• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Main Engine Power Prediction for Large Vessels Based on Gaussian Mixture Model and Deep Neural Network

    2021-12-31 07:49:28-,,-,-,,-,
    船舶力學 2021年12期

    -,,-,-,,-,

    (1.School of Information Science&Engineering,Lanzhou University,Lanzhou 730000,China;2.College of Electronic Information,Guangxi University for Nationalities,Nanning 530006,China)

    Abstract: The marine main engine power is an important data for prediction of fuel consumption during navigation and for evaluation of exhaust emissions. However, the absence of vessel main engine power data hinders the prediction of fuel consumption and emissions of vessels based on large data.A main engine power prediction method for large vessels based on Gaussian mixture model (GMM) and deep neural network (DNN)is proposed in this paper to solve this problem.Firstly,the vessel data are analysed for correlation, and ship features which have large correlation coefficients with the engine power are selected as input of the GMM-DNN hybrid model. Then the clustering algorithm GMM is used to analyse ship characteristics,the result of which is used as an input of DNN.Finally,with DNN optimized by Adam-Dropout, the vessel power is predicted by DNN. In order to explore the effectiveness of the method, the multiple linear regression analysis, nonlinear regression, DNN and GMMDNN with respect to the main engine power prediction of vessels are compared.The experiment shows that the MAPE of GMM-DNN is 14.57%, which is 28.27% lower than that of multiple linear regression, 23.36% lower than that of non-linear regression, and 1.24% lower than that of DNN and shows that the GMM-DNN model is the best in the main engine power prediction for large vessels.

    Key words:main engine power;Gaussian mixture model(GMM);deep neural network(DNN)

    0 Introduction

    With the continuous development of shipping and shipbuilding industry,the type,quantity and tonnage of vessels are increasing. Therefore, the shipping economy and environmental pollution assessment[1-2]is becoming more and more important. However, the vessel power data of Marine-traffic (a global ship tracking and service platform) and the ship net are not disclosed at present. The missing and inaccessible vessel power data have a great influence on the prediction and optimization of fuel consumption[3]and the assessment of vessel exhaust emissions[4-5]. It is more and more important to get the main engine power of vessels[6].

    Nowadays, the prediction methods of the main engine power can be divided into three categories. The first category is multiple regression analysis, such as multiple linear regression, nonlinear regression, and etc.. Based on polynomial regression, Zhou et al[7]obtained regression formulas for the main power and main sizes of fishing and cargo vessels, and determined the power estimation method of the main engines for the inland ships. Based on the AIS data of 200 000 vessels around the world, Polish scholar Tomasz[8]obtained the regression formula of the parameters between load,design speed and length, breadth, draft, main engine power by regression analysis method. The regression formula can be used in the ship preliminary design. But it cannot be directly used to estimate the main engine power of vessels because load and design speed are not easy to obtain.

    The second category is traditional machine learning, such as support vector machine (SVM),random forest regressor (RFR), and etc.. Gkerekos et al[9]presented a comparison between many methods for predicting ship main engine fuel oil consumption (FOC)based on vessel,in which various multiple regression algorithms including SVM, RFR, extra trees regressor (ETR), artificial neural network(ANN),and ensemble methods are employed.Based on a database of 400 vessels,Liu et al[10]established a prediction method for the effective power of vessels by using SVM. But the database data used in the experiment were too old,and there were few new ships in the last decade.

    The third category is deep learning, such as deep neural network (DNN), convolution neural network (CNN)[11]and etc.. With the development of artificial intelligence, DNN has incomparable advantages in fitting high dimensional nonlinear functions. Bal Be?ik?i et al[12]used an inexact method of artificial neural network (ANN) to predict ship fuel consumption for various operational conditions, and developed a decision support system (DSS) employing ANN-based fuel prediction model to be used on board ships on a real time basis for energy efficient ship operations. Farag et al[13]employed a combined technique of ANN and multi-regression (MR)to estimate the vessel power and fuel consumption.

    In the report as shown in Ref.[14], there were 95 402 vessels (more than 100 GT propelling vessels) with a total capacity of 1.970 billion DWT in early 2019. These vessels differ greatly in structure,size,materials,purposes and other aspects.Even with the same type of vessel,their main dimensions and various parameters are different.Therefore,the identification of vessel main engine power cannot be distinguished by a single parameter. Based on the rough set theory, Tian et al[15]proposed a classification method for the vessel main engine power data, and extracted attribute set and decision set that can represent vessel information.Gao et al[16]used GMM to conduct clustering analysis on ship speed, main engine power and fuel consumption, and mined the data of the lowest fuel consumption under different working conditions.Raptodimos et al[17]used a two-stage approach to cluster the key performance parameters for a panamax container ship main engine cylinder. Initially,the data were clustered using the artificial neural network (ANN)-self-organizing map (SOM)and then the clusters were inter-clustered using the Euclidean distance metric into groups.

    Based on the above theory,this paper proposes a new method to predict the main engine power of vessel based on GMM and DNN, with DNN specifically referring to an artificial neural network(ANN)with more layers,which has a stronger ability to model and create abstraction,and can simulate more complex models.Firstly,correlation analyses are made on ship features,and ship features with large power correlation coefficients are selected to the main engine as the input of GMM-DNN.Then, GMM is used to identify and cluster the main engine power, and the clustering results,length, breadth and depth of the vessel are used as the input of DNN. Finally, Adam-Dropout is used to optimize DNN for prediction of the main engine power. In order to explore the effectiveness of the method, we compare the estimation results of multiple linear regression, multiple nonlinear regression[18],DNN and GMM-DNN on the main engine power.

    1 Construction of GMM-DNN model

    The structure of the GMM-DNN model used in the paper is shown in Fig.1. The model consists of GMM, DNN and Adam-Dropout optimizer. In the figure,Lis the length of vessel,Bis the breadth,Dis the depth,Tis the vessel type,Cis the clustering result of GMM,giis the GMM input andGis the aggregation ofgi.

    Fig.1 Structure of GMM-DNN

    GMM is used for identification and clustering of ship features.In this paper,T,L,BandDare selected as input features. We considered that the input featuregifollows a Gaussian distribution expressed by Eq.(1).The probability density of all featuresGcan be expressed as the weighted sum of a single Gaussian density and expressed by Eq.(2).

    In Eqs.(1)-(2),nis the data dimension,Mis the mixing coefficient,ωiis the weight,σiis the covariance matrix of vector,anduiis the mean value of vector.

    GMM uses expectation-maximization (EM)[19]algorithm to estimate parameters. Firstly, the model needs the number of clusters,we need to obtain the estimated value of parameters and calculate the probability of data points belonging to the corresponding cluster.Then,the maximum likelihood function is used to divide the data points into clusters with higher probability.The mean value and covariance of GMM are updated at the same time. Finally, we need to repeat the above two steps until the likelihood function converges and the cluster ends, then the mean value and covariance matrices of GMM are obtained. After clustering, the clustering labels and ship features are sent into DNN.

    The structure of the DNN model is shown in Fig.2. The model is composed of an input layer, multiple hidden layers and an output layer. In this figure,aiis the offset parameter between the input layer and hidden layer, andxiis the input.

    In the model training, the input vectorsX(L,B,D,T,C) linearly add to the weightωi jand bias termajwhen passing through hidden layer neurons, and we obtainAjin the output layer after the nonlinear activation function, as shown in Eq.(3), where the activation function adopts the ReLu function,whose definition is Eq.(4).

    Fig.2 Structure of DNN

    Then,the output of the hidden layer(Aj)passes through full connection layer and outputsOk,as shown in Eq.(5).

    whereekis the prediction error,ηis learning rate,ωi jis the weight between input layer and hidden layer,ai jis the offset parameter between input layer and hidden layer,ωjkis the weight between hidden layer and output layer,andbkis the offset parameter between hidden layer and output layer.

    In order to accelerate the convergence speed of the model and prevent the model from falling into local optimization,the adaptive moment estimation (Adam)optimizer is adopted to optimize the network parameters[19].The optimization strategy is Eqs.(8)-(10).

    wheregtis the gradient of time-stept,mtis a biased first moment estimate,vtis a biased second raw moment estimate, bothβ1andβ2are exponential decay rates for the moment estimates,m^tis a bias-corrected first moment estimate,v^tis a bias-corrected second raw moment estimate,Mtis a parameter,and?is a very small constant.

    In order to solve over-fitting problems of a neural network withL-layer hidden layer,the Dropout is used to randomly reset the partial weight or outputs of any neuron in the hidden layer to zero.The principle is Eqs.(11)-(12)[20].

    2 Experiment and analysis

    2.1 Experimental data

    The experimental data are 8 000 vessels which come from China Classification Society[21], including more than 30 fields,such as ship name,call sign,length,breadth,depth,type,main engine model, main engine power, and etc.. There are more than 10 types of vessels, including tankers,bulk freighters, container ships, chemical ships, tugboats, cargo ships and passenger ships. The basic experimental data are shown in Tab.1.

    Tab.1 Basic information of experimental data

    Tab.1(Continued)

    The paper makes the correlation analysis of the experimental data,and the correlation coefficient matrix diagram is shown in Fig.3. It can be seen that the correlation coefficientRbetween main engine power and length, breadth, depth is 0.82, 0.72 and 0.74 respectively, and shows a strong positive correlation.

    2.2 Experiment

    2.2.1 Data preparation

    In the paper, the data of 8 000 vessels are preprocessed.We not only delete the data which lack the field information, such as length(L), breadth(B), depth(D), type(T) and main engine power(P), but also delete the data which do not meet the screening standard.3698 pieces of data that meet the criteria are obtained and their order is randomly disrupted.

    Fig.3 Correlation diagram of experimental data

    The vessel type adopts One-Hot coding and for other fields of the vessel, data are normalized by Eq.(14).

    whereX′ is the normalized data,XmaxandXminare the maximum and minimum values of the sample respectively.

    2.2.2 Evaluation indicator of GMM-DNN model

    In the paper, the experiment is evaluated by mean-square error (MSE), root mean-square error(RMSE),absolute percentage error (APE)and mean absolute percentage error (MAPE).The definitions are shown in Eqs.(15)-(18),whereNis the number of samples,yiandf( )xiare the true and predictive values for theith sample points.

    2.2.3 Model establishing

    Artificial neural network library (Keras) is used in experiments to build GMM-DNN model.The hidden layer is a fully-connected neural network.The loss function isMSEin Eq.(15).

    The preprocessed data are randomly divided into training set and test set according to the proportion of 7:3.The model parameters are randomly initialized and trained by back propagation algorithm.Minimum values are obtained by multiple training to prevent the model from falling into local optimum.After the model training,the optimal training model is saved.

    The trained model and input ship features are loaded in experiments so the main engine power can be predicted.At the same time,the prediction effect is evaluated by Eqs.(15)-(18).

    2.3 Experimental results and analysis

    2.3.1 Exploration of the best input type of DNN

    In this paper, the optimal parameters of GMM-DNN model are determined by using multiple parameters and multiple experiments. Firstly, it is necessary to explore the optimal network layer number and neuron number of DNN. In the experiment, we use SGD, Adam and Adam-Dropout to optimize the model.The number of hidden layers is set as 3-13,the neurons number of each hidden layer is set as 1-50, and the number of iterations is set as 100-1000, then the experimental step and batch-size are set as 100 and 20 separately. Multiple experiments show that the best results can be got when there are 5 hidden layers and 11 neurons of each hidden layer in the model.Finally, 10 parallel experiments with six different input combinations are performed using the above rules.The best results of every experiment are recorded in Tab.2.Among these different input combinations, the input combination of‘L,B,DandT’shows the most outstanding prediction effect and itsMAPEof test set is 15.81%.

    Tab.2 Comparison of DNN using different input combinations and optimizers

    2.3.2 Main engine power prediction effect of GMM-DNN

    In this paper,GMM uses ship characteristics to classify ships,DNN uses clustering results and ship characteristics to predict the main engine power.Firstly,the inputs of GMM and DNN are separately set asL,B,D,TandL,B,D,T,C. Then multiple experiments show that the clustering effect is the best when the number of GMM clusters is set as 4.Finally,a hundred vessel samples are randomly selected to evaluate the trained GMM-DNN models. The evaluation results are shown in Fig.4.

    Fig.4 Comparison of predicted values and real values

    In this experiment,theMAPEof GMM-DNN is 14.57%,the maximum and minimumAPEare 40.75%and 0.23%respectively.

    The comparison of prediction effect between DNN and GMM-DNN based on the same dataset is shown in Fig.5.

    Fig.5 Comparison of predicted values and real values

    It can be seen from the figure that the error of GMM-DNN is smaller than that of DNN, which indicates that the GMM-DNN proposed in this paper effectively improves the anti-interference ability and the practicability of the system.Multiple experiments show that GMM can discover clustering rules hidden in a large number of data without any prior knowledge.In addition,as a pre-processing step of DNN, GMM can discover deeper knowledge. In this experiment, GMM can identify the same type of vessels and even different types of vessels with similar principal dimensions.It improves the overall efficiency and quality of the model.

    2.3.3 Effect comparison of four models of main engine power prediction

    In order to compare the prediction effect with the GMM-DNN mentioned above,we use a multivariate linear regression equation established by IBM SPSS? software, whose optimal parameters are obtained by multiple experiments. The main engine power is set as a dependent variable. The different combinations ofL,B,DandTare set as independent variables, where the vessel type needs to be converted into virtual variable. The model summary is shown in Tab.3. In the model,Ris the multiple correlation coefficient andR2is the proportion of explainable variance in the dependent variable variance.

    Tab.3 Model summary

    The experimental results show that when the independent variables areL,B,DandT,theR2of the model achieves the largest value while the standard error achieves the smallest one.The prediction of this model is effective and the results of variance analysis (ANOVA)are shown in Tab.4.

    Tab.4 ANOVA

    In the experiment,F-test is the overall test of the whole regression equation. Based onFboundary table,the critical value ofFis 1 669 248 303 and it is lower than that in Tab.4.So,every explanatory variable has a significant impact on the dependent variable and the sig value is less than 0.05.The model has statistical significance.

    One hundred vessel samples are randomly selected to evaluate the trained model. TheRMSEof the main engine power is 4 870.717 0 kW and theMAPEis 42.86%.

    The nonlinear regression equation is also obtained by SPSS.The main engine power is set as a dependent variable. The product ofL,BandDis set as the variable. The summary of model curve estimation is shown in Tab.5.

    The experimental results show that when the curve is a power function,R2achieves the largest value and the significant result is 0.000. This model passes the test of significance and the prediction is most effective.The regression results of this model are shown in Fig.6.

    Based on the same pre-processed data, multivariate linear regression, nonlinear regression,and DNN are compared with GMM-DNN proposed in this paper.The experimental results are shownin Tab.6.TheMAPEof GMM-DNN is 14.57%,which is 28.27% lower than that of multiple linear regression, 23.36% lower than that of non-linear regression, and 1.24% lower than that of DNN. It can be seen that GMM-DNN has the best effect in the engine power prediction for large vessels.

    Tab.5 Summary of model curve estimation

    Fig.6 Regression analysis of power function

    3 Concluding remarks

    Tab.6 Results of different methods on power prediction

    In this study,a power prediction method of main engine based on Gaussian mixture model and deep neural network is presented.The experimental results show that the accuracy of this method is significantly improved compared with the traditional method in the engine power prediction for large vessels.This method will provide methodological guidance and data support for perfecting engine power data of large vessels, and for predicting global vessel fuel consumption and regional exhaust emissions.

    精品久久久精品久久久| 国产午夜精品一二区理论片| 欧美人与性动交α欧美软件| 一本色道久久久久久精品综合| 久久免费观看电影| 亚洲国产精品999| 亚洲国产精品国产精品| 免费黄色在线免费观看| 色视频在线一区二区三区| 欧美日韩视频精品一区| 夫妻性生交免费视频一级片| 亚洲国产看品久久| 婷婷色av中文字幕| 精品国产国语对白av| 欧美日韩亚洲国产一区二区在线观看 | 欧美成人午夜精品| 高清不卡的av网站| 日韩中文字幕视频在线看片| 久久99精品国语久久久| 久久国产精品大桥未久av| 日韩欧美一区视频在线观看| 国产成人欧美| 色婷婷久久久亚洲欧美| 丁香六月欧美| 国产成人啪精品午夜网站| 国产 一区精品| 免费女性裸体啪啪无遮挡网站| 蜜桃在线观看..| 新久久久久国产一级毛片| 天堂俺去俺来也www色官网| 一边摸一边抽搐一进一出视频| 丁香六月欧美| 综合色丁香网| 国产精品三级大全| xxx大片免费视频| 日本一区二区免费在线视频| 国产成人精品久久二区二区91 | 久久人妻熟女aⅴ| 国产精品久久久人人做人人爽| 欧美成人精品欧美一级黄| 一本大道久久a久久精品| 亚洲情色 制服丝袜| 性少妇av在线| 这个男人来自地球电影免费观看 | 亚洲国产欧美在线一区| 制服诱惑二区| 男女免费视频国产| 99re6热这里在线精品视频| 免费黄频网站在线观看国产| 亚洲精品第二区| 少妇猛男粗大的猛烈进出视频| 日韩熟女老妇一区二区性免费视频| 欧美成人午夜精品| 亚洲欧美中文字幕日韩二区| 黑人欧美特级aaaaaa片| 亚洲伊人久久精品综合| 一级,二级,三级黄色视频| 女人久久www免费人成看片| a级片在线免费高清观看视频| 亚洲av在线观看美女高潮| 麻豆精品久久久久久蜜桃| 国产在视频线精品| 两个人看的免费小视频| 久久久久视频综合| 日本午夜av视频| 一级片免费观看大全| 在线天堂最新版资源| 91精品三级在线观看| 男人添女人高潮全过程视频| 久久久久久久大尺度免费视频| a级毛片黄视频| netflix在线观看网站| 国产一区二区 视频在线| √禁漫天堂资源中文www| 男女国产视频网站| 亚洲av电影在线观看一区二区三区| 人人澡人人妻人| 久久久久精品国产欧美久久久 | av又黄又爽大尺度在线免费看| 男人操女人黄网站| 国产精品 国内视频| 伊人亚洲综合成人网| 国产av精品麻豆| 性高湖久久久久久久久免费观看| 国产探花极品一区二区| 免费看不卡的av| 午夜影院在线不卡| 国产深夜福利视频在线观看| 国产 精品1| 国产精品熟女久久久久浪| 毛片一级片免费看久久久久| 青青草视频在线视频观看| www.精华液| 成年女人毛片免费观看观看9 | 卡戴珊不雅视频在线播放| 国产亚洲最大av| 高清av免费在线| 大码成人一级视频| 精品久久蜜臀av无| 亚洲国产欧美在线一区| 国产97色在线日韩免费| 日韩大片免费观看网站| 少妇被粗大猛烈的视频| 国产精品偷伦视频观看了| av在线观看视频网站免费| 国产精品 国内视频| 亚洲国产精品一区二区三区在线| 国产精品.久久久| 一本一本久久a久久精品综合妖精| 国产毛片在线视频| 人妻一区二区av| 亚洲,欧美,日韩| 免费在线观看完整版高清| 国产精品香港三级国产av潘金莲 | 国产亚洲av高清不卡| 欧美日韩av久久| 亚洲国产精品成人久久小说| 男男h啪啪无遮挡| 大片免费播放器 马上看| 一二三四中文在线观看免费高清| 青春草亚洲视频在线观看| 中国三级夫妇交换| 一本—道久久a久久精品蜜桃钙片| 亚洲av男天堂| 人人妻人人澡人人看| 成年女人毛片免费观看观看9 | 亚洲av福利一区| 最近最新中文字幕免费大全7| 精品国产一区二区久久| 亚洲天堂av无毛| 日本色播在线视频| 成人黄色视频免费在线看| 亚洲精品视频女| 日韩人妻精品一区2区三区| 久久久亚洲精品成人影院| 天天躁夜夜躁狠狠久久av| 夫妻性生交免费视频一级片| 亚洲国产日韩一区二区| 婷婷成人精品国产| 我要看黄色一级片免费的| 毛片一级片免费看久久久久| 一本大道久久a久久精品| 热re99久久精品国产66热6| 九九爱精品视频在线观看| 国产又爽黄色视频| 国产精品久久久人人做人人爽| 欧美黑人欧美精品刺激| 国产av精品麻豆| 亚洲第一区二区三区不卡| 免费观看人在逋| 成年美女黄网站色视频大全免费| 精品国产一区二区三区久久久樱花| 黑丝袜美女国产一区| 波野结衣二区三区在线| 天天添夜夜摸| 大陆偷拍与自拍| 肉色欧美久久久久久久蜜桃| 肉色欧美久久久久久久蜜桃| 亚洲av日韩在线播放| 久久久久久久久久久久大奶| 日韩av不卡免费在线播放| 婷婷色麻豆天堂久久| 国产精品无大码| 亚洲天堂av无毛| 99精品久久久久人妻精品| 久久久久精品久久久久真实原创| 国产精品欧美亚洲77777| 亚洲情色 制服丝袜| 久久精品国产综合久久久| 精品少妇内射三级| 午夜日韩欧美国产| 女人爽到高潮嗷嗷叫在线视频| 免费在线观看视频国产中文字幕亚洲 | 黄色怎么调成土黄色| 精品一区二区三区av网在线观看 | 男的添女的下面高潮视频| av网站免费在线观看视频| 精品福利永久在线观看| 午夜日本视频在线| 制服诱惑二区| 操出白浆在线播放| 日韩不卡一区二区三区视频在线| 亚洲伊人久久精品综合| 亚洲av福利一区| www.熟女人妻精品国产| 午夜免费鲁丝| 亚洲成人手机| 又黄又粗又硬又大视频| 日本欧美国产在线视频| 久久久久国产精品人妻一区二区| 韩国av在线不卡| 飞空精品影院首页| 精品一品国产午夜福利视频| 欧美黄色片欧美黄色片| 成人免费观看视频高清| 久久人妻熟女aⅴ| 日韩av不卡免费在线播放| 在线观看免费日韩欧美大片| 欧美人与性动交α欧美精品济南到| 国产麻豆69| 多毛熟女@视频| 国产成人免费无遮挡视频| 免费在线观看视频国产中文字幕亚洲 | 国产日韩欧美视频二区| 韩国高清视频一区二区三区| 黑人巨大精品欧美一区二区蜜桃| 天天躁狠狠躁夜夜躁狠狠躁| 午夜福利乱码中文字幕| 国产成人一区二区在线| 精品国产一区二区三区久久久樱花| 大话2 男鬼变身卡| 久久天躁狠狠躁夜夜2o2o | 看免费成人av毛片| 欧美日韩亚洲综合一区二区三区_| 99精国产麻豆久久婷婷| 最新的欧美精品一区二区| 日本一区二区免费在线视频| 爱豆传媒免费全集在线观看| 成人影院久久| 国产免费视频播放在线视频| 国产精品欧美亚洲77777| 制服人妻中文乱码| 欧美日韩一级在线毛片| www.熟女人妻精品国产| 五月天丁香电影| 在线观看www视频免费| 在线观看一区二区三区激情| 国产午夜精品一二区理论片| 欧美日本中文国产一区发布| 国产精品 国内视频| 日本av免费视频播放| 性少妇av在线| www.精华液| 午夜日韩欧美国产| 久久久精品区二区三区| 国产乱人偷精品视频| 欧美激情 高清一区二区三区| 欧美日韩综合久久久久久| 满18在线观看网站| 中文欧美无线码| 国产精品三级大全| 国产精品久久久久成人av| 国产亚洲av高清不卡| 欧美av亚洲av综合av国产av | 在线观看免费午夜福利视频| 在线观看三级黄色| 天美传媒精品一区二区| 午夜91福利影院| 丰满饥渴人妻一区二区三| 97在线人人人人妻| 久久毛片免费看一区二区三区| 久久国产精品大桥未久av| 亚洲国产欧美一区二区综合| 看非洲黑人一级黄片| 大片电影免费在线观看免费| 久久99热这里只频精品6学生| 免费日韩欧美在线观看| 欧美 日韩 精品 国产| 午夜影院在线不卡| 19禁男女啪啪无遮挡网站| 交换朋友夫妻互换小说| 亚洲天堂av无毛| 亚洲国产中文字幕在线视频| 啦啦啦视频在线资源免费观看| www日本在线高清视频| 蜜桃国产av成人99| 在线精品无人区一区二区三| 汤姆久久久久久久影院中文字幕| 一本色道久久久久久精品综合| 美国免费a级毛片| 国产乱人偷精品视频| 日韩,欧美,国产一区二区三区| 国产精品久久久久久人妻精品电影 | 青春草国产在线视频| 国产在线一区二区三区精| 人妻一区二区av| 国产福利在线免费观看视频| 人人妻人人澡人人看| 久久久久精品国产欧美久久久 | 欧美久久黑人一区二区| 丰满少妇做爰视频| 亚洲精品中文字幕在线视频| 男女无遮挡免费网站观看| 久久鲁丝午夜福利片| 欧美精品人与动牲交sv欧美| 欧美日韩一级在线毛片| 伦理电影免费视频| 亚洲精品日本国产第一区| 亚洲熟女毛片儿| 国产又爽黄色视频| 黑丝袜美女国产一区| 精品国产一区二区久久| 午夜福利视频精品| 韩国av在线不卡| 18禁国产床啪视频网站| 成人毛片60女人毛片免费| 哪个播放器可以免费观看大片| 国产亚洲午夜精品一区二区久久| 毛片一级片免费看久久久久| 国产精品一二三区在线看| 精品视频人人做人人爽| 欧美日韩综合久久久久久| 中文欧美无线码| 欧美少妇被猛烈插入视频| 美国免费a级毛片| 久久久久久久大尺度免费视频| 一区二区日韩欧美中文字幕| 亚洲成色77777| 国产精品一国产av| 国产精品一区二区在线不卡| 久久久久精品性色| 亚洲成人免费av在线播放| 日韩熟女老妇一区二区性免费视频| 国产极品天堂在线| 日韩av免费高清视频| av国产久精品久网站免费入址| 黄色 视频免费看| 国产精品久久久人人做人人爽| 天堂中文最新版在线下载| 日韩一卡2卡3卡4卡2021年| 久久精品久久精品一区二区三区| 麻豆精品久久久久久蜜桃| 精品视频人人做人人爽| av.在线天堂| 国产精品秋霞免费鲁丝片| 黄色怎么调成土黄色| 日韩一区二区三区影片| 赤兔流量卡办理| 欧美在线一区亚洲| 国产精品亚洲av一区麻豆 | 欧美精品高潮呻吟av久久| 免费高清在线观看日韩| 亚洲一卡2卡3卡4卡5卡精品中文| 中国国产av一级| 久热爱精品视频在线9| 搡老岳熟女国产| 色网站视频免费| 在线观看免费午夜福利视频| 国产一区二区 视频在线| 亚洲欧美中文字幕日韩二区| 亚洲国产毛片av蜜桃av| 精品国产一区二区三区久久久樱花| 国产极品粉嫩免费观看在线| 久久97久久精品| 亚洲成人一二三区av| 欧美激情 高清一区二区三区| 1024视频免费在线观看| 多毛熟女@视频| 黄色视频在线播放观看不卡| 在线观看一区二区三区激情| av视频免费观看在线观看| 天堂中文最新版在线下载| 国产97色在线日韩免费| 99九九在线精品视频| 18禁动态无遮挡网站| 国产在线视频一区二区| 波多野结衣一区麻豆| 久久热在线av| 韩国av在线不卡| 宅男免费午夜| 国产精品国产三级专区第一集| 亚洲av电影在线观看一区二区三区| 久久精品久久久久久久性| 一本一本久久a久久精品综合妖精| 亚洲精品日韩在线中文字幕| 欧美中文综合在线视频| 精品福利观看| 日韩欧美一区二区三区在线观看| 69av精品久久久久久| 色尼玛亚洲综合影院| 少妇 在线观看| 久热这里只有精品99| av超薄肉色丝袜交足视频| 多毛熟女@视频| 亚洲人成网站在线播放欧美日韩| 一区二区日韩欧美中文字幕| 久久精品91无色码中文字幕| 久久伊人香网站| 变态另类成人亚洲欧美熟女 | 无人区码免费观看不卡| 国产1区2区3区精品| 自线自在国产av| 叶爱在线成人免费视频播放| 国内精品久久久久久久电影| 搞女人的毛片| 国产精品二区激情视频| 国产精品秋霞免费鲁丝片| 成人国产综合亚洲| 深夜精品福利| 69精品国产乱码久久久| 一区二区三区国产精品乱码| 日本五十路高清| 欧美日韩乱码在线| 午夜久久久在线观看| 在线观看66精品国产| 色综合站精品国产| 校园春色视频在线观看| 亚洲三区欧美一区| 19禁男女啪啪无遮挡网站| 免费不卡黄色视频| 亚洲国产精品合色在线| 免费av毛片视频| 极品人妻少妇av视频| 欧美性长视频在线观看| 久久中文看片网| 国产精品美女特级片免费视频播放器 | 一级,二级,三级黄色视频| 9色porny在线观看| 此物有八面人人有两片| 欧美成人性av电影在线观看| 亚洲欧洲精品一区二区精品久久久| 在线观看www视频免费| videosex国产| 久久草成人影院| 成人特级黄色片久久久久久久| 亚洲成av片中文字幕在线观看| 女警被强在线播放| av电影中文网址| 国产蜜桃级精品一区二区三区| 国产色视频综合| 久久国产亚洲av麻豆专区| 亚洲自拍偷在线| 亚洲精华国产精华精| 亚洲色图综合在线观看| 亚洲成人精品中文字幕电影| 久久天躁狠狠躁夜夜2o2o| 99精品在免费线老司机午夜| 久久久国产欧美日韩av| 99riav亚洲国产免费| 看片在线看免费视频| 欧美在线黄色| 嫁个100分男人电影在线观看| netflix在线观看网站| 久久亚洲精品不卡| 午夜福利视频1000在线观看 | 在线免费观看的www视频| 精品无人区乱码1区二区| 变态另类成人亚洲欧美熟女 | 级片在线观看| 老熟妇仑乱视频hdxx| 性色av乱码一区二区三区2| av天堂久久9| 午夜视频精品福利| 两个人视频免费观看高清| 久久人妻av系列| 日本五十路高清| 久久精品91无色码中文字幕| 国产激情欧美一区二区| 日本三级黄在线观看| 9热在线视频观看99| 色综合站精品国产| 人妻丰满熟妇av一区二区三区| 国产欧美日韩一区二区三| 久久久久久亚洲精品国产蜜桃av| 一区二区三区激情视频| 亚洲九九香蕉| 欧美一级a爱片免费观看看 | 非洲黑人性xxxx精品又粗又长| 在线观看66精品国产| 午夜亚洲福利在线播放| 亚洲情色 制服丝袜| 搡老岳熟女国产| 亚洲人成电影观看| 欧美绝顶高潮抽搐喷水| 99精品欧美一区二区三区四区| 亚洲一区高清亚洲精品| 激情视频va一区二区三区| 一个人观看的视频www高清免费观看 | 欧美激情 高清一区二区三区| 欧美人与性动交α欧美精品济南到| 9热在线视频观看99| 国产精品日韩av在线免费观看 | 国产一区二区三区视频了| 性色av乱码一区二区三区2| xxx96com| 99re在线观看精品视频| 麻豆国产av国片精品| 欧美激情久久久久久爽电影 | 大码成人一级视频| 亚洲国产欧美日韩在线播放| 欧美激情高清一区二区三区| 黄色a级毛片大全视频| 免费少妇av软件| 一级作爱视频免费观看| 亚洲欧美精品综合一区二区三区| or卡值多少钱| 9色porny在线观看| 啦啦啦免费观看视频1| 中文字幕人妻熟女乱码| 在线观看66精品国产| 国产av精品麻豆| 久久人妻av系列| 久久国产精品男人的天堂亚洲| 操出白浆在线播放| 久久香蕉精品热| 精品免费久久久久久久清纯| 怎么达到女性高潮| 在线观看一区二区三区| 97超级碰碰碰精品色视频在线观看| 中文亚洲av片在线观看爽| videosex国产| 一卡2卡三卡四卡精品乱码亚洲| ponron亚洲| 中国美女看黄片| 国产精品亚洲美女久久久| 欧美黄色片欧美黄色片| 性欧美人与动物交配| 老司机靠b影院| 视频在线观看一区二区三区| 欧美乱色亚洲激情| 亚洲精品粉嫩美女一区| 最新美女视频免费是黄的| 男人舔女人的私密视频| 欧美乱妇无乱码| 岛国在线观看网站| 亚洲av电影在线进入| 久久人妻av系列| 日韩成人在线观看一区二区三区| 久99久视频精品免费| 亚洲电影在线观看av| av网站免费在线观看视频| 美国免费a级毛片| 老汉色av国产亚洲站长工具| 亚洲国产精品久久男人天堂| 久久久国产欧美日韩av| 国产精品美女特级片免费视频播放器 | 久久天躁狠狠躁夜夜2o2o| 国产亚洲精品av在线| 国产精品一区二区三区四区久久 | 久久人妻福利社区极品人妻图片| 午夜久久久久精精品| 午夜影院日韩av| 国产极品粉嫩免费观看在线| 久久国产精品影院| 亚洲aⅴ乱码一区二区在线播放 | av在线播放免费不卡| 无人区码免费观看不卡| 曰老女人黄片| 99国产综合亚洲精品| 99精品在免费线老司机午夜| 99在线人妻在线中文字幕| 日日夜夜操网爽| 19禁男女啪啪无遮挡网站| 波多野结衣巨乳人妻| 丝袜美腿诱惑在线| 两性午夜刺激爽爽歪歪视频在线观看 | www.精华液| 美女免费视频网站| 操美女的视频在线观看| 欧美在线黄色| 大码成人一级视频| 亚洲av成人不卡在线观看播放网| 一边摸一边抽搐一进一小说| 成年版毛片免费区| 男女之事视频高清在线观看| 人人澡人人妻人| 亚洲视频免费观看视频| 国产精品久久电影中文字幕| 午夜免费成人在线视频| 精品熟女少妇八av免费久了| 久久久久亚洲av毛片大全| 亚洲五月婷婷丁香| 精品福利观看| 久久久久久久精品吃奶| 久久 成人 亚洲| 欧美黑人欧美精品刺激| 国产av一区在线观看免费| 国产又色又爽无遮挡免费看| 女人被狂操c到高潮| 亚洲伊人色综图| 很黄的视频免费| 久久久久亚洲av毛片大全| 国产区一区二久久| 涩涩av久久男人的天堂| 国产精品亚洲av一区麻豆| 国产在线观看jvid| 色av中文字幕| 免费少妇av软件| 一卡2卡三卡四卡精品乱码亚洲| 一区福利在线观看| 国产aⅴ精品一区二区三区波| 免费av毛片视频| 制服人妻中文乱码| 国产成年人精品一区二区| 亚洲天堂国产精品一区在线| 久久精品国产亚洲av香蕉五月| 日本在线视频免费播放| 日韩欧美一区视频在线观看| 色尼玛亚洲综合影院| 日韩欧美一区二区三区在线观看| 日本在线视频免费播放| 久久久国产欧美日韩av| 亚洲成a人片在线一区二区| 欧美日本亚洲视频在线播放| 极品人妻少妇av视频| 久久人人精品亚洲av| 97超级碰碰碰精品色视频在线观看| 亚洲精品在线观看二区| 午夜老司机福利片| 日本五十路高清| 最新在线观看一区二区三区| 97人妻精品一区二区三区麻豆 | 老司机深夜福利视频在线观看| 欧美日韩亚洲综合一区二区三区_| netflix在线观看网站| 免费观看人在逋| 在线十欧美十亚洲十日本专区| 两个人视频免费观看高清| 欧美精品亚洲一区二区| 18美女黄网站色大片免费观看| 亚洲电影在线观看av| 99久久精品国产亚洲精品| 日本欧美视频一区| 午夜成年电影在线免费观看| 久久中文看片网|