国产高清有码在线观看视频| 亚洲图色成人| 国产成人精品福利久久| 日日撸夜夜添| 亚洲综合精品二区| 免费少妇av软件| 欧美日韩一区二区视频在线观看视频在线| 成人国语在线视频| 亚洲精品国产av成人精品| 亚洲少妇的诱惑av| 午夜福利网站1000一区二区三区| 久久ye,这里只有精品| 亚洲精品第二区| 亚洲精华国产精华液的使用体验| 91aial.com中文字幕在线观看| 亚洲国产精品一区三区| 国产精品国产三级国产专区5o| 国产午夜精品一二区理论片| 日韩人妻高清精品专区| 成人影院久久| 中文字幕亚洲精品专区| 国产精品一区二区在线观看99| 一区二区av电影网| 国产免费一区二区三区四区乱码| 国产日韩欧美亚洲二区| 美女大奶头黄色视频| 国产精品免费大片| 下体分泌物呈黄色| 日日摸夜夜添夜夜添av毛片| 精品久久久久久久久亚洲| 一区二区三区四区激情视频| 久久精品国产亚洲av天美| .国产精品久久| 少妇被粗大猛烈的视频| 2021少妇久久久久久久久久久| av在线老鸭窝| 亚洲精品乱码久久久久久按摩| 欧美国产精品一级二级三级| 国产精品蜜桃在线观看| 欧美日韩一区二区视频在线观看视频在线| 777米奇影视久久| 亚洲欧美中文字幕日韩二区| 热99久久久久精品小说推荐| 五月伊人婷婷丁香| 人妻人人澡人人爽人人| av视频免费观看在线观看| 最近2019中文字幕mv第一页| 国产成人一区二区在线| 国产伦精品一区二区三区视频9| 中文字幕av电影在线播放| 18禁动态无遮挡网站| 少妇高潮的动态图| 中文精品一卡2卡3卡4更新| 色婷婷久久久亚洲欧美| 中国美白少妇内射xxxbb| 制服诱惑二区| 国产成人a∨麻豆精品| 在线观看人妻少妇| 亚洲精品视频女| 免费大片18禁| 十八禁高潮呻吟视频| 一级毛片黄色毛片免费观看视频| 国产精品欧美亚洲77777| 国产日韩欧美视频二区| 久久女婷五月综合色啪小说| 亚洲欧洲日产国产| 18禁动态无遮挡网站| 国产成人freesex在线| 26uuu在线亚洲综合色| 美女内射精品一级片tv| 久久婷婷青草| 欧美人与性动交α欧美精品济南到 | 晚上一个人看的免费电影| 国产白丝娇喘喷水9色精品| 日本vs欧美在线观看视频| 99久久精品国产国产毛片| 秋霞伦理黄片| av福利片在线| 一区二区三区免费毛片| 久久狼人影院| 哪个播放器可以免费观看大片| 国产免费视频播放在线视频| 一级毛片aaaaaa免费看小| 亚洲精品乱码久久久久久按摩| 视频中文字幕在线观看| 熟妇人妻不卡中文字幕| 国产av码专区亚洲av| 一本—道久久a久久精品蜜桃钙片| 亚洲av免费高清在线观看| 午夜免费男女啪啪视频观看| 国产一区二区在线观看av| 国产精品嫩草影院av在线观看| h视频一区二区三区| 国产黄频视频在线观看| 亚洲综合精品二区| 欧美人与善性xxx| 亚洲美女视频黄频| 亚洲人与动物交配视频| 99国产精品免费福利视频| 极品人妻少妇av视频| 在现免费观看毛片| 麻豆成人av视频| 亚洲欧美成人综合另类久久久| 高清欧美精品videossex| 赤兔流量卡办理| 美女主播在线视频| 下体分泌物呈黄色| 岛国毛片在线播放| 精品久久久久久久久av| 国产欧美日韩一区二区三区在线 | 51国产日韩欧美| 精品人妻熟女毛片av久久网站| 亚洲av成人精品一二三区| 老司机亚洲免费影院| 中国美白少妇内射xxxbb| 亚洲欧洲国产日韩| 韩国av在线不卡| 国产在线免费精品| 欧美少妇被猛烈插入视频| 女的被弄到高潮叫床怎么办| 久久热精品热| 一二三四中文在线观看免费高清| av视频免费观看在线观看| 少妇被粗大猛烈的视频| 久久久久国产精品人妻一区二区| 久久国产精品大桥未久av| 国产国拍精品亚洲av在线观看| 国产精品一二三区在线看| 久久精品人人爽人人爽视色| 男女高潮啪啪啪动态图| videos熟女内射| 日韩av在线免费看完整版不卡| 一二三四中文在线观看免费高清| 欧美97在线视频| 日本与韩国留学比较| 好男人视频免费观看在线| 精品久久久噜噜| 国产一区二区三区av在线| 人妻人人澡人人爽人人| 日韩,欧美,国产一区二区三区| 十分钟在线观看高清视频www| 亚洲五月色婷婷综合| 岛国毛片在线播放| av天堂久久9| 日日啪夜夜爽| av免费观看日本| 免费观看的影片在线观看| 日日摸夜夜添夜夜添av毛片| 国产亚洲欧美精品永久| 18禁观看日本| 2022亚洲国产成人精品| 99九九在线精品视频| 赤兔流量卡办理| 欧美日韩精品成人综合77777| 免费观看无遮挡的男女| 日韩一区二区三区影片| 成人无遮挡网站| 久久久久久久久久久丰满| 亚洲第一区二区三区不卡| 一级毛片 在线播放| 欧美日韩国产mv在线观看视频| 蜜桃久久精品国产亚洲av| 看十八女毛片水多多多| 成人黄色视频免费在线看| 亚洲,一卡二卡三卡| 国产乱人偷精品视频| 久久女婷五月综合色啪小说| 国产成人免费观看mmmm| 午夜免费鲁丝| 亚洲国产成人一精品久久久| a级片在线免费高清观看视频| 日韩av在线免费看完整版不卡| 丰满乱子伦码专区| 91久久精品国产一区二区三区| 亚洲五月色婷婷综合| 18+在线观看网站| 日韩一本色道免费dvd| 亚洲精品国产色婷婷电影| 97精品久久久久久久久久精品| 亚洲人成网站在线观看播放| 91午夜精品亚洲一区二区三区| 精品久久国产蜜桃| 在线免费观看不下载黄p国产| 久久婷婷青草| 亚洲精品亚洲一区二区| 一级毛片电影观看| 亚洲精品成人av观看孕妇| 亚洲国产精品999| 观看av在线不卡| 成年av动漫网址| 国产欧美亚洲国产| 日产精品乱码卡一卡2卡三| av一本久久久久| 免费观看的影片在线观看| 久久婷婷青草| 日本与韩国留学比较| 国产精品三级大全| 99热6这里只有精品| 18禁在线播放成人免费| 欧美 亚洲 国产 日韩一| 特大巨黑吊av在线直播| 久久久久久久久久久免费av| 久久久午夜欧美精品| 多毛熟女@视频| 在线 av 中文字幕| 日本欧美视频一区| 纵有疾风起免费观看全集完整版| 久久人人爽人人爽人人片va| 老司机影院成人| 日韩电影二区| 天天操日日干夜夜撸| 91久久精品国产一区二区三区| 丰满饥渴人妻一区二区三| 亚洲,欧美,日韩| 3wmmmm亚洲av在线观看| 啦啦啦视频在线资源免费观看| 老熟女久久久| 久久久久久久久久人人人人人人| 亚洲一级一片aⅴ在线观看| 狂野欧美白嫩少妇大欣赏| 99re6热这里在线精品视频| 3wmmmm亚洲av在线观看| 亚洲av电影在线观看一区二区三区| 午夜久久久在线观看| 麻豆乱淫一区二区| 久久av网站| 男的添女的下面高潮视频| 亚洲av男天堂| 亚洲高清免费不卡视频| 久久精品国产亚洲av天美| 色网站视频免费| 极品人妻少妇av视频| 精品久久久精品久久久| 亚洲少妇的诱惑av| 免费高清在线观看日韩| 日日撸夜夜添| 五月天丁香电影| 男女无遮挡免费网站观看| 91午夜精品亚洲一区二区三区| 久久久精品94久久精品| 97精品久久久久久久久久精品| 欧美+日韩+精品| 国产一区二区在线观看av| 一本一本综合久久| 国产午夜精品一二区理论片| 五月伊人婷婷丁香| 一区二区三区乱码不卡18| 久久狼人影院| 中文欧美无线码| 一二三四中文在线观看免费高清| 亚洲国产精品国产精品| 欧美xxⅹ黑人| 91久久精品国产一区二区三区| 日本黄色片子视频| 亚洲经典国产精华液单| 国产成人免费观看mmmm| 久久久久久久久久久丰满| av免费观看日本| 国产视频内射| 女人久久www免费人成看片| 国产精品女同一区二区软件| 蜜桃在线观看..| 色哟哟·www| 97在线人人人人妻| 国产成人免费观看mmmm| 中文字幕人妻熟人妻熟丝袜美| 欧美日韩精品成人综合77777| 麻豆精品久久久久久蜜桃| 免费高清在线观看日韩| 午夜91福利影院| 国产成人精品福利久久| 天堂8中文在线网| 免费人成在线观看视频色| 草草在线视频免费看| 亚洲国产成人一精品久久久| 精品久久久久久久久亚洲| 另类精品久久| 成人黄色视频免费在线看| 国产视频内射| 这个男人来自地球电影免费观看 | 波野结衣二区三区在线| 91精品伊人久久大香线蕉| 一个人看视频在线观看www免费| 国产精品一区二区在线不卡| 久久久欧美国产精品| 午夜久久久在线观看| 欧美97在线视频| 亚洲精品色激情综合| videos熟女内射| 精品国产一区二区久久| 在线亚洲精品国产二区图片欧美 | 国产无遮挡羞羞视频在线观看| 亚洲av国产av综合av卡| 最近的中文字幕免费完整| 欧美精品一区二区大全| 国产精品99久久99久久久不卡 | 蜜桃国产av成人99| 日本与韩国留学比较| 一边摸一边做爽爽视频免费| 亚洲精品日韩在线中文字幕| 三级国产精品片| 日本-黄色视频高清免费观看| 91久久精品国产一区二区成人| 久久久久久久久久成人| 亚洲情色 制服丝袜| 国产不卡av网站在线观看| 黑人猛操日本美女一级片| 亚洲三级黄色毛片| 国产亚洲午夜精品一区二区久久| 免费人成在线观看视频色| 亚洲av福利一区| 日韩视频在线欧美| 亚洲欧洲日产国产| 亚洲精品久久成人aⅴ小说 | 丝袜在线中文字幕| 午夜av观看不卡| 婷婷色av中文字幕| 国产精品成人在线| 欧美3d第一页| 国产一区二区在线观看日韩| 高清毛片免费看| 九九久久精品国产亚洲av麻豆| 啦啦啦啦在线视频资源| 国产精品一国产av| 欧美日韩亚洲高清精品| 26uuu在线亚洲综合色| 中文字幕制服av| 美女主播在线视频| 在线亚洲精品国产二区图片欧美 | 国产色爽女视频免费观看| www.色视频.com| 亚洲国产精品国产精品| 菩萨蛮人人尽说江南好唐韦庄| 18禁观看日本| 久久久久久伊人网av| 老女人水多毛片| 一本色道久久久久久精品综合| 又黄又爽又刺激的免费视频.| 一级毛片 在线播放| av在线老鸭窝| 日韩三级伦理在线观看| 两个人的视频大全免费| 免费日韩欧美在线观看| 男女啪啪激烈高潮av片| 日本黄色片子视频| 国产一区二区三区av在线| 婷婷色av中文字幕| 亚洲欧洲国产日韩| 亚洲图色成人| 精品午夜福利在线看| 日本欧美视频一区| 欧美少妇被猛烈插入视频| 国产精品人妻久久久久久| 18禁在线播放成人免费| www.av在线官网国产| 中文字幕av电影在线播放| 亚洲成色77777| 99久久综合免费| 最近中文字幕2019免费版| 精品国产国语对白av| 99精国产麻豆久久婷婷| 老司机影院成人| 天天躁夜夜躁狠狠久久av| 水蜜桃什么品种好| 午夜av观看不卡| 在线亚洲精品国产二区图片欧美 | 亚洲少妇的诱惑av| 大片电影免费在线观看免费| 国产又色又爽无遮挡免| 欧美日韩视频高清一区二区三区二| 亚洲,欧美,日韩| 黄色毛片三级朝国网站| 全区人妻精品视频| 国产精品99久久99久久久不卡 | 国产欧美日韩一区二区三区在线 | 午夜视频国产福利| 在线观看美女被高潮喷水网站| 黄色一级大片看看| 午夜福利影视在线免费观看| 国产女主播在线喷水免费视频网站| 国产精品99久久99久久久不卡 | 亚洲国产欧美日韩在线播放| 精品久久久久久电影网| 精品一区二区三卡| 成人漫画全彩无遮挡| 日本黄色日本黄色录像| 一级毛片我不卡| 国产精品.久久久| 日日爽夜夜爽网站| 在线 av 中文字幕| 嘟嘟电影网在线观看| 人成视频在线观看免费观看| 免费观看的影片在线观看| 国产伦理片在线播放av一区| 亚洲国产av影院在线观看| 亚洲人成网站在线播| 只有这里有精品99| a级毛片黄视频| 色网站视频免费| 久久青草综合色| av专区在线播放| 国产精品人妻久久久影院| 老熟女久久久| 又大又黄又爽视频免费| 国产成人aa在线观看| 午夜福利在线观看免费完整高清在| 亚洲高清免费不卡视频| 久久精品国产a三级三级三级| 欧美日韩视频精品一区| 精品人妻一区二区三区麻豆| 菩萨蛮人人尽说江南好唐韦庄| av在线老鸭窝| 狂野欧美激情性xxxx在线观看| 日韩,欧美,国产一区二区三区| av国产久精品久网站免费入址| 亚洲国产精品一区二区三区在线| 国产乱来视频区| 精品久久久久久久久亚洲| av在线app专区| 国产精品三级大全| 精品人妻熟女毛片av久久网站| 国产免费一区二区三区四区乱码| 国产女主播在线喷水免费视频网站| 三级国产精品片| 男人操女人黄网站| 丁香六月天网| 欧美少妇被猛烈插入视频| 一个人看视频在线观看www免费| 精品国产国语对白av| 成人毛片60女人毛片免费| 久久99热6这里只有精品| 成人国产麻豆网| 亚洲第一av免费看| 国产综合精华液| 免费高清在线观看日韩| 美女国产高潮福利片在线看| 中文欧美无线码| 日日啪夜夜爽| 亚洲欧洲日产国产| 黄色配什么色好看| 老司机影院成人| 国产黄频视频在线观看| 中文字幕人妻熟人妻熟丝袜美| 午夜久久久在线观看| 日本黄色日本黄色录像| 久久国内精品自在自线图片| 国产黄频视频在线观看| av在线app专区| 精品一区在线观看国产| 大香蕉久久网| 美女国产高潮福利片在线看| 日本av免费视频播放| 国产日韩欧美亚洲二区| 国产精品一区二区在线不卡| 波野结衣二区三区在线| 久久久久国产精品人妻一区二区| 26uuu在线亚洲综合色| 欧美97在线视频| 色视频在线一区二区三区| 高清午夜精品一区二区三区| 青春草国产在线视频| 精品久久久久久电影网| 午夜视频国产福利| 校园人妻丝袜中文字幕| av有码第一页| 亚洲成人手机| 天天躁夜夜躁狠狠久久av| 成人二区视频| 日韩中文字幕视频在线看片| 国产毛片在线视频| 亚洲综合精品二区| 国产永久视频网站| 99热6这里只有精品| 超色免费av| 久久精品国产a三级三级三级| 国产国拍精品亚洲av在线观看| 国产精品麻豆人妻色哟哟久久| 亚洲精品乱久久久久久| kizo精华| 最后的刺客免费高清国语| 国产黄色免费在线视频| 国产深夜福利视频在线观看| 久久久精品94久久精品| videosex国产| 国产成人aa在线观看| 成人国产麻豆网| 精品一品国产午夜福利视频| 少妇猛男粗大的猛烈进出视频| 亚洲av欧美aⅴ国产| 亚洲av不卡在线观看| 一边亲一边摸免费视频| 黄色一级大片看看| 国产成人aa在线观看| 久久久久精品久久久久真实原创| 久热这里只有精品99| 国产成人免费无遮挡视频| 欧美精品一区二区大全| 中文字幕免费在线视频6| 国产成人精品婷婷| 欧美激情极品国产一区二区三区 | 在线观看www视频免费| 18禁裸乳无遮挡动漫免费视频| 国产精品不卡视频一区二区| 亚洲精品国产av成人精品| 欧美精品一区二区免费开放| 亚洲欧美色中文字幕在线| 亚洲精品久久午夜乱码| 两个人的视频大全免费| 国产爽快片一区二区三区| 国产亚洲欧美精品永久| 性高湖久久久久久久久免费观看| 51国产日韩欧美| 菩萨蛮人人尽说江南好唐韦庄| 97超碰精品成人国产| videossex国产| 一区二区三区精品91| 精品亚洲成a人片在线观看| 亚洲国产精品一区三区| 精品熟女少妇av免费看| 国产精品久久久久久久久免| 一级a做视频免费观看| 久久精品人人爽人人爽视色| 99热全是精品| 亚洲精品色激情综合| 国产在线视频一区二区| 精品人妻熟女av久视频| 精品一区二区免费观看| 亚洲性久久影院| 成年人午夜在线观看视频| 少妇人妻 视频| 欧美老熟妇乱子伦牲交| 国内精品宾馆在线| 少妇被粗大猛烈的视频| 国产成人午夜福利电影在线观看| 国语对白做爰xxxⅹ性视频网站| 在线观看免费日韩欧美大片 | 9色porny在线观看| 我的老师免费观看完整版| 久久久久久人妻| 国产精品一区二区在线不卡| 美女脱内裤让男人舔精品视频| 国产精品欧美亚洲77777| 成人亚洲精品一区在线观看| 人妻系列 视频| 一本色道久久久久久精品综合| 国产成人freesex在线| 精品一区二区三区视频在线| 亚洲美女视频黄频| 国产成人一区二区在线| 久久久久精品性色| 少妇人妻久久综合中文| 伦精品一区二区三区| 春色校园在线视频观看| 2022亚洲国产成人精品| 欧美 日韩 精品 国产| 黑人高潮一二区| 日本av手机在线免费观看| 91精品三级在线观看| 99久久综合免费| 人妻夜夜爽99麻豆av| 亚洲五月色婷婷综合| 久久久久精品久久久久真实原创| 午夜福利视频在线观看免费| 日本猛色少妇xxxxx猛交久久|