• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Enhanced active learning for model-based predictive control with safety guarantees

    2022-01-08 12:25:18RENRuiZOUYuanyuanLIShaoyuan
    控制理論與應(yīng)用 2021年11期

    REN Rui, ZOU Yuan-yuan, LI Shao-yuan

    (Key Laboratory of System Control and Information Processing,Ministry of Education of China;Department of Automation,Shanghai Jiao Tong University,Shanghai 200240,China)

    Abstract:This paper proposes an active learning-based MPC scheme that overcomes the shortcomings of most learningbased methods which passively leverage the available system data and result in slow learning. We first apply Gaussian process regression to assess the residual model uncertainty and construct multi-step predictive model.Then we propose a two-step active learning strategy and reward the system probing by introducing information gain as dual objective in the optimization problem.Finally,the safe control input set is defined based on robust admissible input set to robustly guarantee state constraint satisfaction. The proposed method improves the learning ability and closed-loop performance with safety guarantees.The advantages of our proposed active learning-based MPC scheme are illustrated in the experiments.

    Key words:model predictive control;active learning;Gaussian process regression;dual control;information gain

    1 Introduction

    Model predictive control(MPC)[1-2],as the main control method to systematically deal with system constraints, has achieved remarkable success in many different fields, such as process control [3], autonomous driving[4-6]and robotics[7].MPC relies heavily on a suitable and sufficiently accurate model that describes the dynamics of the system. However, in many practical scenarios,models based on principles or data-driven approaches are subject to certain uncertainties due to incomplete knowledge of the system and changes in the dynamics over time,which can potentially lead to constraint violation, performance deterioration, as well as instability[8-9].

    In the last few years,learning-based model predictive control (LB-MPC) [10-14] has become an active research topic, one direction of which considers the automatic adjustment of the system model, whether it is during operation or between different operation instances. Most researches on learning-based MPC focus on the automatic correction or uncertainty description of predictive models based on data, which is the most obvious component that affects the performance of MPC.Aswani et al.[10]firstly proposed a framework of LB-MPC which decoupled the safety and performance using two models: a model with bounds on its uncertainty and a model updated by statistical methods.This LB-MPC scheme improved the system performance through learning model while ensuring the robustness.Terzi et al.[12]constructed a multi-step predictive model with model uncertainties using set-membership, and proposed a robust MPC law in the control design phase.The authors in[13]obtained the predictive model using a nonparametric machine learning technique and then proposed a novel stabilizing robust predictive controller without terminal constraint.These studies require a prior strict bound on uncertainty,which is conservative in practice.To reduce conservatism,Di Cairano et al.[14]proposed a learning-based stochastic MPC for automotive controls using Markov chains. Cautious MPC was proposed in [15] that applied Gaussian process regression (GPR) to learn the model error between the true dynamic and prior model.To solve the problem of constraints, the author used chance constraints on both states and inputs. Based on this, Hewing et al. [4] applied GPR in the control of autonomous race cars which showed significant improvement on the performance in varying racing tasks.In [16],the authors reviewed these LB-MPC methods in detail and divided them into three categories:model learning,controller learning and safe MPC. As far as we are aware of, most LB-MPC techniques are passive learning methods. They account for the modeling challenge only by passively relying on available history process data,which cannot provide effective information as well as directly incentivizing any form of learning.In this work,we try to solve this problem by introducing the notion of active learning.

    On the other hand, active learning or dual effect in control was first proposed by Feldbaum [17]that control inputs must have a probing effect that generates informative closed-loop data.[18-22]considered simultaneous identification and control of uncertain systems through dual MPC. Mesbah and Ali [19]summarized MPC with active learning and dual control. This article divided dual control into implicit and explicit methods: in implicit dual control, the optimal control problem is solved approximately;in the explicit one,the probing effect of the controller is directly taken into account in the control scheme in the form of additive cost function or persistent excitation.Heirung[20]presented two approaches to dual MPC, in which the controller is calculated based on minimization of parameter estimate variance and maximization of information. In [21], the authors not only considered MPC with active learning for systems with parametric uncertainty, but also dealt with the problem with modelstructure uncertainty. In terms of robust research, A robust dual MPC with constraint satisfaction was proposed for linear systems subject to parametric and additive uncertainty in [22]. In [23], the controller’s robustness was achieved through the multi-stage approach which uses a scenario-tree representation of the propagation of the uncertainties over the prediction horizon.A new development in dual MPC is the emergence of control-oriented methods to obtain model uncertainty descriptions related to pre-specified control performance [24-25], and we will not go into details in this work. However, these state-of-the-art approaches are limited to simple linear system dynamics which cannot be applied in complex systems, and most of them also fail to provide theoretical guarantees on safety and closed-loop performance.

    In this paper, with the aim to improve the information quality of system operating data and enhance learning ability, we propose an active learning-based MPC (ALB-MPC) scheme based on information measures with safety guarantees.Contributions of our work are as follows: Firstly, the GPR mean function is used to learn the model error and construct the conventional LB-MPC scheme. Secondly, the state constraint satisfaction is robustly guaranteed by selecting control inputs from safety input set. Thirdly, we introduce information gain as dual objective in the optimal control problem and propose a two-stage procedure for ALBMPC. The next section presents the problem formulation and GPR method. Section 3 presents the common learning-based approach based on GPR and gives the notions of safety guarantee.Section 4 provides the definitions of relevant information measures and the twostep active learning control scheme. Finally, we illustrate the results with some numerical examples in Section 5 and end with the concluding remarks in Section 6.

    2 Preliminaries

    In this section,we define the notation,problem formulation and the basic content of Gaussian process regression.

    2.1 Notation

    A normally distributed vectorywith meanμand varianceΣis given byy~N(μ,Σ) and so a GP ofyis represented byy~gp().k??is short fork(z?,z?)and[K]ijmeans thei-th row andj-th column element of matrixK. The superscriptdofmbmeans thatmhavedelements.xi|krepresents thei-step-ahead prediction of the state at the time stepk.ProjX(S)means the orthogonal projection of the setSontoX.ABis the set difference betweenAandB.I(z;D) denotes the information content of data setDafter adding new dataz.H(D)is the entropy of data setDandH(z,D)means the differential entropy at any data pointz.

    2.2 Problem formulation

    In this paper,we consider a discrete-time,nonlinear dynamical system

    with observable system statexk ∈Rnxand control inputuk ∈Rnuat time stepk ∈N,wherenx,nuis the dimension of the state and input. We assume that the true systemfis not exactly known and use the sum of a prior nominal model and a learned model to represent it.Here,h(xk,uk)is a simple and fixed nominal linear model that could be achieved by first principles or people’s prior knowledge.g(xk,uk) is a learned part that represents the model error between the true behavior of the system and the prior model. We can use machine learning methods to model the learned part by collecting observations from the system during operation.Note that both the state and input are required to satisfy the following mixed constraints:

    2.3 Gaussian process regression

    Gaussian process regression(GPR)provides an explicit estimate of the model uncertainty that is used to derive probabilistic bounds in control settings. In this section, we will briefly introduce the concept of GPR and use it to learn the modelg.Gaussian process can be viewed as a collection of random variables with a joint Gaussian distribution for any finite subset.Given noisy observationsyof functiong:RnzRnd

    Note that when GPR is applied in control, many research consider the propagation of uncertainty. In this paper, however, we employ the mean function to perform multi-step ahead predictions without considering the propagation of uncertainty for simplicity.Also,sparse Gaussian processes can reduce computation,but here we do not consider this method. For more specific knowledge about GPR, readers can refer to literature[26-27].

    3 Learning-based MPC and safety guarantees

    In this section, we apply GPR mentioned above to learn the model error and combine it with the prior nominal model to design learning-based MPC scheme.Also,we introduce the concept of robust control invariant set and safe control input set which guarantee the safety of the system.

    3.1 Model learning and LB-MPC

    The training dataykis generated from the mismatch between measurements ofxk+1and the prior nominal model during operation

    wherezk=[xk uk]T.We then denote the recorded data set including all past control inputs and states available at time stepk

    We use the data setDkto update the GPR model and make multi-step prediction combined with the nominal model at every time step.The model constructed is assumed to be equivalent to the true dynamics of the system.Then, the control inputs are determined knowing that the best prediction is available given the current system information.This method is a kind of certaintyequivalence approaches and the learning here is passive.

    GPR mean function is used in the passively learning-based MPC approach.From equations(3)-(6)and the data setDk,the one-step-ahead predictive model can be constructed as follows:

    x0|k=x(k).

    Constraints on the inputs and states from(2)can be formulated as follows and these constraints are usually chosen based on physical hardware limitations,desired performance or safety considerations:

    3.2 Safety consideration

    In the LB-MPC problem, satisfaction of the state constraints cannot be guaranteed and the chosen input may not be safe. As illustrated above, we apply GPR mean function to learn the model error. Then, the confidence bounds of the GPR can be used to characterize model uncertainty.

    Assumption 1 At every time stepk,the learned model satisfies constraintg(xk,uk)∈G(xk,uk)in(9)which is determined through offline learning.

    Note that this assumption will not formally hold since the normal distribution has infinite support,but it is useful in practice and the confidence bounds are commonly used to model uncertainty.Combining it with the previous constraint on the state and input,we define set in(10):

    It can be viewed as the subset of the graphGwhere the state and input constraints are both satisfied.Hence,we haveG= ProjX×U(Ω) which is the orthogonal projection of setΩ.Then the state-dependent set of admissible inputs can be defined as

    such that the set of admissible states is then

    Based on these sets,we define the notions of robust control invariant set and safe control input set.

    Definition 1 (Robust control invariant set) A setC ?Xis a robust control invariant set (RCI) for(1)(2),if for any,there exists au ∈U(x)such that

    The setC∞?Xis the maximal RCI set if all other RCI sets are contained in it.Based on definition(1),we define the safe input set.

    Definition 2 (Safe control input set) Given an maximal RCI,the safe control input set(SCIS)for statex ∈Xis

    As a result,any control inputs can be chosen in the SCIS and keep the system safe.

    Theorem 1 Based on Assumption 1,Definitions 1 and 2,at every time stepk,systemxk+1=h(xk,usk)+md(xk,usk)is safe that it always satisfies constraint(2)for any safe control inputusk ∈Πsafe.

    For more details, some important and famous results that related to the recursion and the computation of invariant sets are in the surveys[28-29].The next main problem in this section is how to calculate predecessor set Pre(Υ).

    Theorem 2 Given the set of admissible stateinput pairsΣ(Υ)and the set of tripletsΦ(Υ), the predecessor set ofΥis given by

    Then the sets Pre(Υ) can be calculated and the proof can be referred to paper[28,32].Due to the confidence bounds in(9)are non-convex union of ellipsoids,

    Given this polyhedral cover representations of the sets and the assumption that the nominal model is linear or piecewise affine, then the calculation of Pre(Υ)is outlined by the following procedures:

    A)Compute the projection:Z=ProjX×U(Ω).B)Compute the inverse map:Φ=f?1(Υ).

    C) Compute the projection:Ψ= ProjX×U(ΩΦ(Υ)).

    D)Compute the set difference:Σ(Υ)=ZΨ.

    E) Compute the projection: Pre(Υ) = ProjX(Σ(Υ)).

    In order to achieve the results,we can use some important tools such as CPLEX,MPT3 for computing inverse images,set differences and projections.

    4 Safety guaranteed active learning-based MPC

    In this section,we propose a two-step procedure for active learning-based MPC.We first compute the most informative input sequence from the safety control set aiming to maximize the information of new data.Then,deviations from the desired input sequence are penalized in the constrained optimization problem. Specific methods are as follows.

    4.1 Information gain and active dynamics learning

    As previously presented, GPR is a non-parametric model which means we cannot use parameter estimate variance or Fisher information (FI) as the measure of model uncertainty reduction. So, we introduce an explicit information content objective to measure the reduction in estimated model uncertaintyI(xnew,unew;D), which denotes the information content of new dataxnew,unewadding to the history data setD.Here,we employ the concept of information gain which is commonly used to qualify reduction in estimated uncertainty.

    Definition 3 Given the observation setD,when new dataznew= [xnewunew]Tis available, the information gain of the data is defined as

    whereH(D) denotes the entropy before observation andH(D ∪znew)is the entropy when adding new data.I(znew;D), which is also known as mutual information, is often greater than zero. The greater the value is, the more information we have gained and the more uncertainty reduction is achieved.

    As a result, we want to find the new data which maximize the information gain. Due to the fact that equation(13)is hard to be optimized[30-31]and needs to be approximated as follows:

    this equation illustrates that the information gain approximates to the log value of the output variance at new data point.Furthermore, when a new data point is collected, both the GPR model and information gain change. We then define the active dynamics learning problem.

    here,Nais the active learning horizon. Solving this problem at each time stepk, we get the most informative input sequenceUa:={ua,1,··· ,ua,Na?1}and guarantee the safety of active exploration because the control inputs are selected from the safety control input set.

    4.2 Safe active learning-based MPC

    In dual control paradigm,the control inputs not only need to satisfy control task performance but also have probing effect on system dynamics. So, we consider two objectives:one is the control task objectiveJtaskof equation(8)and the other is dual objectiveJdualwhich is achieved by penalizing the deviations from the desired input sequence.These two objectives are conflicting and we need to achieve a balance between them:J=Jtask+Jdual.

    The safe active learning-based MPC optimization problem can be stated in(16)

    whereαis a tuning parameter which determines the amount of dual effect. Whenα= 0, it means no dual effect or no active learning and it is a common control problem.Also,the control inputs are limited in the safe set which guarantees the safety of our ALB-MPC approach.

    Remark 1The advantages of this two-step strategy lie that,(16)can still generates safe control inputs usingUaat timek?1 if(15)fails at time stepk.This optimization problem is simplified because we just penalize the deviations from the desired input sequence.

    Remark 2The dual control problem can be divided into two phases: a control phase and an identification phase.Switch between the two phases is based on the model uncertainty that there is no need for active exploration when the uncertainty becomes small enough.

    Finally,the safe active learning-based MPC(ALBMPC)strategy is outlined in Algorithm 1.

    Algorithm 1 Safety guaranteed active learningbased MPC scheme.

    Offline:Calculate(9)and determine the safe control input set in Section 4.2.

    Online:Update data set,adjust the GPR model and design controller.

    1)Initialize training datasetDk,control inputs and states,controller parameters

    2)fori=1:N,do

    3)Measure the current statexkat every time stepk;

    4) Calculate the model errorxk ?h(xk?1,uk?1)and update data setDk;

    5)Learn the model and construct multi-step prediction model using(3)(4)(7);

    6)Solve problem(15)according to the information content using predictive new data(13)(14);

    7)Solve problem(16)and apply the first element of control input;

    8)end for

    5 Numerical examples

    Two numerical examples are considered in this section. An Van der Pol oscillator and a cart-pole balancing task. Both examples are constructed such that we are able to illustrate advantages of our proposed active LB-MPC.

    5.1 Van der Pol oscillator

    The equation of the system dynamics is as follows:

    In the model learning part, the initial states of the system arex1= 1,x2= 0 and the lower and upper bounds on the inputs areumin=?0.75,umax= 1.We first discretize this ODE equation to get a nonlinear discrete model. Then we also get a linear model of the system using successive linearization methods and treat it as the prior nominal model:xk+1=Axk+Buk,whereA= [1.4766?0.6221;0.6221 0.8544] andB= [0.6221;0.1456]. We use this nominal model to start the control process and collect related information to learn the model error.The initial training data is zero and updated online, then we learn a GPR model based on these data and the hyper-parameters are optimized by maximizing the marginal log-likelihood.Finally,we get the whole predictive model.In the MPC design,the modeling horizonNsis 20, the prediction horizon is chosen equal to control horizon:Np=Nt= 10, the weight matrices areQ= diag{[1 1]}andR= 1.The active learning horizon is selectedNa=5 and the tuning parameter of dual effectαis chosen 0 and 10(whenα= 0, it means no probing), then we will make comparison whenαis chosen these two different values.

    Fig.1 Comparison of state trajectory in Vdp

    5.2 Cart-pole balancing task

    The schematic diagram of the inverted pendulum example is shown in Figure 2 and we aim to achieve an upright pendulum position of the pole by applying force to the cart. The continuous-time dynamics of the pendulum are given as follows:

    Fig.2 Schematic diagram of Cart-pole

    The evolution of stateθis depicted in Fig. 3. We can see that these methods all enable adapting the model and stabilizing the system. The passive learning-based method in black color shows slower convergence than other active learning ones.When the parameter is chosenα= 5,the state converges faster than the one withα= 1. This result illustrates that our algorithm really introduces active learning and the tracking performance of the controller is improved effectively.The safety can also be reflected in this experiment that the inverted pendulum has not failed during the whole process.

    Fig.3 Comparison of state trajectory in Cart-pole

    6 Conclusion

    In this work, we focus on the drawbacks of learning-based MPC methods that they lack effective data information and cannot excite any form of learning.we solve this problem by introducing active learning and dual effect,which enhances rapid learning ability and improves closed-loop control performance.The input and state constraints are also guaranteed in our method,and the advantages of the proposed method are illustrated in the simulations. Further research will be devoted to the control-oriented uncertainty description of the complex systems and the new form of dual objective.We will also study how to reduce the computational cost and focus on the application of our proposed method in process control.

    亚洲成人免费av在线播放| 久久国产精品影院| 亚洲 国产 在线| 日韩欧美一区二区三区在线观看 | 久久久久精品人妻al黑| 欧美精品人与动牲交sv欧美| 国产男女内射视频| 九色亚洲精品在线播放| 日韩 欧美 亚洲 中文字幕| 99在线人妻在线中文字幕 | www.熟女人妻精品国产| 国产精品久久久久久精品电影小说| 日韩免费av在线播放| 久久av网站| a级毛片在线看网站| 色综合欧美亚洲国产小说| 女人爽到高潮嗷嗷叫在线视频| 中文字幕制服av| 精品乱码久久久久久99久播| 两性夫妻黄色片| 亚洲欧洲精品一区二区精品久久久| 成人永久免费在线观看视频 | 国产精品免费大片| 国产精品国产高清国产av | 精品福利永久在线观看| 亚洲免费av在线视频| 丝袜美足系列| 涩涩av久久男人的天堂| 国产免费现黄频在线看| 色婷婷av一区二区三区视频| 欧美人与性动交α欧美软件| 一区福利在线观看| 久久免费观看电影| 亚洲第一欧美日韩一区二区三区 | 欧美激情极品国产一区二区三区| 精品国产一区二区久久| 香蕉久久夜色| 啦啦啦免费观看视频1| 欧美激情高清一区二区三区| 日韩一卡2卡3卡4卡2021年| 免费一级毛片在线播放高清视频 | 一本—道久久a久久精品蜜桃钙片| 精品高清国产在线一区| 国产野战对白在线观看| 国产成人精品无人区| 精品国产一区二区久久| 国产精品久久久久成人av| 成人特级黄色片久久久久久久 | 天天影视国产精品| 人人妻,人人澡人人爽秒播| 国产精品影院久久| 91成人精品电影| 两个人免费观看高清视频| 岛国毛片在线播放| 黄色视频,在线免费观看| 十八禁人妻一区二区| 国产成人欧美在线观看 | 丁香六月天网| 国产精品自产拍在线观看55亚洲 | 一区二区三区乱码不卡18| 免费看a级黄色片| 叶爱在线成人免费视频播放| 人妻久久中文字幕网| 五月天丁香电影| 啦啦啦免费观看视频1| 国产免费福利视频在线观看| 一级毛片电影观看| 少妇粗大呻吟视频| 国产精品自产拍在线观看55亚洲 | 国产精品久久久久成人av| 一个人免费看片子| 欧美精品人与动牲交sv欧美| 我的亚洲天堂| 十八禁高潮呻吟视频| 国产精品自产拍在线观看55亚洲 | av不卡在线播放| 精品亚洲成a人片在线观看| 国产有黄有色有爽视频| 男女高潮啪啪啪动态图| 国产高清视频在线播放一区| 叶爱在线成人免费视频播放| 久久久精品94久久精品| 麻豆成人av在线观看| 亚洲欧美色中文字幕在线| 久久精品国产亚洲av高清一级| 婷婷丁香在线五月| 日本黄色视频三级网站网址 | 在线观看免费午夜福利视频| 中文字幕高清在线视频| 久久久国产欧美日韩av| 欧美精品人与动牲交sv欧美| 国产成人av激情在线播放| 妹子高潮喷水视频| 一个人免费在线观看的高清视频| 色综合欧美亚洲国产小说| 手机成人av网站| 少妇被粗大的猛进出69影院| 69精品国产乱码久久久| 老司机深夜福利视频在线观看| 欧美精品高潮呻吟av久久| 最近最新中文字幕大全免费视频| 9色porny在线观看| 国产精品影院久久| 69av精品久久久久久 | 国产在线免费精品| 在线av久久热| 亚洲五月色婷婷综合| 国产一卡二卡三卡精品| 黄色片一级片一级黄色片| 午夜91福利影院| 国产成人系列免费观看| a在线观看视频网站| 9色porny在线观看| 亚洲美女黄片视频| 久久精品91无色码中文字幕| 免费在线观看日本一区| 搡老岳熟女国产| 99国产精品一区二区蜜桃av | 国产精品亚洲一级av第二区| 国产精品.久久久| 亚洲人成伊人成综合网2020| 9热在线视频观看99| 少妇被粗大的猛进出69影院| 后天国语完整版免费观看| 中文字幕av电影在线播放| 韩国精品一区二区三区| 欧美精品人与动牲交sv欧美| 丰满迷人的少妇在线观看| 每晚都被弄得嗷嗷叫到高潮| 丝袜美腿诱惑在线| 777米奇影视久久| 黄色成人免费大全| 久久久久精品人妻al黑| 精品午夜福利视频在线观看一区 | 高清黄色对白视频在线免费看| 成人18禁在线播放| 久久久精品区二区三区| 亚洲av日韩精品久久久久久密| e午夜精品久久久久久久| 91九色精品人成在线观看| 国产日韩欧美在线精品| 香蕉国产在线看| 午夜福利视频精品| av视频免费观看在线观看| 中文欧美无线码| 久久国产亚洲av麻豆专区| 天天躁狠狠躁夜夜躁狠狠躁| 一区二区三区精品91| 窝窝影院91人妻| 免费黄频网站在线观看国产| 国产精品 国内视频| 亚洲精品av麻豆狂野| 人人妻,人人澡人人爽秒播| 亚洲国产精品一区二区三区在线| 精品少妇久久久久久888优播| 精品人妻1区二区| 亚洲一码二码三码区别大吗| 黑人欧美特级aaaaaa片| 波多野结衣av一区二区av| 日韩人妻精品一区2区三区| 高潮久久久久久久久久久不卡| 乱人伦中国视频| 性色av乱码一区二区三区2| svipshipincom国产片| 999久久久精品免费观看国产| 久久精品人人爽人人爽视色| 在线播放国产精品三级| 每晚都被弄得嗷嗷叫到高潮| 久久久久久久久久久久大奶| 亚洲午夜理论影院| 91麻豆精品激情在线观看国产 | 中文欧美无线码| 色播在线永久视频| 涩涩av久久男人的天堂| 制服诱惑二区| a级毛片黄视频| 久久av网站| 色婷婷av一区二区三区视频| 热re99久久精品国产66热6| 女性生殖器流出的白浆| 夫妻午夜视频| 97在线人人人人妻| 欧美在线一区亚洲| 亚洲欧洲日产国产| 欧美 日韩 精品 国产| 男女床上黄色一级片免费看| av福利片在线| 黄色成人免费大全| 日韩欧美免费精品| 亚洲 欧美一区二区三区| 国产精品麻豆人妻色哟哟久久| 国产黄色免费在线视频| 国产成+人综合+亚洲专区| 久久久欧美国产精品| 99久久国产精品久久久| 欧美日韩精品网址| 久久中文字幕一级| 亚洲欧美日韩高清在线视频 | 久久影院123| 韩国精品一区二区三区| 久久九九热精品免费| 欧美日韩国产mv在线观看视频| 国产主播在线观看一区二区| 日本撒尿小便嘘嘘汇集6| 久热爱精品视频在线9| videosex国产| 国产aⅴ精品一区二区三区波| 国产男靠女视频免费网站| 国产成人影院久久av| 热re99久久国产66热| 亚洲精品久久成人aⅴ小说| 精品国产乱码久久久久久小说| 一边摸一边抽搐一进一出视频| 亚洲精品美女久久久久99蜜臀| 久久久久国产一级毛片高清牌| 热re99久久精品国产66热6| 日韩欧美免费精品| 男男h啪啪无遮挡| 午夜福利一区二区在线看| 无人区码免费观看不卡 | 黄色片一级片一级黄色片| 亚洲色图av天堂| 久久精品人人爽人人爽视色| 亚洲欧美日韩高清在线视频 | 国产成人av激情在线播放| 国产精品麻豆人妻色哟哟久久| tocl精华| 一边摸一边做爽爽视频免费| 国产免费福利视频在线观看| netflix在线观看网站| 亚洲视频免费观看视频| 亚洲国产欧美在线一区| 极品少妇高潮喷水抽搐| av福利片在线| 国产亚洲一区二区精品| 人成视频在线观看免费观看| 一区二区三区乱码不卡18| 深夜精品福利| 黑人猛操日本美女一级片| 成人国产一区最新在线观看| 国产色视频综合| 成年人午夜在线观看视频| 女性生殖器流出的白浆| 亚洲精品久久午夜乱码| 久久久精品免费免费高清| 无人区码免费观看不卡 | 久久这里只有精品19| 欧美成人午夜精品| 久久久久久久久久久久大奶| 欧美国产精品va在线观看不卡| 精品少妇黑人巨大在线播放| 亚洲精品国产色婷婷电影| 午夜福利视频在线观看免费| 国产成人一区二区三区免费视频网站| 久久婷婷成人综合色麻豆| 久久久久久久精品吃奶| 亚洲av片天天在线观看| 亚洲熟妇熟女久久| 久久人妻av系列| 国产xxxxx性猛交| 国产国语露脸激情在线看| 又紧又爽又黄一区二区| 久久亚洲真实| 老司机亚洲免费影院| 久久久水蜜桃国产精品网| 亚洲国产中文字幕在线视频| tube8黄色片| 国产熟女午夜一区二区三区| av免费在线观看网站| 极品教师在线免费播放| 中文字幕高清在线视频| 亚洲精品美女久久久久99蜜臀| √禁漫天堂资源中文www| 女人高潮潮喷娇喘18禁视频| 成年人黄色毛片网站| 亚洲午夜精品一区,二区,三区| 91成年电影在线观看| 黄片播放在线免费| av在线播放免费不卡| 色婷婷av一区二区三区视频| 悠悠久久av| 这个男人来自地球电影免费观看| 超碰成人久久| 国产亚洲精品久久久久5区| 国产成人免费无遮挡视频| 国产精品国产av在线观看| 最新在线观看一区二区三区| 国产精品影院久久| 一区二区av电影网| 亚洲国产成人一精品久久久| 国产av又大| 变态另类成人亚洲欧美熟女 | 久久久精品区二区三区| 丝袜人妻中文字幕| 水蜜桃什么品种好| 大型av网站在线播放| 99九九在线精品视频| 日本黄色日本黄色录像| 精品一区二区三区av网在线观看 | 精品欧美一区二区三区在线| 欧美av亚洲av综合av国产av| 国产精品亚洲av一区麻豆| 欧美 日韩 精品 国产| 国产成人影院久久av| 亚洲色图av天堂| 性色av乱码一区二区三区2| 色播在线永久视频| 露出奶头的视频| 高潮久久久久久久久久久不卡| 欧美午夜高清在线| 亚洲精品国产色婷婷电影| 国产不卡一卡二| 精品免费久久久久久久清纯 | 精品亚洲成a人片在线观看| 操出白浆在线播放| 12—13女人毛片做爰片一| 十八禁人妻一区二区| 777久久人妻少妇嫩草av网站| 天堂中文最新版在线下载| 亚洲中文日韩欧美视频| 国产亚洲欧美在线一区二区| 在线观看免费高清a一片| 99re6热这里在线精品视频| 国产高清videossex| 亚洲国产看品久久| 自拍欧美九色日韩亚洲蝌蚪91| 精品亚洲成a人片在线观看| 国产成人av教育| 免费在线观看影片大全网站| 午夜精品久久久久久毛片777| 精品一区二区三区视频在线观看免费 | 欧美黄色淫秽网站| 日韩成人在线观看一区二区三区| 精品久久久久久电影网| 精品亚洲乱码少妇综合久久| av片东京热男人的天堂| videos熟女内射| 热99re8久久精品国产| 少妇粗大呻吟视频| 麻豆国产av国片精品| 亚洲成人免费电影在线观看| 久久精品亚洲av国产电影网| 亚洲精品国产区一区二| 亚洲一卡2卡3卡4卡5卡精品中文| 激情视频va一区二区三区| 亚洲av国产av综合av卡| 精品少妇一区二区三区视频日本电影| a在线观看视频网站| 又紧又爽又黄一区二区| 欧美亚洲 丝袜 人妻 在线| 国产精品一区二区精品视频观看| 亚洲黑人精品在线| 黄色视频在线播放观看不卡| 国产男女超爽视频在线观看| 国产日韩一区二区三区精品不卡| 精品乱码久久久久久99久播| 国产片内射在线| 国产深夜福利视频在线观看| 久久久国产成人免费| 美女视频免费永久观看网站| 日本一区二区免费在线视频| 99久久人妻综合| 精品一区二区三区四区五区乱码| 97在线人人人人妻| 久久久久视频综合| 男女无遮挡免费网站观看| 人妻久久中文字幕网| 精品国产一区二区三区四区第35| 午夜激情久久久久久久| 在线观看免费视频网站a站| 亚洲精品国产一区二区精华液| 精品国产一区二区三区四区第35| 国产精品 欧美亚洲| 久久精品aⅴ一区二区三区四区| 美女扒开内裤让男人捅视频| 久久天堂一区二区三区四区| 人人妻人人添人人爽欧美一区卜| 大香蕉久久网| 丰满少妇做爰视频| 亚洲七黄色美女视频| 欧美人与性动交α欧美软件| 交换朋友夫妻互换小说| 亚洲精品成人av观看孕妇| 中国美女看黄片| 亚洲精品成人av观看孕妇| 亚洲人成电影观看| 天堂俺去俺来也www色官网| a在线观看视频网站| 国产亚洲一区二区精品| 中文字幕人妻熟女乱码| 成人国产一区最新在线观看| 最新在线观看一区二区三区| 日韩 欧美 亚洲 中文字幕| 自拍欧美九色日韩亚洲蝌蚪91| 午夜福利欧美成人| 欧美日韩亚洲国产一区二区在线观看 | 女人被躁到高潮嗷嗷叫费观| 亚洲人成伊人成综合网2020| 午夜福利视频在线观看免费| 午夜久久久在线观看| h视频一区二区三区| 男女高潮啪啪啪动态图| 人妻一区二区av| 精品国产乱子伦一区二区三区| 亚洲精品美女久久久久99蜜臀| 人人澡人人妻人| 国产不卡av网站在线观看| 中文字幕色久视频| 黄色毛片三级朝国网站| 色播在线永久视频| 王馨瑶露胸无遮挡在线观看| 国产亚洲欧美在线一区二区| 国产精品一区二区免费欧美| 亚洲国产毛片av蜜桃av| 久久精品亚洲av国产电影网| 色婷婷久久久亚洲欧美| 亚洲第一青青草原| 大码成人一级视频| 亚洲欧美色中文字幕在线| 精品国产一区二区久久| 波多野结衣av一区二区av| 午夜福利免费观看在线| 国产日韩一区二区三区精品不卡| 精品国产一区二区三区四区第35| 亚洲国产av新网站| 999精品在线视频| 最新的欧美精品一区二区| 精品福利观看| 亚洲九九香蕉| 黑人操中国人逼视频| 色94色欧美一区二区| 中文字幕av电影在线播放| 一本一本久久a久久精品综合妖精| 欧美精品av麻豆av| 精品国产一区二区三区四区第35| 中文字幕色久视频| 精品亚洲乱码少妇综合久久| 国产精品美女特级片免费视频播放器 | 日韩一卡2卡3卡4卡2021年| 亚洲精品成人av观看孕妇| 色精品久久人妻99蜜桃| 激情在线观看视频在线高清 | 国产成人精品在线电影| 日本av手机在线免费观看| 免费在线观看完整版高清| √禁漫天堂资源中文www| 精品一区二区三卡| 午夜激情久久久久久久| 日韩 欧美 亚洲 中文字幕| 1024香蕉在线观看| 久久影院123| 免费在线观看完整版高清| 黑人欧美特级aaaaaa片| 亚洲精品在线观看二区| 欧美日韩一级在线毛片| 麻豆乱淫一区二区| 热99国产精品久久久久久7| 一二三四社区在线视频社区8| 精品午夜福利视频在线观看一区 | 精品国产乱码久久久久久男人| 国产男女内射视频| 在线观看一区二区三区激情| 少妇的丰满在线观看| 在线观看一区二区三区激情| 国产成人av教育| 国产一区二区三区视频了| 十八禁人妻一区二区| a级毛片黄视频| 免费女性裸体啪啪无遮挡网站| 午夜福利视频精品| 十八禁网站免费在线| 亚洲欧洲精品一区二区精品久久久| 免费少妇av软件| 操美女的视频在线观看| 天天躁夜夜躁狠狠躁躁| 男人操女人黄网站| 黄网站色视频无遮挡免费观看| 老鸭窝网址在线观看| 五月天丁香电影| 中文字幕人妻丝袜制服| 一区二区三区国产精品乱码| 国产午夜精品久久久久久| 久久影院123| 在线永久观看黄色视频| 国产精品免费大片| 啦啦啦免费观看视频1| e午夜精品久久久久久久| 亚洲 国产 在线| 别揉我奶头~嗯~啊~动态视频| 久久久久久免费高清国产稀缺| 亚洲精品自拍成人| 亚洲一区中文字幕在线| 免费观看av网站的网址| 精品久久久精品久久久| 国产男女超爽视频在线观看| 精品高清国产在线一区| av有码第一页| 一级毛片精品| 女性生殖器流出的白浆| 黑人操中国人逼视频| 成在线人永久免费视频| 在线观看免费高清a一片| 在线天堂中文资源库| 午夜免费鲁丝| 国产伦理片在线播放av一区| 在线播放国产精品三级| 国产欧美日韩一区二区三| 在线播放国产精品三级| 久久毛片免费看一区二区三区| www.熟女人妻精品国产| 久久毛片免费看一区二区三区| 久久久国产一区二区| 国产精品香港三级国产av潘金莲| 老司机福利观看| 亚洲第一av免费看| 色综合欧美亚洲国产小说| 男女无遮挡免费网站观看| 国产激情久久老熟女| 久久亚洲精品不卡| svipshipincom国产片| 热99久久久久精品小说推荐| 久久久久精品国产欧美久久久| 另类亚洲欧美激情| 亚洲avbb在线观看| 国产高清激情床上av| 丰满人妻熟妇乱又伦精品不卡| 精品人妻在线不人妻| 亚洲精品国产色婷婷电影| 亚洲,欧美精品.| 亚洲精品久久午夜乱码| 91成年电影在线观看| 女人爽到高潮嗷嗷叫在线视频| 一夜夜www| 老汉色∧v一级毛片| 777米奇影视久久| 久久久久精品人妻al黑| 国产精品国产高清国产av | 久久青草综合色| 国产伦人伦偷精品视频| 美女视频免费永久观看网站| 一级片'在线观看视频| 成年人免费黄色播放视频| 成年人午夜在线观看视频| 99香蕉大伊视频| 国产不卡一卡二| 免费一级毛片在线播放高清视频 | 18禁观看日本| 成人18禁在线播放| 黑丝袜美女国产一区| 侵犯人妻中文字幕一二三四区| 日韩一卡2卡3卡4卡2021年| 亚洲成人国产一区在线观看| 午夜福利影视在线免费观看| 香蕉国产在线看| 巨乳人妻的诱惑在线观看| 亚洲 欧美一区二区三区| 精品福利永久在线观看| 黑人巨大精品欧美一区二区蜜桃| 久久久久精品国产欧美久久久| 大陆偷拍与自拍| 中文亚洲av片在线观看爽 | 老司机亚洲免费影院| 99精品久久久久人妻精品| 亚洲国产看品久久| 成人精品一区二区免费| 久久精品成人免费网站| 91成人精品电影| 黄色怎么调成土黄色| 99国产精品一区二区蜜桃av | 大香蕉久久网| 我要看黄色一级片免费的| 亚洲精华国产精华精| av福利片在线| av不卡在线播放| 欧美在线一区亚洲| 亚洲成人免费电影在线观看| 久久天躁狠狠躁夜夜2o2o| 精品一区二区三区视频在线观看免费 | 久久天躁狠狠躁夜夜2o2o| 777久久人妻少妇嫩草av网站| 99riav亚洲国产免费| 免费在线观看影片大全网站| 老司机午夜十八禁免费视频| 日韩成人在线观看一区二区三区| 夫妻午夜视频| 亚洲久久久国产精品| 国产1区2区3区精品| 精品久久久久久久毛片微露脸| 在线观看舔阴道视频| 久久精品国产亚洲av高清一级| 又紧又爽又黄一区二区| 麻豆国产av国片精品| 亚洲美女黄片视频| 黑人猛操日本美女一级片| 国产欧美日韩精品亚洲av| 亚洲国产欧美网| 69av精品久久久久久 | 亚洲人成电影观看| 大型黄色视频在线免费观看| 中文字幕色久视频| 91麻豆精品激情在线观看国产 | 午夜激情久久久久久久| 91成年电影在线观看| 久久久久久免费高清国产稀缺| 高清av免费在线| 黄色视频,在线免费观看| 丝袜在线中文字幕| 黄色丝袜av网址大全| 精品免费久久久久久久清纯 | 极品教师在线免费播放| 国产精品久久久久久精品古装| 欧美日韩亚洲国产一区二区在线观看 | 欧美黄色片欧美黄色片| 激情在线观看视频在线高清 | 亚洲自偷自拍图片 自拍|