• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Study on Ice Load Inversion Based on LSTM Networks

    2021-12-31 07:52:50-,-,-,
    船舶力學(xué) 2021年12期

    -,-,-,

    (1.China Ship Scientific Research Center,Wuxi 214082,China;2.College of System Engineering,National University of Defense Technology,Changsha 410000,China;3.Bureau Hyperborea,Saint Petersburg 190000,Russia)

    Abstract: Precise measurement of ice loads in actual navigation has not been worked out well for a long time. To solve the problem better, a new method of ice load inversion based on data is proposed in the paper. The training data to establish the inversion model are generated by finite element calculation. The process of training data generation is described explicitly. The structures of LSTM networks are optimized by the refined grey wolf optimizer algorithm. A valid ice load inversion model based on LSTM networks is trained successfully. The general conclusions and results are illustrated by the concrete calculation samples.

    Key words:ice load;inversion problem;deep learning;LSTM networks;grey wolf optimizer algorithm

    0 Introduction

    Precise determination of loads[1-2]is always a hot issue in the field of structure. For objectives with relative movements, setting mechanical sensors in the contact point is the most effective measure. However, the contact points are not determined easily in the process of ship ice interaction[3],owing to the randomness and uncertainty of ice loads. We can only use the response of the given structure points to distinguish the load,such as stress,strain,displacement and so on.

    The traditional measures of inversion has been applied in engineering widely,such as time-domain method and frequency-domain method. Liu[4]has inverted the ice load with the regularization method,obtaining the analytical formula in simplified structure model.

    This paper presents a new method of ice load inversion based on data, which contains two parts,direct problem and inverse problem.The direct problem needs to predict the ice loads,and to calculate the dynamical response of ship structure in time domain. The predicting values of ice loads are determined by the given natural environmental information. The direct problem generates a mass of original data by inputting different environmental information. The inverse problem uses the above original data to train an LSTM network to fulfil a nonlinear mapping from the dynamic response of ship structure to the average ice loads in time domain.The work trains a successful LSTM network that gains a good result in test data eventually.

    1 Direct problem

    The direct problem is the foundation of the inverse problem. The direct problem needs to predict the ice loads,and to calculate the dynamical response of ship structure in time domain.The direct problem generates a mass of original data by inputting different environmental information.Only when the original data are credible, could the inverse problem establish a valid nonlinear mapping from the dynamic response of ship structure to the average ice loads in time domain.So as a result of shortage of experimental data or actual measurements, the validity of the direct problem exerts a significant influence on the accuracy of inversion model.

    1.1 Natural environment of designed ships

    When an ice-ship is in its preliminary design stages, the designer must confirm ice condition of a given sea area. The ice condition is the most important natural environment information in the process of predicting ice loads. Only after the above data have been mastered, could the designed ice load be calculated with combination of Ice Class and ship’s principle dimensions.

    Figs.1-2 give the examples of partial distributions bar charts for ice cover thickness and for snow cover thickness plotted for February.The two ship navigation routes are Kloguev Island-Kara Gate Strait-Dickson Island (dashed lines) and Decision Island-Vilkitsky Strait-Khatanga River Mouth(solid lines)[5].

    Fig.1 Partial distributions bar chart for ice cover thickness in February

    Fig.2 Partial distributions bar chart for snow cover thickness in February

    A dangerous scenario of a low probability will be selected as the designed scenario in the given navigation routes.Thus,an ice cover of 2 m thick and a snow cover of 0.5 m high are assumed in the paper as the typical dangerous scenario to determine the designed load.

    1.2 Determination of designed ice load

    The values of designed ice load recommended by ship rules and regulations were used widely during the traditional step of determining ice loads. However, the above calculating values of ice loads were usually too high in comparison with the actual situation. Hence, we use the inner ice load procedure Snow-Ice King(SIK) researched and developed by CSSRC to supply a more precise scope of ice load.

    The fundamental form of principles of SIK is the dynamical energy conservation of rigid body motion,supposing that only small deformations occur in contact areas during collision.SIK uses analytical methods that combine external mechanics with ice-force function,and attains the real-time features of ice load during the collision eventually[6-7].

    With the calculating parameters shown in Tab.1,the outcomes calculated by SIK were plotted in Fig.3 and Fig.4.The results illuminate the real-time variation of ice load in a typical calculating scenario,whose summit value is approximately about 4 MN.

    Tab.1 Calculating parameters

    Fig.3 Ice load in time-domain

    Fig.4 Relative speed in time-domain

    Fig.3 also illuminates the square wave features of ice force as one kind of impact load.To gain the dynamical response of structures in different ice conditions, it is inevitable to use the ice load curve in time domain. So in the next step, we will put different ice conditions into the SIK procedure based on the ice probability distribution.

    1.3 Calculation of the dynamical responses of structures

    When a ship interacts with an ice flow, the crushing ice will melt and be extruded forming the inner thin layer[8], as shown in Fig.5. The existence of an inner thin layer has been testified widely in accordance with the outcomes of experiments and actual measurements. Because there exist the viscosity and plasticity among the contact area in the flowing inner thin layer,the distribution of ice load will be altered to a rather smooth parabola during the solid body penetration into the ice, as shown in Fig.6.

    The mechanism of ship-ice collision load is explained by applying basic theory of the inner thin layer. The influence of nonlinear term was taken into account, and the explicit expression formula containing relative velocity was derived,as the following Eq.(1).The formula was embedded in SIK as an essential portion of ice load inversion work simultaneously.

    Fig.5 Illustration of inner thin layer

    Fig.6 Distribution of ice load in space

    whereυis the coefficient of viscosity,ρis density,ζ˙is the relative velocity,bis the breadth of contact area,his the thickness of inner thin layer,andxis the coordinate of collision point.

    This sort of ice loads’distribution will be applied in the contact areas to calculate the structural strength in the next step.

    The given ship is an ice navigation vessel with the authentication of PC5.The principal dimensions of the vessel are given in Tab.1. The simplified finite element model of the ship part-cabin is established in software ABAQUS, as shown in Fig.7. The element size is generally 300 mm. The model contains 145 309 nodes and 81 633 elements,with 28 231 elements of the linear wedge type and 53 402 elements of the linear hexahedral type. The elements of the hexahedral type are more stable and nearly free of severe distortion,so this kind of elements were used as many as possible at the time of meshing models. The materials of the part-cabin is NV AH-50, NV DH-50 and NV AH-36 with the 20 mm-thick ship hull plates,as shown in Tab.2.

    Tab.2 Material properties of the part-cabin

    Fig.7 Model of FEM

    Fig.8 Calculating outcome of FEM

    The calculating step is completed through the general finite element software ABAQUS. The real-time ice force in Fig.3 is added into the process of calculating dynamical responses of structures. The analyzing time domain is set as two seconds, and the calculating outcome in final step is shown in Fig.8.

    The Mises stress of about 304 MPa was responded under the action of ice loads, it was still in the range of material’s linear elasticity, less than the yield strength. But the calculating outcomes are enough to indicate the dangerousness of ice load that exceeds the yield strength 235 MPa of the ordinary steel vastly.

    We select the point whose Mises stress is the maximum in the structure as the inversion measuring point. The total analyzing time is partitioned into 20 tiny time steps. After each finite element analysis,there will be one by twenty matrix storing the variation of the inversion measurement point’s Mises stress in time domain. The analogous process is executed by 750 times on the condition of 750 different ice conditions.

    2 Inverse problem

    Traditional inversion methods contain frequency-domain inversion and time-domain inversion, which calculate the Duhamel integral of responses of each tiny time step based on the classical analytical solutions of simplified structures. Eventually, the responses of structures in time domain could be fulfilled. Although the analytical inversion method can attain a strong law and a fine result,the accuracy of inversion outcome could not be well guaranteed.

    The method proposed in this paper is based on data, capable of successfully overcoming the obstacle of analyzing the complicated structure. Through the tool of deep learning, the LSTM networks are established and trained well.Although the method presented in this paper obtains a pretty good result in test data,the interpretability of inversion model based on data is still worth further investigation.It is also the very reason why many methods based on data are denounced widely.

    2.1 Calculation of the dynamical responses of structures

    Deep learning neural networks (DNN) have emerged as a powerful learning technique to perform complex tasks in highly nonlinear systems[9]. Comparing with the BP neural network, DNN has a better ability to learn based on optimization of an appropriate error function and their excellent performance for approximation of nonlinear functions,as shown in Fig.9[10].

    Fig.9 BP neural networks and multi-layer feedforward neural network

    Compared with the multi-layer feed forward neural network,recurrent neural network(RNN)can cope with the time series prediction more effectively,store more time information and share parameters with each node in the same layer by the memory cell, as shown in Fig.10. Through the sharing weights and biases, the parameters of RNN are much fewer than those of the all-connected networks.

    Fig.10 Recurrent neural network

    However,with the time steps going,the gradient exploding and diffusion are very easy to occur in the process of training.To overcome the above problems,the LSTM network is created,as shown in Fig.11.

    Fig.11 LSTM network

    LSTM networks are one form of the recurrent neural network, and have three special gates to control the status of the hidden layer.The three gates are forgetting gate,input gate and output gate.It avoids the gradient exploding and diffusion by the above three gates.The states of every step will be updated by two gates:memory gate and input gate.

    The primary concern in the process of training the networks is how to construct networks’structures and choosing approximate core algorithm[11]. To train a strong nonlinear neural network successfully, massive work of scheduling hyper-parameters has been the major obstacle for all the time.Such work relies too much on the engineering experiences of the executor.

    Owing to the above reasons, an artificial intelligent algorithm named grey wolf optimization(GWO)[12]is used to optimize the structure of LSTM networks.All the work is under the frame of Python language.

    2.2 Improvement of GWO

    GWO is one of the swarm intelligence algorithm, which simulates the social behaviors in the group of wolfs and takes them as heuristic rules in the process of optimization. It has been proved by masses of experiments that GWO has a better trait of convergence and a stronger search capability,compared with the other conventional swarm intelligence algorithms.

    It is assumed that there is aD-dimensional searching space, and the position of each wolf could be denoted by a vectorXi=(Xi1,Xi2,…,XiD), and the whole society is composed byNwolfs,so we can use the a group of vectorsXshowing the conditions of the whole wolf society,Xi=(X1,X2,…,XN).

    After each iteration,the position of each wolf would be updated as the following Eqs.(2)-(3):

    whereXα,Xβ,Xδare the position of the best solutions,the second solution,and the third solution.The concrete rules of updating and other parameters are introduced in Ref.[12].

    To accelerate the speed of optimizing convergence, this paper introduces another rules of competition.

    The original three best solutions in theithof iteration are stored in ListA,as Eq.(4).

    where functionGmeans that the best three solutions are selected in the specified list.

    However,the position of each wolf in classic GWO is continuous,the parameters of LSTM networks are discrete.So we should add the other restrict conditions in the process of optimization,as Eq.(7).

    where function round()is the function of rounding off.

    If one of the items equals zero, then the item will be deleted,and the dimension of the group of vectors would be degenerated toD-1, which means theD-1 layers of LSTM networks, and the value of each items represents the number of nodes in each layer.

    3 Calculating samples

    The direct problem is the foundation of the inverse problem.Only when the direct problem generates a series of valid original data, could the inverse problem use the above data, establishing a nonlinear mapping from the dynamic response of ship structure to the average ice loads in time domain. So as a result of shortage of experimental data or actual measurements, the validity of direct problem exerts a significant influence on the accuracy of inversion model.

    In this case, the level ice condition ranges from 1 m to 2.5 m. The depth of networks and the number of each layer are optimized by the GWO and the LSTM networks with high-quality performance are trained successfully. The final outputs in time sequences are set as the predicting outcomes of inverse problems—average ice-load in time domain and nominal thickness of ice. The function of calculating the accuracy rate is shown in Eq.(8).

    wherekis the accuracy of prediction,Nis the numbers of data,yis the value of prediction,andy0is the value of labels.The process of inversion based on data is shown in Fig.12.

    Fig.12 Process of inversion based on data

    The world is set as two parts, the virtual world and the real world. The virtual world is created by the computer, where the training data are generated by the Fortran ice load program and the Abaqus software.Through the training data,we establish the LSTM networks with high-quality performance.

    The LSTM network is the bridge between the real world and the virtual world.When the actual responses of structures is put into the LSTM network,the average ice-load in time domain and nominal thickness of ice could be inverted successfully.

    700 sets of data are chosen as training data,and the actual responses of structures as test data.However, owing to the absence of actual measurement of ice load in navigation, the remaining 50 sets of data have to be treated as test data.Although this paper mainly concentrates on a new method of ice inversion based on data, the accuracy of real test data is still very worth fulfilling in the next research.

    The number of wolf and the iteration is set to be 10 in grey wolf optimization algorithm.The ultimate outcome of LSTM network optimized by grey wolf optimization algorithm is shown in the Tab.3.

    Tab.3 Outcome of prediction

    After optimization of the LSTM’s structure in 10 iterations, the accuracy rate of prediction increased from 75%to 98%.The number of hidden layer degenerated into one.

    4 Conclusions

    A new method of ice inversion based on data proposed in this paper is totally different from the traditional analytical method. LSTM networks with high-quality performance are fulfilled successfully to invert the ice load. Besides, the grey wolf optimization algorithm is refined to adopt to optimize the structure of LSTM.The following conclusions are drawn:

    (1)The method of ice load inversion based on data could get a decent outcome in the process of ice load inversion.

    (2) The refined grey wolf optimization algorithm proposed in this paper could optimize the structures of LSTM networks well.

    (3) The number of hidden layers of LSTM networks in the process of ice load inversion should not be too large,and is recommend as one.

    (4) Although this paper mainly concentrated on a new method of ice inversion based on data,the accuracy of real test data is still very worth fulfilling in the next research.

    婷婷色麻豆天堂久久 | 日本黄大片高清| 国产真实伦视频高清在线观看| 久久亚洲精品不卡| 99九九线精品视频在线观看视频| 国产老妇伦熟女老妇高清| 亚洲av电影不卡..在线观看| 白带黄色成豆腐渣| 婷婷六月久久综合丁香| 国产成人a∨麻豆精品| 嘟嘟电影网在线观看| 国产精品电影一区二区三区| 国产女主播在线喷水免费视频网站 | 亚洲欧美日韩东京热| 蜜桃亚洲精品一区二区三区| 中文字幕av在线有码专区| 国产一级毛片七仙女欲春2| 精品一区二区免费观看| 一本久久精品| 亚洲三级黄色毛片| 国产精品一区二区性色av| 日韩大片免费观看网站 | 色5月婷婷丁香| 国产三级中文精品| 国产亚洲91精品色在线| 能在线免费观看的黄片| 国产又色又爽无遮挡免| 亚洲精品,欧美精品| 精品久久国产蜜桃| 国产麻豆成人av免费视频| 国产色婷婷99| 日本-黄色视频高清免费观看| 99久久中文字幕三级久久日本| 免费搜索国产男女视频| 级片在线观看| 一级黄色大片毛片| 97超视频在线观看视频| 日韩欧美精品免费久久| 成人综合一区亚洲| 亚洲精品日韩在线中文字幕| 久久综合国产亚洲精品| 久久精品久久久久久久性| 欧美高清成人免费视频www| 久久久亚洲精品成人影院| 长腿黑丝高跟| 国产麻豆成人av免费视频| 国产欧美日韩精品一区二区| 婷婷色麻豆天堂久久 | 亚洲经典国产精华液单| 97超视频在线观看视频| 男人和女人高潮做爰伦理| 国产又黄又爽又无遮挡在线| 国产一级毛片七仙女欲春2| 国产成年人精品一区二区| 亚洲va在线va天堂va国产| 午夜久久久久精精品| 老司机影院毛片| 91av网一区二区| 国产欧美另类精品又又久久亚洲欧美| 久久精品影院6| 欧美+日韩+精品| 国产色婷婷99| 99久久人妻综合| 91久久精品国产一区二区三区| 97在线视频观看| 搡老妇女老女人老熟妇| 丰满少妇做爰视频| 亚洲四区av| 欧美3d第一页| 少妇的逼水好多| 网址你懂的国产日韩在线| 亚洲精品aⅴ在线观看| 亚洲精品日韩av片在线观看| 亚洲精品色激情综合| 亚洲av熟女| 亚洲国产色片| 亚洲美女搞黄在线观看| 久久久欧美国产精品| 日韩,欧美,国产一区二区三区 | 青青草视频在线视频观看| 国产精品久久视频播放| 国产一区有黄有色的免费视频 | av在线观看视频网站免费| 激情 狠狠 欧美| 三级国产精品片| 91狼人影院| 91av网一区二区| 欧美zozozo另类| 精品99又大又爽又粗少妇毛片| 白带黄色成豆腐渣| 国产国拍精品亚洲av在线观看| 简卡轻食公司| 天天一区二区日本电影三级| 日韩大片免费观看网站 | 人体艺术视频欧美日本| 久久精品影院6| 熟女人妻精品中文字幕| 亚洲在久久综合| 亚洲精品成人久久久久久| 国产成人a∨麻豆精品| 级片在线观看| ponron亚洲| 国产精品爽爽va在线观看网站| 99热全是精品| 国语自产精品视频在线第100页| 亚洲伊人久久精品综合 | 国产白丝娇喘喷水9色精品| 热99在线观看视频| 久久久国产成人免费| 午夜视频国产福利| 色噜噜av男人的天堂激情| 亚洲五月天丁香| 十八禁国产超污无遮挡网站| 久久久午夜欧美精品| 免费大片18禁| 午夜久久久久精精品| 1000部很黄的大片| 午夜亚洲福利在线播放| 久久久久久久亚洲中文字幕| 91久久精品电影网| 国产精品av视频在线免费观看| 国产高清视频在线观看网站| 久久6这里有精品| 日本黄色片子视频| 天堂网av新在线| 在线观看66精品国产| 永久免费av网站大全| 久久精品夜夜夜夜夜久久蜜豆| 我要搜黄色片| 国产亚洲精品久久久com| 成人二区视频| av专区在线播放| 欧美最新免费一区二区三区| 亚洲欧美精品专区久久| 五月玫瑰六月丁香| 少妇猛男粗大的猛烈进出视频 | 国产高清视频在线观看网站| 日韩欧美三级三区| 毛片女人毛片| 国产色婷婷99| 日韩一本色道免费dvd| 麻豆国产97在线/欧美| 2021少妇久久久久久久久久久| 又爽又黄无遮挡网站| 午夜精品一区二区三区免费看| 天堂中文最新版在线下载 | 久久欧美精品欧美久久欧美| av国产久精品久网站免费入址| 男女那种视频在线观看| 黄片无遮挡物在线观看| 69av精品久久久久久| 99久国产av精品| 国产 一区 欧美 日韩| 在线免费十八禁| 亚洲人与动物交配视频| 一级爰片在线观看| 亚洲精品aⅴ在线观看| 亚洲精品乱久久久久久| 亚洲精品影视一区二区三区av| 青春草国产在线视频| 国产欧美日韩精品一区二区| 国产午夜福利久久久久久| 在线观看一区二区三区| 国产精品女同一区二区软件| 在线免费十八禁| 丝袜喷水一区| 成人亚洲欧美一区二区av| 黄片wwwwww| 天美传媒精品一区二区| 久久精品国产亚洲网站| 中文字幕av在线有码专区| 欧美一区二区精品小视频在线| 丰满人妻一区二区三区视频av| 嫩草影院入口| 欧美另类亚洲清纯唯美| 熟妇人妻久久中文字幕3abv| 亚洲精品亚洲一区二区| 日日撸夜夜添| 日韩,欧美,国产一区二区三区 | 99久久精品热视频| 校园人妻丝袜中文字幕| 韩国高清视频一区二区三区| 国产黄色视频一区二区在线观看 | 少妇熟女欧美另类| 国产综合懂色| av天堂中文字幕网| 免费播放大片免费观看视频在线观看 | 国产一区二区在线av高清观看| 18禁裸乳无遮挡免费网站照片| 亚洲精品456在线播放app| 欧美日本视频| 亚洲精品乱码久久久久久按摩| 亚洲av福利一区| videossex国产| 99热这里只有精品一区| 国产精品.久久久| 国内揄拍国产精品人妻在线| 久久6这里有精品| 欧美极品一区二区三区四区| 日本熟妇午夜| 日韩精品有码人妻一区| 欧美xxxx黑人xx丫x性爽| 国产乱人偷精品视频| 免费av不卡在线播放| 精品久久久久久电影网 | 直男gayav资源| www.av在线官网国产| 婷婷色综合大香蕉| 国产亚洲91精品色在线| 搡老妇女老女人老熟妇| 午夜激情欧美在线| 特大巨黑吊av在线直播| 亚洲精华国产精华液的使用体验| 欧美一区二区精品小视频在线| 久久久久久久久久黄片| 亚洲高清免费不卡视频| 内地一区二区视频在线| 看免费成人av毛片| 国产一区二区三区av在线| 国产亚洲最大av| 精品一区二区三区视频在线| 免费人成在线观看视频色| 身体一侧抽搐| 一边亲一边摸免费视频| 能在线免费观看的黄片| 99久久精品一区二区三区| 边亲边吃奶的免费视频| 免费不卡的大黄色大毛片视频在线观看 | 亚洲av免费在线观看| 免费黄色在线免费观看| 亚洲第一区二区三区不卡| 久久99热这里只频精品6学生 | 色综合亚洲欧美另类图片| 国产麻豆成人av免费视频| av天堂中文字幕网| 亚洲欧美日韩卡通动漫| 97超碰精品成人国产| 亚洲av男天堂| 欧美另类亚洲清纯唯美| 少妇人妻一区二区三区视频| 最近2019中文字幕mv第一页| 日本免费在线观看一区| 91精品伊人久久大香线蕉| 国产在线男女| 亚洲国产欧洲综合997久久,| 中文在线观看免费www的网站| 国产亚洲5aaaaa淫片| 久久久久九九精品影院| 亚洲色图av天堂| a级毛片免费高清观看在线播放| 又爽又黄a免费视频| 中文欧美无线码| 国内精品宾馆在线| 欧美日韩综合久久久久久| 青春草亚洲视频在线观看| 老女人水多毛片| 97人妻精品一区二区三区麻豆| 日本欧美国产在线视频| 欧美日韩综合久久久久久| 综合色丁香网| 亚洲欧美成人精品一区二区| 九色成人免费人妻av| 一区二区三区乱码不卡18| 在线播放无遮挡| 中文精品一卡2卡3卡4更新| 亚洲国产成人一精品久久久| 国产精品福利在线免费观看| 亚洲人与动物交配视频| 91久久精品电影网| 一本一本综合久久| 久久精品国产亚洲av涩爱| 亚洲av男天堂| 一级毛片久久久久久久久女| 日韩中字成人| 亚洲av熟女| 国产探花在线观看一区二区| 成人毛片a级毛片在线播放| 高清av免费在线| 一边摸一边抽搐一进一小说| 成人一区二区视频在线观看| 91午夜精品亚洲一区二区三区| 免费观看人在逋| 真实男女啪啪啪动态图| 汤姆久久久久久久影院中文字幕 | 亚洲精品,欧美精品| 欧美xxxx黑人xx丫x性爽| 看黄色毛片网站| 五月伊人婷婷丁香| 日韩高清综合在线| 亚洲av中文字字幕乱码综合| 亚洲真实伦在线观看| 99国产精品一区二区蜜桃av| videos熟女内射| 国产三级中文精品| 99在线人妻在线中文字幕| 久久人人爽人人片av| 色综合色国产| 国产伦精品一区二区三区视频9| 男人的好看免费观看在线视频| 久久久久久久久中文| 久久亚洲精品不卡| 水蜜桃什么品种好| 国产精品一区二区三区四区免费观看| 99在线人妻在线中文字幕| 免费在线观看成人毛片| 人妻制服诱惑在线中文字幕| 日韩中字成人| 国产老妇伦熟女老妇高清| 不卡视频在线观看欧美| 亚洲av.av天堂| 麻豆乱淫一区二区| 色网站视频免费| 18禁在线播放成人免费| 亚洲人成网站高清观看| 免费看a级黄色片| 成人无遮挡网站| 99热精品在线国产| 看非洲黑人一级黄片| 一本久久精品| 久久人妻av系列| av播播在线观看一区| 男人和女人高潮做爰伦理| 免费看光身美女| 3wmmmm亚洲av在线观看| 国产片特级美女逼逼视频| 欧美潮喷喷水| 中文欧美无线码| 最后的刺客免费高清国语| 看片在线看免费视频| 亚洲精品自拍成人| 插阴视频在线观看视频| 国产亚洲精品av在线| 美女国产视频在线观看| 男插女下体视频免费在线播放| 真实男女啪啪啪动态图| 熟女电影av网| 久久久久久大精品| 超碰97精品在线观看| 亚洲成色77777| 色哟哟·www| 如何舔出高潮| 久久热精品热| 中文字幕熟女人妻在线| 女的被弄到高潮叫床怎么办| 国语自产精品视频在线第100页| 99久久精品热视频| 国产精品嫩草影院av在线观看| 波多野结衣巨乳人妻| 热99在线观看视频| 水蜜桃什么品种好| 人人妻人人澡人人爽人人夜夜 | 国产精品一区二区性色av| 日韩成人av中文字幕在线观看| 乱码一卡2卡4卡精品| 亚洲av中文av极速乱| 97热精品久久久久久| 国产午夜精品论理片| 色吧在线观看| 久久精品国产亚洲网站| 亚洲电影在线观看av| 狂野欧美激情性xxxx在线观看| 日韩视频在线欧美| 97在线视频观看| 精品久久久久久久人妻蜜臀av| 久久精品综合一区二区三区| kizo精华| 精品免费久久久久久久清纯| 国产精品一区二区三区四区免费观看| 美女内射精品一级片tv| 国产老妇女一区| 能在线免费看毛片的网站| 国产老妇女一区| 一本久久精品| 永久免费av网站大全| 1024手机看黄色片| 国内少妇人妻偷人精品xxx网站| 精品人妻熟女av久视频| 国产精品国产三级专区第一集| 免费在线观看成人毛片| 97人妻精品一区二区三区麻豆| 国产v大片淫在线免费观看| 91av网一区二区| 美女高潮的动态| 精品人妻偷拍中文字幕| 91精品伊人久久大香线蕉| 久久精品91蜜桃| 最近视频中文字幕2019在线8| 99久久人妻综合| 波多野结衣高清无吗| 久久国内精品自在自线图片| 国内精品一区二区在线观看| a级毛片免费高清观看在线播放| 欧美成人午夜免费资源| 亚洲精品久久久久久婷婷小说 | 麻豆精品久久久久久蜜桃| av在线蜜桃| 丝袜美腿在线中文| 国产午夜精品一二区理论片| 又粗又硬又长又爽又黄的视频| 国产精品久久久久久久久免| 22中文网久久字幕| 国产在视频线精品| 日韩,欧美,国产一区二区三区 | 男女那种视频在线观看| 精华霜和精华液先用哪个| 观看美女的网站| 91狼人影院| 国产精品女同一区二区软件| 韩国高清视频一区二区三区| 国产免费福利视频在线观看| 女人十人毛片免费观看3o分钟| 国产在线男女| 精品久久久久久电影网 | 亚洲真实伦在线观看| 1024手机看黄色片| 国产精品国产三级国产av玫瑰| 久久精品国产99精品国产亚洲性色| 亚洲精品aⅴ在线观看| 丝袜美腿在线中文| 日韩在线高清观看一区二区三区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 免费av不卡在线播放| 在线观看美女被高潮喷水网站| 国产精品电影一区二区三区| 日日撸夜夜添| 女的被弄到高潮叫床怎么办| 亚洲真实伦在线观看| 99久国产av精品国产电影| 国内精品美女久久久久久| 亚洲成人久久爱视频| 只有这里有精品99| 亚洲av不卡在线观看| 少妇被粗大猛烈的视频| 国产大屁股一区二区在线视频| av免费在线看不卡| 天堂av国产一区二区熟女人妻| 久久久久久久午夜电影| 中国美白少妇内射xxxbb| 亚洲av一区综合| 天堂av国产一区二区熟女人妻| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲国产欧洲综合997久久,| 非洲黑人性xxxx精品又粗又长| 亚洲最大成人中文| 一个人免费在线观看电影| 精品久久久久久久人妻蜜臀av| 有码 亚洲区| 国产在视频线在精品| 久久这里只有精品中国| 日本三级黄在线观看| 国产精品无大码| 亚洲综合精品二区| 色5月婷婷丁香| 超碰av人人做人人爽久久| 一个人看视频在线观看www免费| 久久99热这里只频精品6学生 | 小说图片视频综合网站| 在线观看美女被高潮喷水网站| 国产色爽女视频免费观看| 欧美日韩在线观看h| 非洲黑人性xxxx精品又粗又长| 成人毛片a级毛片在线播放| 男插女下体视频免费在线播放| 午夜福利在线观看免费完整高清在| 精品人妻熟女av久视频| 日韩中字成人| 久久久久久久亚洲中文字幕| 国产一区二区在线av高清观看| 国产精品野战在线观看| 亚洲自偷自拍三级| 国产精品蜜桃在线观看| 午夜精品国产一区二区电影 | 午夜a级毛片| 久久精品久久久久久久性| 亚洲av中文av极速乱| 国产成人aa在线观看| 国产免费一级a男人的天堂| 亚洲欧美日韩高清专用| 精品熟女少妇av免费看| 男插女下体视频免费在线播放| av天堂中文字幕网| 午夜福利在线观看吧| 欧美最新免费一区二区三区| 亚洲五月天丁香| 国内精品一区二区在线观看| 69人妻影院| 日韩,欧美,国产一区二区三区 | 久久久久国产网址| 日韩成人av中文字幕在线观看| 国产伦一二天堂av在线观看| 成人漫画全彩无遮挡| 亚洲国产日韩欧美精品在线观看| 久久久精品94久久精品| 欧美变态另类bdsm刘玥| АⅤ资源中文在线天堂| 中国美白少妇内射xxxbb| 亚洲高清免费不卡视频| 天天躁夜夜躁狠狠久久av| 女的被弄到高潮叫床怎么办| 亚洲av成人av| 欧美激情国产日韩精品一区| 99久久精品国产国产毛片| 日韩精品青青久久久久久| 18禁动态无遮挡网站| 亚洲国产欧洲综合997久久,| 一个人看视频在线观看www免费| 午夜免费激情av| 蜜臀久久99精品久久宅男| 直男gayav资源| 麻豆国产97在线/欧美| 亚洲欧美日韩东京热| 国产精品熟女久久久久浪| 亚洲精品久久久久久婷婷小说 | 免费观看a级毛片全部| 国产综合懂色| 欧美一区二区亚洲| 精品国产露脸久久av麻豆 | 尤物成人国产欧美一区二区三区| 色综合站精品国产| 一个人看的www免费观看视频| 久99久视频精品免费| 黄片wwwwww| 国产大屁股一区二区在线视频| 亚洲av免费在线观看| 欧美潮喷喷水| 国产精品精品国产色婷婷| 国产精品乱码一区二三区的特点| 最近视频中文字幕2019在线8| 欧美激情国产日韩精品一区| 免费搜索国产男女视频| 免费av不卡在线播放| 日本爱情动作片www.在线观看| 欧美人与善性xxx| av在线播放精品| 99久久九九国产精品国产免费| 国产精品久久久久久av不卡| 精品不卡国产一区二区三区| 国产精华一区二区三区| 欧美日韩综合久久久久久| 男人的好看免费观看在线视频| 国产免费福利视频在线观看| 亚洲欧美日韩高清专用| 午夜福利网站1000一区二区三区| 国产片特级美女逼逼视频| 国产爱豆传媒在线观看| 在线免费观看不下载黄p国产| 在线观看av片永久免费下载| 韩国av在线不卡| 日日啪夜夜撸| 久久久国产成人精品二区| 日产精品乱码卡一卡2卡三| 成人鲁丝片一二三区免费| 男人舔女人下体高潮全视频| 免费一级毛片在线播放高清视频| 亚洲国产精品成人综合色| 亚洲精品aⅴ在线观看| 99热这里只有精品一区| 综合色av麻豆| 高清午夜精品一区二区三区| 一级av片app| 变态另类丝袜制服| 亚洲成色77777| 免费在线观看成人毛片| 爱豆传媒免费全集在线观看| 日韩,欧美,国产一区二区三区 | 日本色播在线视频| 日韩视频在线欧美| 免费搜索国产男女视频| 日日啪夜夜撸| 又黄又爽又刺激的免费视频.| 搡老妇女老女人老熟妇| 午夜福利高清视频| 日本三级黄在线观看| 欧美性猛交╳xxx乱大交人| 永久网站在线| 中文字幕亚洲精品专区| 色综合站精品国产| 国产熟女欧美一区二区| 欧美丝袜亚洲另类| 亚洲av.av天堂| 久久精品国产亚洲av涩爱| 国产精品久久久久久精品电影小说 | 精品无人区乱码1区二区| 美女黄网站色视频| 国产探花极品一区二区| 能在线免费观看的黄片| 日日撸夜夜添| 日韩国内少妇激情av| 亚洲国产精品成人久久小说| 日韩制服骚丝袜av| 亚洲,欧美,日韩| 男人和女人高潮做爰伦理| 久久精品夜夜夜夜夜久久蜜豆| 免费人成在线观看视频色| 国产精品久久视频播放| 亚洲欧美精品专区久久| 一级毛片aaaaaa免费看小| 能在线免费看毛片的网站| 亚洲精品日韩av片在线观看| 麻豆一二三区av精品| 美女cb高潮喷水在线观看| 婷婷色综合大香蕉| 国产成人午夜福利电影在线观看| 毛片女人毛片| 成人国产麻豆网| 亚洲性久久影院| 成人性生交大片免费视频hd| 亚洲av男天堂| 国内精品一区二区在线观看| 久久人人爽人人片av| 五月玫瑰六月丁香| 国产精品1区2区在线观看.| 又爽又黄无遮挡网站| 色综合站精品国产| 午夜福利在线观看免费完整高清在|