• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Average cost Markov decision processes with countable state spaces

    2022-01-08 12:25:10ZHANGJunyuWUYitingXIALiCAOXiren
    控制理論與應(yīng)用 2021年11期

    ZHANG Jun-yu, WU Yi-ting, XIA Li, CAO Xi-ren

    (1.School of Mathematics,Sun Yat-Sen University,Guangzhou Guangdong 510275,China;2.School of Business,Sun Yat-Sen University,Guangzhou Guangdong 510275,China;3.Department of Electronic and Computer Engineering,Hong Kong University of Science and Technology,Hong Kong,China)

    Abstract:For the long-run average of a Markov decision process(MDP)with countable state spaces,the optimal(stationary)policy may not exist.In this paper,we study the optimal policies satisfying optimality inequality in a countable-state MDP under the long-run average criterion. Different from the vanishing discount approach, we use the discrete Dynkin’s formula to derive the main results of this paper.We first provide the Poisson equation of an ergodic Markov chain and two instructive examples about null recurrent Markov chains,and demonstrate the existence of optimal policies for two optimality inequalities with opposite directions.Then,from two comparison lemmas and the performance difference formula,we prove the existence of optimal policies under positive recurrent chains and multi-chains,which is further extended to other situations.Especially,several examples of applications are provided to illustrate the essential of performance sensitivity of the long-run average.Our results make a supplement to the literature work on the optimality inequality of average MDPs with countable states.

    Key words: Markov decision process; long-run average; countable state spaces; Dynkin’s formula; Poisson equation;performance sensitivity

    1 Introduction

    The Markov decision process (MDP) is an important optimization theory for stochastic dynamic systems and has wide applications; see, e.g. [1-10]. In this paper, we study the long-run average MDP with a countable state space.It is well known that in this problem an optimal policy may not exist,and if it exists,it may be history-dependent, not necessarily a stationary (or else called a Markov)policy.

    In the literature, conditions have been found that guarantee the existence of the long-run average optimal policy for MDPs with countable states[7-8,10-12].The existence conditions are usually stated in terms of discounted value functions with the discount factor approaching one. It is also proved that there are average optimal policies for MDPs with countable states for which an optimality inequality, instead of an equality,holds.The approach is presented in details in[10],and it is called the“vanishing discount approach”in[7],and the“differential discounted reward”approach in[8].

    In this paper,we use the discrete Dynkin’s formula(e.g.page 122 in[13])to derive the average optimal policy. We observed that the long-run average of a countable MDP does not depend on its value at any finite state, or at any“non-frequently visited”states, which is an important fact studied in the literature[3-4,6,8,14].We construct several examples about null recurrent Markov chains, which motivate the derivation of the strict optimality inequality and optimality equality.We present two comparison lemmas and the performance difference formula via the discrete Dynkin’s formula,which is an important tool to prove the existence of average optimal policies.

    The Poisson equation provides a method to solve the long-run average cost,where the existence and properties of its solutions are studied in many literature,for example,refer to page 269 to 303 in[5]which considers the Poisson equation with time-homogeneous Markov chains on a countable state space.Actually,the Poisson equation is a different view to study the existence of the long-run average optimal policy. From the Poisson equation, we derive the optimality inequality/equality and the existence of average optimal policies of positive recurrent chains,multi-chains and other generalized forms such as considering the performance sensitivity.One of the optimality inequality directions is presented as the sufficient condition for average optimal. The more general optimality equations are obtained by the approach of performance difference formulas,which is a useful approach beyond the dynamic programming and has been successfully applied to many problems(e.g.[15-16]).

    The remainder of this paper is organized as follows.In Section 2,we introduce the optimization problem and derive the Poisson equation of ergodic Markov chains.In Section 3,we give two examples to demonstrate the existence of the long-run average optimal policy for two optimality inequalities with opposite directions.Our main results are given in Section 4,where the existence of optimal policies under multi-chains, null and positive recurrent chains are provided and some examples and applications are also presented. Finally, we conclude this paper in Section 5.

    2 Preliminaries

    2.1 The problem

    At stateiwith actionαdetermined by policyd, a cost (or reward), denoted byCα(i) orCd(i). The discounted cost criterion with discount factor 0<β< 1 under policydis

    2.2 The Poisson equation

    Consider a Markov chain{Xk,k= 0,1,···}under a Markov policyd(We omit the superscript“d”,for a generic discussion).Letτ(i,j)=min{t>0:Xt=

    withg(0)=g(0,0)=0.g(i),i=0,1,···,is called apotential functionof the Markov chain3In the literature, the solution to a Poisson equation is called a potential function; the conservative law for potential energy holds,see[17]and[4]..And we further assume|g(i)|<∞, i ∈S.

    LetA:=P ?Ibe the discrete version of the infinitesimal generator, withIbeing the identity matrix.g:=(g(0)g(1)···)T,C:=(C(0)C(1)···)T,ande:=(1 1···)T.

    Lemma 1 The potential functiong(i) of a Markov chain,i ∈S, in (2) satisfies the Poisson equationAg+C=ηe.

    Proof From(2),we have

    On every sample path withX1?=0(whenX1=0,Lemma 1 is easy to verify sinceτ(i,0) = 1,i ∈S),the Markov chain reaches state 0 from stateX1at time 1 after timeτ(i,0)?1,i.e.,τ(X1,0)=τ(i,0)?1,and the second equality in the above equation holds. Thus,this equation is the Poisson equation

    Obviously, the potential function is only up to an additive constant;i.e.,ifg(i),i ∈S,is a solution to the Poisson equation,so isg(i)+cfor any constantc.Any statei ∈Scan be chosen as a reference state and we may setg(i)=0.

    Remark 1 For null recurrent Markov chains,τ(i,j) may be infinity, andg(i) in (2) is not well defined. However, in some special cases, there might be some functiong(i)and a constantηsuch that the Poisson equation(3)holds,see Example 1.

    3 Examples

    To motivate our further research,let us first consider some examples.

    Example 1 This is a well-known example[6-8,10]that shows there is an optimal policy for which the optimality equation for finite chains does not hold, instead, it satisfies an inequality. As in the literature, we use the discounted performance to approach the longrun average.

    4The theory for multi-class decomposition and optimization for finite Markov chains is well developed,see[4,8]for homogeneous chains,and[3]for nonhomogeneous chains.The decomposition of countable state chains is similar to that for the finite chains,except that there are infinitely many sub-chains.

    This is called the optimality inequality for the longrun average MDP with countable states in the literature.

    Example 2 In this example, we show that the direction of the “optimality inequality” (6) can be reversed.Consider the same Markov chain as Example 1,but with a different cost at statei= 0. Specifically,there are two actions,aandb, having the same transition probabilities at all statesi ∈S,and the same costsC(i) = 1, for alli ?= 0. However, we setCa(0) = 2 andCb(0) = 3. Policyftakes actionaand policydtakes actionbati=0.

    First, we haveηfβ(i)<ηdβ(i). Thus,dis not discount optimal for allβ ∈(0,1). Next, because both Markov chains underfanddare null recurrent,the cost change at one state 0 does not change the long-run average. In general, the long-run average of a stochastic chain does not depend on its values in any finite period or any “zero frequently” visited period [3]. This is called the “under-selectivity” [3,14]. Thus, we haveηf(i)=ηd(i)≡η=1 for alli.Thereforefanddare both long-run average optimal.

    Compared with the optimality inequality(6),the inequality sign is reversed in(8).

    Remark 2 1) The two inequalities (6) and (8)are not necessary conditions. Also, an average optimal policy may not be the limiting point of discount optimal policies. In the following, we will see that(8)is a sufficient condition for average optimal,and(6)is neither necessary,nor sufficient.

    2) In the examples, the Markov chain is null recurrent. So the probability of visiting each state is zero. Therefore, we may arbitrarily change the cost at any state without changing the long-run average; but it changes the relation in the optimality condition.The inequality (6) is due to the null recurrency of the states and the under-selectivity of the long-run average, it is not an essential property in optimization.

    4 Optimization in countable state spaces

    4.1 Fundamental results

    We assume that the transition probability matrixP= [Pi,j]i,j∈Sdoes not depend on time; i.e., the chainXunder a Markov policy is a time-homogeneous Markov chain.

    Letr:S →Rbe a function onS,with E[r(Xn)|X0=i]<∞,i ∈S,n≥1; and we also denote it as a column vectorr:= (r(0)r(1)··· r(i)···)T.For time-homogeneous Markov chains, it holds that E[r(Xn+1)|Xn=i]=E[r(X1)|X0=i].

    4) The condition (13) is only sufficient, it is not necessary as shown in Example 1. It may not need to hold at some null recurrent states.

    Example 3 It is interesting to note that in Example 2, condition (8) satisfies the optimality inequality(13) for both policiesdandf, and hence it is a sufficient condition forJto be the optimal average. However,in Example 1,the inequality(6)is not a sufficient condition.

    For history-dependent policies, it is more convenient to state the comparison lemma for all policies.

    Proof For a optimization problem with history dependent randomized policy, we can transform into considering randomized Markov policy,see[8].So the proof can be derived by Lemma 2.

    The performance difference formula may contain more information than the above two comparison lemmas. For history-dependent chains, the potentials and Poisson equations are not well studied, and the“l(fā)im sup” average does not make sense at transient states,so we have to assume that the limit in(1)exists.

    in which the assumption(16)plays an important role in the first equality,then the Lemma follows directly from the Poisson equation ofgd.

    4.2 Optimal policy is positive recurrent or multichain

    Many results follow naturally from Lemma 2.First,we have

    Remark 4 1) In this theorem,d?cannot be a multi-chain,becauseJin Lemma 3 has to be a constant.For multi-chain optimal policies,see Theorem 3.

    2)d?is usually positive recurrent, but if it is null recurrent and equation(18)holds forηd?and a functiongd?,then the theorem may also hold.

    3) All the other policiesd ∈Πmay be null recurrent,or multi-chain.Condition(19)may not need to hold at some null states which are null-recurrent at all the Markov chains under all other policies.

    Theorem 2 Suppose all policies inΠ0are positive recurrent, and Markov policyd ∈Π0is long-run average optimal inΠ0.Then(18)and(19)hold,and it is optimal inΠ.

    By the performance difference formula (17), we have a set of more general optimality equations. The proof of the following theorem is similar to that in [3]for time nonhomogeneous Markov chains, see also [4]and[8]for finite multi-chains.

    Remark 5 1) The restriction of (24) toA0is very important; otherwise, the inequality in (32) may be false and conditions (22) and (24) may not have a solution,see also Example 9.1.1 in[11].

    2) The technical conditions (21) and (23) indicate that some kind of uniformity is required for countablestate problems.They are not very restrictive and can be replaced by other similar conditions.

    4.3 Under-selectivity

    Under-selectivity refers to the property that the long-run average of a stochastic chain does not depend on its value in any finite period, or at any “nonfrequently visited”periods,or states,defined below.

    It is clear that non-frequently visited sets include transient states in multi-chains and finite sets of null recurrent states.

    Theorem 4 Theorem 3 holds even if Condition(24) does not hold at any non-frequently visited set of states of a policy.

    4.4 Null recurrent Markov policies

    When the optimal policy is null recurrent,the situation is a bit complicated.The Poisson equation(3)and the potential functiong(i)may not exist,and it is difficult to find the functionr(i),i ∈S,in(13),except for very simple cases,e.g.in Examples 1 and 2,r(i)≡0,for alli ∈S.

    This is the “optimality inequality” among these two policies.As explained in Examples 1 and 2,this inequality is due to the null recurrency ofiand the underselectivity of average optimality.In fact,both directions≤and ≥are possible in(35).Whendis also null recurrent,the situation is more complicated because there is no Poisson equation.

    Example 4 The structure of the Markov chain is the same as Example 1. The state space isS={0,1,2,···}. At statei≥1, there is a null action withPi,i?1= 1. At state 0, the transition probabilities are given byP0,i> 0,i≥1. We consider two policiesfandd:

    5 Conclusion

    We summarize this paper with the following observations.

    1) The optimality inequality(13)is a sufficient condition for average optimal. The strict inequality may hold at null recurrent states. When the optimal policy is positive recurrent, the inequality becomes an equality.

    2) A null recurrent Markov chain visits any state with a probability of zero, so the cost function at such a state can be changed without changing the value of long-run average. Thus, any optimality equality or inequality involving the cost may not need to hold at such a state. In other words, the inequality may be in either direction at a null recurrent state for the optimal policy(see Examples 1 and 2).This is purely the consequence of null recurrency and under-selectivity.

    3) The existence of average optimal policies of countable MDPs is mainly derived by the Dynkin’s formula from a view of performance difference.Example 4 shows the application of the main results,which makes a supplement to the existing literature work.

    女人久久www免费人成看片| 超色免费av| 亚洲国产av影院在线观看| 久久午夜综合久久蜜桃| 不卡av一区二区三区| 99久久人妻综合| 欧美日本中文国产一区发布| 18在线观看网站| 自拍欧美九色日韩亚洲蝌蚪91| 丁香六月欧美| 亚洲av综合色区一区| 男人添女人高潮全过程视频| 久久亚洲精品不卡| 中文字幕人妻丝袜制服| 亚洲九九香蕉| 视频区图区小说| 色视频在线一区二区三区| 久久久久国产精品人妻一区二区| 国产精品一区二区免费欧美 | 国产精品99久久99久久久不卡| 一个人免费看片子| 久久人妻福利社区极品人妻图片 | 亚洲第一av免费看| 少妇裸体淫交视频免费看高清 | 激情五月婷婷亚洲| 国产精品一区二区精品视频观看| 在线观看免费视频网站a站| 久久精品国产亚洲av高清一级| 国产成人免费观看mmmm| 丰满少妇做爰视频| 亚洲伊人色综图| 美女高潮到喷水免费观看| 观看av在线不卡| 人人妻人人添人人爽欧美一区卜| 久久久久久免费高清国产稀缺| 国产又色又爽无遮挡免| 又大又爽又粗| 久久午夜综合久久蜜桃| 黄网站色视频无遮挡免费观看| 赤兔流量卡办理| 电影成人av| 国产精品免费大片| 精品福利观看| 人妻 亚洲 视频| 99国产精品一区二区蜜桃av | 捣出白浆h1v1| 最黄视频免费看| 亚洲精品久久午夜乱码| 欧美成人精品欧美一级黄| 免费在线观看完整版高清| 日韩大码丰满熟妇| 成人18禁高潮啪啪吃奶动态图| 一级a爱视频在线免费观看| 久久亚洲精品不卡| 婷婷色麻豆天堂久久| 欧美国产精品一级二级三级| 国产亚洲av高清不卡| 久久天堂一区二区三区四区| 一区二区三区精品91| 亚洲精品乱久久久久久| 国产日韩一区二区三区精品不卡| 高潮久久久久久久久久久不卡| 99九九在线精品视频| 老司机亚洲免费影院| 日韩一区二区三区影片| 午夜免费成人在线视频| 午夜福利一区二区在线看| videosex国产| 18在线观看网站| e午夜精品久久久久久久| 久久影院123| 91九色精品人成在线观看| 又紧又爽又黄一区二区| av线在线观看网站| 久久亚洲国产成人精品v| 香蕉丝袜av| 欧美日韩一级在线毛片| 国产免费视频播放在线视频| 日韩制服丝袜自拍偷拍| 国产精品av久久久久免费| 国产成人免费观看mmmm| 国产老妇伦熟女老妇高清| 久久精品熟女亚洲av麻豆精品| 男女下面插进去视频免费观看| 高清av免费在线| 欧美日韩av久久| 蜜桃在线观看..| 欧美精品一区二区免费开放| 久久国产亚洲av麻豆专区| 成年av动漫网址| 天天添夜夜摸| 一本色道久久久久久精品综合| 免费日韩欧美在线观看| 人妻 亚洲 视频| 亚洲人成电影观看| 啦啦啦在线免费观看视频4| 亚洲精品国产av蜜桃| 亚洲人成77777在线视频| 最新在线观看一区二区三区 | 19禁男女啪啪无遮挡网站| 国产国语露脸激情在线看| 9191精品国产免费久久| 国产成人系列免费观看| 日韩人妻精品一区2区三区| 国产人伦9x9x在线观看| 少妇粗大呻吟视频| 天天添夜夜摸| 免费久久久久久久精品成人欧美视频| 日韩一区二区三区影片| 国产精品九九99| 精品一区二区三区四区五区乱码 | 国产精品.久久久| 精品一区二区三区四区五区乱码 | 夫妻性生交免费视频一级片| 国产一区亚洲一区在线观看| 侵犯人妻中文字幕一二三四区| 亚洲第一青青草原| 又大又黄又爽视频免费| 老司机深夜福利视频在线观看 | 国产黄色免费在线视频| 亚洲,一卡二卡三卡| 亚洲伊人色综图| 亚洲七黄色美女视频| 国产精品三级大全| 老司机靠b影院| 亚洲av电影在线进入| 免费不卡黄色视频| 老司机影院成人| 80岁老熟妇乱子伦牲交| 欧美成狂野欧美在线观看| 国产免费视频播放在线视频| 亚洲国产毛片av蜜桃av| 亚洲激情五月婷婷啪啪| 久久久久久久精品精品| 国产深夜福利视频在线观看| 男女下面插进去视频免费观看| 成人影院久久| 好男人电影高清在线观看| 国产熟女欧美一区二区| 国产亚洲午夜精品一区二区久久| 婷婷成人精品国产| 丝袜美腿诱惑在线| 99热国产这里只有精品6| 国产成人精品久久二区二区免费| 精品亚洲成a人片在线观看| 大型av网站在线播放| 中国国产av一级| 晚上一个人看的免费电影| 午夜福利在线免费观看网站| 国产男女内射视频| 丰满饥渴人妻一区二区三| 黄色一级大片看看| 精品久久蜜臀av无| 久久精品久久久久久久性| 国产精品一区二区在线观看99| 久久久久国产一级毛片高清牌| 又紧又爽又黄一区二区| 岛国毛片在线播放| xxx大片免费视频| 一边摸一边做爽爽视频免费| 性高湖久久久久久久久免费观看| 亚洲精品国产一区二区精华液| 天堂俺去俺来也www色官网| 久久精品人人爽人人爽视色| 夫妻午夜视频| 飞空精品影院首页| 精品免费久久久久久久清纯 | 亚洲九九香蕉| 久久影院123| 欧美+亚洲+日韩+国产| 欧美xxⅹ黑人| 人人妻人人添人人爽欧美一区卜| 欧美精品高潮呻吟av久久| 亚洲av国产av综合av卡| 精品高清国产在线一区| 欧美黑人精品巨大| 久久精品久久久久久噜噜老黄| 国产精品熟女久久久久浪| 熟女av电影| 亚洲欧美成人综合另类久久久| 欧美国产精品va在线观看不卡| 国产91精品成人一区二区三区 | 男人操女人黄网站| 2021少妇久久久久久久久久久| 国产精品国产av在线观看| 又大又黄又爽视频免费| 亚洲欧美中文字幕日韩二区| 九草在线视频观看| 国产精品免费大片| 嫩草影视91久久| 99国产精品一区二区蜜桃av | 大话2 男鬼变身卡| 亚洲精品久久午夜乱码| 久久狼人影院| 在线观看免费午夜福利视频| 亚洲欧美中文字幕日韩二区| 成人亚洲精品一区在线观看| www.熟女人妻精品国产| 黑人巨大精品欧美一区二区蜜桃| 亚洲激情五月婷婷啪啪| 亚洲国产最新在线播放| 一本一本久久a久久精品综合妖精| e午夜精品久久久久久久| 秋霞在线观看毛片| 肉色欧美久久久久久久蜜桃| 黄色a级毛片大全视频| 欧美av亚洲av综合av国产av| 国产一区二区三区av在线| 婷婷色综合www| 久久av网站| 两人在一起打扑克的视频| 久久国产精品影院| 午夜福利在线免费观看网站| 国产人伦9x9x在线观看| 极品少妇高潮喷水抽搐| 汤姆久久久久久久影院中文字幕| 亚洲国产欧美网| 午夜福利一区二区在线看| 日本wwww免费看| 国产黄色视频一区二区在线观看| 久久精品人人爽人人爽视色| 男女高潮啪啪啪动态图| 午夜免费成人在线视频| 嫁个100分男人电影在线观看 | 亚洲精品久久久久久婷婷小说| 大片免费播放器 马上看| 另类亚洲欧美激情| 久久这里只有精品19| 久热爱精品视频在线9| 国产精品一区二区在线观看99| 国产视频首页在线观看| 女人高潮潮喷娇喘18禁视频| 青草久久国产| 色婷婷久久久亚洲欧美| 老汉色av国产亚洲站长工具| 一级片'在线观看视频| 久久久久久久大尺度免费视频| 国产成人精品久久久久久| 国精品久久久久久国模美| 亚洲精品久久成人aⅴ小说| 国产成人av教育| 亚洲欧美激情在线| 欧美激情高清一区二区三区| 我的亚洲天堂| 国产精品香港三级国产av潘金莲 | avwww免费| 国产国语露脸激情在线看| 精品少妇一区二区三区视频日本电影| 午夜福利在线免费观看网站| 亚洲国产精品一区三区| 搡老岳熟女国产| 婷婷色综合大香蕉| 国产精品一区二区精品视频观看| 色网站视频免费| 久久人人爽av亚洲精品天堂| 国产xxxxx性猛交| 在线观看免费午夜福利视频| 亚洲欧美日韩另类电影网站| 少妇裸体淫交视频免费看高清 | 一级a爱视频在线免费观看| 亚洲九九香蕉| 亚洲 欧美一区二区三区| 一区二区日韩欧美中文字幕| 99久久精品国产亚洲精品| 热re99久久精品国产66热6| 亚洲欧美一区二区三区黑人| 少妇猛男粗大的猛烈进出视频| 午夜免费男女啪啪视频观看| 首页视频小说图片口味搜索 | 精品久久蜜臀av无| 欧美+亚洲+日韩+国产| 久久性视频一级片| 国产片特级美女逼逼视频| 国产精品一区二区在线观看99| 久久久久久久久免费视频了| h视频一区二区三区| av片东京热男人的天堂| 国产成人欧美| 日韩av在线免费看完整版不卡| 人妻人人澡人人爽人人| 岛国毛片在线播放| 成人18禁高潮啪啪吃奶动态图| 国产真人三级小视频在线观看| 国产成人一区二区三区免费视频网站 | 一级a爱视频在线免费观看| 精品国产乱码久久久久久男人| av在线播放精品| 久久亚洲国产成人精品v| 久久久国产一区二区| 热re99久久国产66热| 国产又色又爽无遮挡免| 亚洲国产欧美在线一区| 亚洲图色成人| 午夜av观看不卡| 水蜜桃什么品种好| 久久人妻熟女aⅴ| 国产成人a∨麻豆精品| 欧美人与善性xxx| 黑人猛操日本美女一级片| 国产在线观看jvid| 亚洲国产av影院在线观看| 国产成人欧美| 国产精品久久久久久人妻精品电影 | 国产成人一区二区三区免费视频网站 | 国产成人一区二区在线| 亚洲欧洲日产国产| 丝袜喷水一区| 少妇人妻久久综合中文| 国产欧美日韩一区二区三区在线| 成人手机av| 777久久人妻少妇嫩草av网站| 国产有黄有色有爽视频| 午夜日韩欧美国产| 捣出白浆h1v1| 久久综合国产亚洲精品| 国产av一区二区精品久久| av又黄又爽大尺度在线免费看| 十八禁高潮呻吟视频| 99香蕉大伊视频| 亚洲五月色婷婷综合| 欧美xxⅹ黑人| 天天躁日日躁夜夜躁夜夜| 国产一区二区激情短视频 | 亚洲国产成人一精品久久久| 久久精品亚洲av国产电影网| 久久国产精品影院| 伊人亚洲综合成人网| 热99国产精品久久久久久7| 精品国产一区二区三区久久久樱花| 啦啦啦视频在线资源免费观看| 亚洲av美国av| 亚洲国产欧美一区二区综合| 超碰成人久久| 大陆偷拍与自拍| 亚洲成人手机| 19禁男女啪啪无遮挡网站| 午夜免费鲁丝| 亚洲国产精品999| 久久午夜综合久久蜜桃| 午夜免费男女啪啪视频观看| 男女边吃奶边做爰视频| avwww免费| 又粗又硬又长又爽又黄的视频| 天天躁狠狠躁夜夜躁狠狠躁| 一级毛片 在线播放| 精品亚洲乱码少妇综合久久| bbb黄色大片| 中文字幕亚洲精品专区| 一区在线观看完整版| 韩国高清视频一区二区三区| 嫁个100分男人电影在线观看 | 国产精品秋霞免费鲁丝片| 欧美 日韩 精品 国产| 两性夫妻黄色片| 久久久精品区二区三区| 大香蕉久久成人网| 一边摸一边做爽爽视频免费| 丝袜人妻中文字幕| 九色亚洲精品在线播放| 伊人亚洲综合成人网| 亚洲欧美中文字幕日韩二区| 天天操日日干夜夜撸| 欧美精品啪啪一区二区三区 | 成人手机av| 国产亚洲一区二区精品| cao死你这个sao货| 国产片特级美女逼逼视频| 国产成人精品无人区| 成年人午夜在线观看视频| 51午夜福利影视在线观看| 最近手机中文字幕大全| 欧美日韩亚洲综合一区二区三区_| 国产1区2区3区精品| 国产精品.久久久| 男男h啪啪无遮挡| 国产精品.久久久| 91精品国产国语对白视频| 啦啦啦 在线观看视频| 亚洲,一卡二卡三卡| 国产精品九九99| 91精品国产国语对白视频| 视频区欧美日本亚洲| 亚洲国产欧美网| 99国产综合亚洲精品| 欧美乱码精品一区二区三区| 免费观看人在逋| 日韩免费高清中文字幕av| 少妇裸体淫交视频免费看高清 | 久久人人97超碰香蕉20202| 99香蕉大伊视频| 男人舔女人的私密视频| 精品国产一区二区久久| 99久久人妻综合| 亚洲免费av在线视频| av在线老鸭窝| 午夜激情久久久久久久| 在线观看免费视频网站a站| 一级毛片电影观看| 亚洲视频免费观看视频| 青春草亚洲视频在线观看| 黄片小视频在线播放| 人人妻人人添人人爽欧美一区卜| 久久鲁丝午夜福利片| 高清不卡的av网站| 亚洲成色77777| av电影中文网址| 亚洲欧美精品自产自拍| 精品福利观看| 欧美亚洲 丝袜 人妻 在线| 久久久久久免费高清国产稀缺| 欧美人与性动交α欧美精品济南到| 悠悠久久av| 精品国产一区二区久久| 在线观看人妻少妇| 国产精品人妻久久久影院| 男女无遮挡免费网站观看| 国产成人啪精品午夜网站| av视频免费观看在线观看| 制服人妻中文乱码| 男女床上黄色一级片免费看| 黄色毛片三级朝国网站| 天天添夜夜摸| 国产精品熟女久久久久浪| a级毛片在线看网站| 午夜两性在线视频| 别揉我奶头~嗯~啊~动态视频 | 亚洲九九香蕉| 美女国产高潮福利片在线看| 日韩av在线免费看完整版不卡| 精品国产超薄肉色丝袜足j| 99香蕉大伊视频| 亚洲精品一区蜜桃| 亚洲国产欧美在线一区| 久久毛片免费看一区二区三区| 人人澡人人妻人| 国产精品九九99| 国语对白做爰xxxⅹ性视频网站| 亚洲七黄色美女视频| 狂野欧美激情性bbbbbb| 制服诱惑二区| 人人妻,人人澡人人爽秒播 | 新久久久久国产一级毛片| 中文精品一卡2卡3卡4更新| 欧美黑人精品巨大| 青青草视频在线视频观看| 亚洲av日韩精品久久久久久密 | 黄色一级大片看看| 国语对白做爰xxxⅹ性视频网站| 99国产精品一区二区蜜桃av | 国产精品亚洲av一区麻豆| 在线观看免费视频网站a站| 亚洲国产精品一区三区| 五月开心婷婷网| 亚洲自偷自拍图片 自拍| 母亲3免费完整高清在线观看| 亚洲成人免费电影在线观看 | 久久狼人影院| 国产日韩一区二区三区精品不卡| 欧美亚洲日本最大视频资源| 免费观看av网站的网址| 少妇 在线观看| 日本色播在线视频| 91成人精品电影| 亚洲精品国产一区二区精华液| 尾随美女入室| 99九九在线精品视频| 纵有疾风起免费观看全集完整版| 另类精品久久| 十分钟在线观看高清视频www| 久热这里只有精品99| 高潮久久久久久久久久久不卡| 老司机影院毛片| 国产片特级美女逼逼视频| 国产黄频视频在线观看| 亚洲av在线观看美女高潮| 一边亲一边摸免费视频| 人人妻人人爽人人添夜夜欢视频| 国产免费一区二区三区四区乱码| 老鸭窝网址在线观看| 热re99久久精品国产66热6| 亚洲国产av新网站| 日韩欧美一区视频在线观看| 久久精品久久精品一区二区三区| 精品免费久久久久久久清纯 | 国产成人一区二区三区免费视频网站 | 成年美女黄网站色视频大全免费| 亚洲三区欧美一区| 色婷婷av一区二区三区视频| 两个人免费观看高清视频| 日日夜夜操网爽| 狠狠婷婷综合久久久久久88av| 亚洲欧美日韩另类电影网站| 久久这里只有精品19| 亚洲精品久久成人aⅴ小说| 一级毛片女人18水好多 | 亚洲五月色婷婷综合| 免费在线观看黄色视频的| 亚洲第一av免费看| 人人妻人人添人人爽欧美一区卜| 少妇裸体淫交视频免费看高清 | 在线观看一区二区三区激情| 久久国产精品人妻蜜桃| 99国产综合亚洲精品| 一级黄色大片毛片| 菩萨蛮人人尽说江南好唐韦庄| h视频一区二区三区| 脱女人内裤的视频| 国产福利在线免费观看视频| 欧美成人精品欧美一级黄| 大码成人一级视频| 久久久久精品人妻al黑| 色婷婷久久久亚洲欧美| 欧美人与性动交α欧美精品济南到| 少妇精品久久久久久久| 精品第一国产精品| 免费观看人在逋| 国产亚洲一区二区精品| 日韩大片免费观看网站| 欧美黑人欧美精品刺激| 日本欧美国产在线视频| 日本色播在线视频| 国产真人三级小视频在线观看| 黄色a级毛片大全视频| 久久人妻熟女aⅴ| 免费看av在线观看网站| 精品欧美一区二区三区在线| 国产在线视频一区二区| 成年人午夜在线观看视频| 观看av在线不卡| 亚洲国产看品久久| av在线播放精品| 天天操日日干夜夜撸| 久久久久久久国产电影| 国产精品免费大片| 国产免费现黄频在线看| 国产黄色视频一区二区在线观看| 亚洲国产av影院在线观看| 久久久欧美国产精品| 亚洲国产欧美网| 中国美女看黄片| 亚洲av在线观看美女高潮| 欧美精品av麻豆av| 成人亚洲欧美一区二区av| 一边摸一边做爽爽视频免费| 国产97色在线日韩免费| 人人妻人人爽人人添夜夜欢视频| 不卡av一区二区三区| 久9热在线精品视频| 免费少妇av软件| 国产av国产精品国产| 交换朋友夫妻互换小说| 嫩草影视91久久| 中文字幕最新亚洲高清| 你懂的网址亚洲精品在线观看| 婷婷色av中文字幕| 一边亲一边摸免费视频| videosex国产| 亚洲熟女毛片儿| 爱豆传媒免费全集在线观看| 捣出白浆h1v1| 国产精品一区二区精品视频观看| 亚洲伊人久久精品综合| 久久亚洲国产成人精品v| 老司机深夜福利视频在线观看 | 午夜福利视频精品| 视频在线观看一区二区三区| 自线自在国产av| www.熟女人妻精品国产| 一级毛片黄色毛片免费观看视频| 亚洲精品中文字幕在线视频| 国产成人av教育| 国产在线观看jvid| 国产男人的电影天堂91| 考比视频在线观看| 国产免费视频播放在线视频| 婷婷色麻豆天堂久久| av在线老鸭窝| 啦啦啦在线免费观看视频4| 亚洲激情五月婷婷啪啪| 丁香六月天网| 久久精品久久精品一区二区三区| 天天躁夜夜躁狠狠久久av| av天堂在线播放| 久久久久久久久免费视频了| cao死你这个sao货| 午夜免费成人在线视频| 我的亚洲天堂| 国产精品 国内视频| videos熟女内射| 脱女人内裤的视频| 亚洲一码二码三码区别大吗| 国产日韩欧美视频二区| 婷婷色综合大香蕉| 成年动漫av网址| 咕卡用的链子| 制服诱惑二区| 久久久精品免费免费高清| 午夜福利影视在线免费观看| 中文字幕人妻熟女乱码| av视频免费观看在线观看| 中文字幕精品免费在线观看视频| 69精品国产乱码久久久| 热99久久久久精品小说推荐| 欧美性长视频在线观看| 午夜老司机福利片| 中文字幕人妻丝袜一区二区| a 毛片基地| 免费不卡黄色视频| 成年人免费黄色播放视频| 国产精品一区二区精品视频观看| 成人国产av品久久久| 女人高潮潮喷娇喘18禁视频| 久久久久久久精品精品| 免费看十八禁软件| 国产真人三级小视频在线观看|