• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Free-running Maneuvering Simulations for a Submarine Using Direct CFD Approach

    2021-12-31 07:49:28-,,-,-
    船舶力學(xué) 2021年12期

    -,,-,-

    (1.No.92578 Unit of the PLA,Beijing 100161,China;2.College of Naval Architecture and Ocean Engineering,Naval University of Engineering,Wuhan 430033,China)

    Abstract: Predicting spatial maneuverability accurately is of great importance for a submarine in its initial design. To obtain an efficient and reliable maneuvering prediction tool, a direct computational fluid dynamic (CFD) simulation method based on integral moving mesh is presented and applied to simulate maneuvers of the notional submarine model DRDC-STR.To reduce computational resources,propeller and control surface are modeled as external body forces,which are applied as functions selfdefined in Star CCM+.These external body forces are related to the submarine’s instantaneous sailing state and vary per time step. The coefficient-based model developed from tremendous static and dynamic tests by Watt is also introduced to provide credible data for reference. Two types of maneuvers were simulated: space spiral turning and vertical zigzag. Results show that the current CFD method can reproduce time histories of the most motion parameters with acceptable precision, and the plentiful flow details also indicate that current CFD approach is feasible and powerful for direct simulation of submarine’s unconventional maneuvers.

    Key words:submarine;direct CFD simulation;coefficient-based simulation;space spiral turning;vertical zigzag

    0 Introduction

    Submarine’s spatial maneuverability has attracted an increasing attention recently with the development of anti-submarine technology worldwide. Traditional approaches to perform simulations of a six-degree free-running submarine mainly rely on the coefficient-based method,through which the force and moment acting on the body are prescribed by hydrodynamic derivatives. Compared with free-running model tests, coefficient-based approaches are extremely fast and efficient from a cost perspective. Several coefficient-based models have been developed in the past decades, and a well-known version is the model derived by David Taylor Naval Ship Research and Development(Gertler et al, 1967)[1]. Feldman (1979)[2]revised Gertler’s equations by adding unsteady terms in the hydrodynamic force expressions to model the fluid memory and transverse flow effect. But in Feldman’s equations, coefficients are generally set using information from incidence angles less than 18 degrees, which is inadequate for extreme motions, such as high maneuvers in emergency.Recently a new maneuvering model (Watt, 2007)[3]was developed based on a series of experiments that were performed in a wind tunnel and a towing tank(Mackay,2003)[4].Emergency rising and horizontal plane zigzag maneuvers have been applied based on this model (Bettle et al 2014)[5],and the results show that it is suitable for analysis of a submarine’s spatial maneuverability with high incidence.However,although CFD can be used to obtain submarine’s maneuvering coefficients,coefficient-based simulation requires almost 100 coefficients, which are not easy to acquire for a newtype submarine.In addition,coefficient-based methods are essentially quasi-steady models that neglect the unsteady viscous effects, and the complex flow fields around the submarine are also very difficult to characterize.

    As computers and numerical methods have advanced, a few institutions have realized direct computations of submarine’s 6 DOF (six degree-of-freedom) maneuvers. Chase et al (2013)[6-7]computed self-propulsion, horizontal overshoot, and surfacing maneuvers of DARPA Suboff model,but there were no reference data to contrast.Martin et al(2015)[8]applied the same approach to simulate horizontal overshoot,high-speed vertical overshoot and controlled turn maneuvers,and the results show that CFD approach can reproduce the experimental results for all parameters with errors typically within 10%.Simulations of buoyantly rising and zigzag maneuvers based on URANS methodology were also presented by Bettle et al (2009[9], 2014[5]) with a notional submarine and the purpose of that lecture was to demonstrate the ability of URANS method to reproduce submarine’s 6 DOF motion.Based on the commercial CFD code Star CCM+ (Coe,2013)[10]presented maneuvering simulations of an autonomous underwater vehicle. The author used a simple actuator disk to model the propeller and overset mesh methodology was employed for rudder deflections. Dubbioso et al(2017)[11]performed turning circle maneuver simulations for a submarine model equipped with two different rudder configurations taking the free surface effect into consideration.In this case,the dynamical overlapping grid algorithm was adopted to simulate complex geometries in relative motion.Though many scholars have realized direct CFD simulations of free-running submarines, this work needs high-performance computing resources, and the relevant literature is relatively scarce with examples.More efficient methods need to be developed for reliable submarine maneuvering simulations in further study.

    Herein, simulations of space spiral turning and vertical zigzag maneuvers of DRDC-STR submarine scale model were performed through a direct CFD method. To reduce cost, appendages deflection and propeller rotation were modeled as body forces.Integral moving mesh was introduced to perform submarine’s 6 DOF motion, through which reconfiguration of the mesh and interpolations between subdomains could be avoided.The same maneuvers were also conducted by using a coefficient-based model to provide credible data for reference.

    1 Model of 6 DOF motion

    1.1 Geometry

    The object studied in this paper is the DRDC-STR submarine, designed by Defence Research and Development of Canada, but at a 6:70 scale. Meanwhile it is also the research version of Canadian Navy Victoria class submarine. The entire model is a body of revolution equipped with a sail,two horizontal planes and two vertical rudders.The main geometrical particulars of this model are illustrated in Fig.1, and detailed properties of the current model related to submarine’s maneuverability are shown in Tab.1.

    Fig.1 Principal particulars of the DRDC-STR submarine model

    Tab.1 Main characteristics of the DRDC-STR submarine model

    1.2 Coordinate system

    For analyzing the motions of the submarine in 6 DOF,it is convenient to define two coordinate frames as indicated in Fig.2. The moving coordinate frameO-xyzis conveniently fixed to the submarine, namely the body-fixed reference frame. While the other is an Earth-fixed coordinate or an inertial coordinateE-ξηζwith the positive depthζpointing downwards.In the following,(ξ0,η0,ζ0)and(φ,θ,ψ)are the translation displacements and rotation angles of the object in Earth-fixed coordinate system. The definitions of linear velocity (u,v,w), angular velocity (p,q,r), external forces,and moments refer to the body-fixed coordinate.

    Fig.2 Definition of coordinate systems

    1.3 6 DOF module

    The rigid model obeys Newton’s second law for submarine’s translational and rotation. The concrete equations of 6 DOF motion are shown in Eqs.(1)~(2).

    whereFandMare the total force and moment acting on the submarine, respectively,B=(mu mv mw)is the momentum,K=(Ix p Iy q Iz r)is the moment of momentum,V=(u v w)is the submarine’s velocity,andΩ=(p q r)is the angular velocity.

    2 Coefficient-based method

    The coefficient-based model presented by Watt (2007)[3]is rewritten in this chapter. The forces and moments acting on the submarine can be described as functions of submarine state vectory=(u v w p q r ξ0η0ζ0φ θ ψ),as shown in Eq.(3).

    whereXH,YH,ZH,KH,MHandNHrepresents the hydrodynamic loads acting on the hull of the submarine,XC,YC,ZC,KC,MCandNCrepresent the modeled control forces due to tail fin deflection,andXPandKPindicate propeller thrust and torque.

    3 Direct CFD method

    3.1 Governing equations and turbulence models

    The Reynolds-averaged Navier-Stokes (RANS) equations are the governing equations to represent the kinematics and dynamics of viscous fluid, which are the kernel to calculate the 3-D viscous flow around the submarine in this paper.The specific form of RANS equations is shown as follows.

    whereρ,μ,pandfiare the fluid density, viscosity coefficient, hydrostatic pressure and mass force per unit respectively;uiandujare the fluid velocity components; and the overbar (·) denotes timeaveraged components.

    To close RANS equations, Wilcoxk-ωand SSTk-ωturbulence were chosen to solve for the viscous flow field around the submarine. The detailed derivation process and parameter selection can be found in the work by Larsson et al(2010)[12].

    3.2 Mesh approach

    Star-CCM+, which is a commercial CFD code, has provided many mesh discretization methods and the self-adapting trim mesh was chosen to perform calculations in present paper.The principle and concrete steps for the self-adapting trim mesh discretization can be seen in the reference written by Zhou et al (2017)[13]. Meanwhile, to resolve the viscous flow field around the submarine accurately, refinement grids were established in both submarine’s surface and near-field region withy+~1 to satisfy the turbulence model’s requirement. An overview of the computational meshes on the surface of the DRDC-STR model is shown in Fig.3. The computational region is cuboid-shaped with the size of 6.4L×3.4L×3.8Laround the submarine, whereLis the length of the submarine and the number of computed cells is about 328 million for the whole region.

    Fig.3 Surface mesh discretization

    The integral moving mesh was applied to simulate submarine 6-DOF motion. Compared with grid deformation and overset mesh algorithm, mesh reconfiguration and interpolations between subdomains can be avoided to guarantee the mesh’s quality and computational efficiency. During maneuvering motions, the calculation region moves or rotates with the mesh locked in a same position relative to the rigid submarine. Coupled with moving-mesh technology, boundary conditions for the cuboid region are composed of the following:The inlet is positioned 1.0Lupstream with an initial inflow velocity of 0 m/s while a pressure-outlet is positioned 2.0Ldownstream. Four remaining walls are set identical with the inlet,1.0Laway from the body.No-slip wall is set for the hull and appendages.

    3.3 Validation of numerical method

    For validation, straight-line towing simulations at different drift angles were performed for the DARPA Suboff model fitted with sail,stern rudders,ring wing,and four struts in an‘X’configuration,as illustrated in Fig.4.The experiment was carried out in the towing tank at NSWCCD and the data published by Roddy(1990)[14]can be used for validating CFD codes.

    As shown in Fig.5,the predictions using the twok-ωmodels are in good agreement with experimental data with the drift angleβ<12°.However,as the drift angle increases,the longitudinal force and heeling moment predictions by Wilcoxk-ωappear to match the measured data better than SSTk-ωpredictions.Although the vertical force and trimming moment calculated based on Wilcoxk-ωtend to over-predict with the drift angle 12°≤β≤16°,the tendency is similar compared with experiments.When the drift angle reaches 18°,the submarine’s hydrodynamic performance predicted by the two models deviates profusely from the experimental data,and the two models are not suitable for simulations with identical or larger attack angle. Based on above analysis, the Wilcoxk-ωwas chosen to simulate the submarine’s free-running maneuvers in the present paper.

    Fig.4 Main particulars of full-appended Suboff model

    Fig.5 Comparison of the submarine’s hydrodynamic performance between experimental and computational results

    3.4 Calculation strategy

    In this paper, the hydrodynamic loadsFHon the right-hand sides of the first six equations of Eq.(4) are evaluated by using URANS method seasonably. The hydrodynamic forces and moments acting on the submarine are evaluated by integrating pressure and shear data along the surface of the submarine.However,to reduce the complexity and computational requirements for direct CFD simulation, some coefficient-based models, as shown in Eqs.(5)~(6), are retained to account for the effect of propeller and control surface.The overall solution strategy for direct CFD simulation is presented in Fig.6.

    Fig.6 Solution strategy

    4 Results and discussions

    Two typical maneuvers, including space spiral turning and vertical zigzag, were simulated based on methods presented in Chapters 3~4. The input rate of control surface deflection and straight sailing velocity were chosen as 3 °/s and 3 m/s for model cases, which indicated 0.878 °/s and 19.9 kn respectively for a full-scale submarine. The non-dimensional timetU0/Lwas chosen to describe motion histories,in whicht,U0andLrepresent time,straight sailing velocity and submarine’s overall length respectively. During these simulations, the self-propulsion state was first achieved before executing stern plane and rudder att=0 s.

    4.1 Space spiral turning maneuver

    Fig.7 Maneuvering strategy for space spiral motion

    In this maneuver,the stern plane and rudder were executed at a constant rate to the desired angle att=0 s and then maintained throughout the maneuver. The time series of stern plane deflectionδsand rudder angleδrfor space spiral motion are shown in Fig.7 with the fixed values ofδs=-3°andδr=20°after the nondimensional timetU0/L=3.33.

    The non-dimensional form of the linear velocity component (u,v,w) and angular velocity (p,q,r) versus non-dimensional time is shown in Fig.8. Quantitative agreement of non-dimensional ofu,qandrbased on the two approaches indicates that the current CFD method is reliable to a certain degree.Time histories ofpL/U0tend to fluctuate slightly during the steady turning strategy,while these changes did not appear in coefficient-based results.This phenomenon may be caused by unsteady flow,which is not easy to be modeled by maneuvering coefficients. Compared with the coefficient-based method,though the current CFD approach under-, and over-predicts the steady values ofvandwby about-19%and 23%respectively,these free-running trails show very similar tendencies versus time.

    Fig.8 Time series of linear and angular velocities under body-fixed coordinate system

    Fig.9 shows the evolution of roll and pitch as a function of non-dimensional time,and the horizontal projections of submarine’s trajectory were also depicted. This figure, at the beginning of the maneuver,when the maximum rudder rate is imposed,shows a roll and pitch excursion.The big distinction in pitch steady value from CFD and coefficient-based methods may be caused by submarine’s small longitudinal metacentric height and the difference in predicted trim hydrodynamics.As an important index to assess the submarine’s spiral turning ability, the tactical diameter of trajectory projections in the horizontal plane forecasted by CFD was about 1.07 times of the value from the coefficient-based method.

    Fig.9 Roll,pitch and trajectory projections in horizontal plane

    Fig.10 shows side views of submarine’s instantaneous representation in space spiral turning maneuver, and the vortical structures using iso-surfaces of the second invariant of the velocity gradient tensorQwere colored by velocity magnitude. Because the propeller is modeled by external force and torque, the acceleration and rotating effect acting on the flow field cannot be exhibited.Despite the simplicity of the propeller model, the tip vortex structures, which are produced by sail and stern planes,can also give a visualized maneuver process for analysis.

    Fig.10 Side views of the submarine attached by iso-surface of Q=5 colored by velocity magnitude for spiral turning maneuver

    The velocity field around the submarine during space spiral turning maneuver is shown at three representative transverse planes in Fig.11.The planes are taken around the submarine withx/L=0 (x-axis positive forward) being the position of the mid-ship. In this figure, the velocity magnitude details att=0 s(straight-ahead sailing),t=5 s(developing stage)andt=32.5 s(constant turning state) are represented. For the straight-ahead case, the velocity distribution shows good symmetry,and with the submarine entering into turning stage, the asymmetric velocity distribution caused by necklace vortices from the sail is significant. Moreover, the decrease of ship’s velocity for constant turning state can also be seen through contrasting these three cases.

    Fig.11 Velocity field on different cross sections for submarine’s spiral turning maneuver(the x-axis origin placed at mid-ship)

    4.2 Vertical zigzag maneuver

    Theδs/θ=±5°/?20°zigzag maneuver in vertical profile was also simulated using both the coefficient-based and direct CFD method.Before executing stern plane att=0 s, the self-propulsion was first achieved. Then the stern plane was deflected to 5°at a predetermined rate and kept at this state until the submarine’s pitch angle reached -20°,at which point the stern plane turned to-5°. Time series of the stern plane deflection and submarine’s pitch angle are shown in Fig.12,and six steering courses were conducted during the whole process.

    The non-dimensional form of the linear velocity component (u,v,w)and angular velocity (p,q,r)are shown in Fig.13 and Fig.14,showing a good agreement either in value or tendency.Compared with the space spiral turning maneuver,less accumulated error may contribute to the more quantitative agreements of roll and pitch between the two methods.

    Fig.12 Maneuvering strategy for vertical zigzag motion

    Fig.13 Time series of linear and angular velocities under body-fixed coordinate system

    Fig.14 Roll,pitch and translation in vertical direction

    Fig.15 shows the flow field around the submarine in four states of P1,P2,P3and P4,whose positions are specifically illustrated in Fig.12.The hull of the boat is colored by pressure,while the slices are colored by vorticity to display flow revolution.The sail tip vortex developed from sail to stern is shown clearly, and tip vortices from the rudders made the submarine’s wake more complicated by coupling with inflow from the sail and the main-body.In addition,the differences of rudder pressure distribution are remarkable for these states, which were caused by larger attack angle in the tail region.

    Fig.15 Vorticity field on different cross sections and pressure distribution on submarine’s surface

    5 Concluding remarks

    Direct CFD computations of a conventional submarine model undergoing space spiral turning and vertical zigzag maneuvers are presented. The integral moving mesh and URANS method coupled with 6 DOF kinematic module were chosen to model submarine’s 6 DOF motions. Through comparing the results from CFD approach and coefficient-based model,good agreement in time series of motion parameters indicates that the direct CFD method proposed in the present paper is an efficient and reliable tool for submarine maneuverability forecasting. Detailed flow physics can not only provide help for submarine’s maneuverability analysis but also suggest improvements to the coefficient-based model. Continuous improvements in faster parallel computers can offer more opportunities and foundations for direct CFD simulation of ship motions in the future.

    高清欧美精品videossex| 美女国产视频在线观看| 欧美激情国产日韩精品一区| 全区人妻精品视频| 婷婷色综合大香蕉| 各种免费的搞黄视频| 多毛熟女@视频| 免费大片18禁| 校园人妻丝袜中文字幕| a 毛片基地| 国产亚洲一区二区精品| 内地一区二区视频在线| 国产av一区二区精品久久| 十八禁网站网址无遮挡| 99视频精品全部免费 在线| 午夜福利在线观看免费完整高清在| 亚洲精品aⅴ在线观看| 亚洲精品,欧美精品| 欧美bdsm另类| 男女国产视频网站| 日韩免费高清中文字幕av| 韩国av在线不卡| 蜜臀久久99精品久久宅男| 久久午夜福利片| 亚洲第一区二区三区不卡| 免费黄网站久久成人精品| 国产精品熟女久久久久浪| 日韩av免费高清视频| 日本wwww免费看| 91aial.com中文字幕在线观看| 熟女电影av网| 99re6热这里在线精品视频| 一个人免费看片子| 婷婷成人精品国产| 国产69精品久久久久777片| 简卡轻食公司| av卡一久久| 亚洲国产色片| 精品人妻一区二区三区麻豆| 国产毛片在线视频| 欧美精品人与动牲交sv欧美| av免费在线看不卡| 国产成人免费无遮挡视频| 亚洲欧美日韩另类电影网站| 麻豆精品久久久久久蜜桃| 精品亚洲成a人片在线观看| 18+在线观看网站| 国产熟女欧美一区二区| 又大又黄又爽视频免费| 国产综合精华液| 亚洲av免费高清在线观看| 人妻系列 视频| tube8黄色片| 国产高清三级在线| 五月开心婷婷网| 欧美亚洲 丝袜 人妻 在线| 亚洲国产av影院在线观看| 青青草视频在线视频观看| 春色校园在线视频观看| 伊人久久国产一区二区| 成人免费观看视频高清| 26uuu在线亚洲综合色| 亚洲内射少妇av| 国产av国产精品国产| 99久久精品国产国产毛片| 国产视频内射| 成人午夜精彩视频在线观看| 一级毛片黄色毛片免费观看视频| av福利片在线| 9色porny在线观看| 人妻少妇偷人精品九色| 国产亚洲av片在线观看秒播厂| 免费看不卡的av| 美女脱内裤让男人舔精品视频| 亚洲av二区三区四区| 日本黄色片子视频| 性高湖久久久久久久久免费观看| 高清视频免费观看一区二区| 国产成人午夜福利电影在线观看| 亚洲国产毛片av蜜桃av| 99久久人妻综合| 天天影视国产精品| 亚洲中文av在线| 成人毛片a级毛片在线播放| 日韩伦理黄色片| 免费久久久久久久精品成人欧美视频 | tube8黄色片| 成人亚洲精品一区在线观看| 少妇人妻 视频| 黄片播放在线免费| 国产日韩欧美视频二区| 亚洲人成网站在线观看播放| 人人妻人人澡人人爽人人夜夜| 成人黄色视频免费在线看| 精品一区在线观看国产| 亚洲欧美中文字幕日韩二区| 日韩视频在线欧美| 国产免费福利视频在线观看| 亚洲av.av天堂| 91精品国产国语对白视频| 久久久精品区二区三区| 欧美激情 高清一区二区三区| 男人添女人高潮全过程视频| 中文字幕人妻丝袜制服| 亚洲欧美成人综合另类久久久| 搡老乐熟女国产| 99久久精品国产国产毛片| 内地一区二区视频在线| 免费高清在线观看日韩| 成人黄色视频免费在线看| 欧美日韩视频高清一区二区三区二| 夜夜骑夜夜射夜夜干| 美女视频免费永久观看网站| 熟女av电影| 国产免费一级a男人的天堂| 精品久久久久久久久亚洲| 亚洲精品国产色婷婷电影| 51国产日韩欧美| 久久久a久久爽久久v久久| 国产av一区二区精品久久| 高清黄色对白视频在线免费看| 国产精品国产三级国产av玫瑰| 美女福利国产在线| 99久久人妻综合| 国产精品一区二区三区四区免费观看| 亚洲欧洲国产日韩| 精品久久久精品久久久| 纯流量卡能插随身wifi吗| 国产伦理片在线播放av一区| 国产精品偷伦视频观看了| 亚洲国产精品一区三区| 国产精品蜜桃在线观看| 久久久久久久久久久免费av| 看非洲黑人一级黄片| 精品久久蜜臀av无| 欧美bdsm另类| 欧美一级a爱片免费观看看| 夜夜爽夜夜爽视频| 国产av一区二区精品久久| 人妻一区二区av| 久久精品人人爽人人爽视色| 肉色欧美久久久久久久蜜桃| 在线看a的网站| 久久久午夜欧美精品| av免费观看日本| 亚洲一级一片aⅴ在线观看| 国产国拍精品亚洲av在线观看| 免费久久久久久久精品成人欧美视频 | 十八禁网站网址无遮挡| 免费大片黄手机在线观看| 国产精品久久久久久久久免| 欧美 日韩 精品 国产| 免费av中文字幕在线| 黄色怎么调成土黄色| 日日爽夜夜爽网站| 日韩三级伦理在线观看| 日韩中字成人| 成年美女黄网站色视频大全免费 | 街头女战士在线观看网站| 纵有疾风起免费观看全集完整版| 日本与韩国留学比较| 2022亚洲国产成人精品| 国产一区二区在线观看日韩| 最近最新中文字幕免费大全7| 夫妻午夜视频| 91久久精品国产一区二区三区| 男男h啪啪无遮挡| 国产在视频线精品| 丰满饥渴人妻一区二区三| 日日啪夜夜爽| 国产精品国产av在线观看| 欧美激情极品国产一区二区三区 | 人妻 亚洲 视频| 91精品三级在线观看| 五月开心婷婷网| 男女啪啪激烈高潮av片| 亚洲综合色惰| 97在线视频观看| 丝袜美足系列| 亚洲欧美日韩另类电影网站| 九九爱精品视频在线观看| 亚洲丝袜综合中文字幕| 欧美激情国产日韩精品一区| 欧美激情 高清一区二区三区| 一个人看视频在线观看www免费| 日韩在线高清观看一区二区三区| 国产不卡av网站在线观看| 国产成人精品在线电影| 中文天堂在线官网| 国产黄频视频在线观看| 亚洲欧洲国产日韩| 国产精品欧美亚洲77777| 嫩草影院入口| 国产69精品久久久久777片| 新久久久久国产一级毛片| 热99久久久久精品小说推荐| 亚洲精品美女久久av网站| 狠狠婷婷综合久久久久久88av| 国产永久视频网站| 天堂中文最新版在线下载| 一区在线观看完整版| 久久久国产一区二区| 又粗又硬又长又爽又黄的视频| 搡老乐熟女国产| 国产精品久久久久成人av| 爱豆传媒免费全集在线观看| 精品久久蜜臀av无| 成人无遮挡网站| 一边摸一边做爽爽视频免费| 18禁观看日本| 精品99又大又爽又粗少妇毛片| 伊人久久国产一区二区| 亚洲精品一二三| 国产成人精品在线电影| 亚洲精品自拍成人| 美女主播在线视频| 2018国产大陆天天弄谢| 男男h啪啪无遮挡| 亚洲av免费高清在线观看| 欧美 日韩 精品 国产| 一级毛片aaaaaa免费看小| 不卡视频在线观看欧美| 人体艺术视频欧美日本| 制服丝袜香蕉在线| freevideosex欧美| 桃花免费在线播放| 久久ye,这里只有精品| 一本大道久久a久久精品| 欧美日韩av久久| 久久精品国产亚洲网站| 黄色视频在线播放观看不卡| 久久人人爽人人片av| 飞空精品影院首页| 天天影视国产精品| 赤兔流量卡办理| 色94色欧美一区二区| 只有这里有精品99| 搡女人真爽免费视频火全软件| 国产伦精品一区二区三区视频9| 亚洲综合色网址| 午夜福利影视在线免费观看| 天天影视国产精品| 美女脱内裤让男人舔精品视频| 最黄视频免费看| 久久久久人妻精品一区果冻| 一本大道久久a久久精品| 亚洲不卡免费看| 亚洲精华国产精华液的使用体验| 国产又色又爽无遮挡免| 欧美xxⅹ黑人| 天堂中文最新版在线下载| 最新中文字幕久久久久| 黑人欧美特级aaaaaa片| 午夜激情av网站| 亚洲第一av免费看| 国产免费现黄频在线看| 大香蕉久久网| 最近中文字幕2019免费版| 日产精品乱码卡一卡2卡三| 亚洲av.av天堂| 丰满迷人的少妇在线观看| 国产老妇伦熟女老妇高清| 国产深夜福利视频在线观看| 亚洲精华国产精华液的使用体验| 国产成人精品久久久久久| 精品国产一区二区久久| 人人澡人人妻人| 99热全是精品| 精品人妻在线不人妻| 蜜桃在线观看..| 国产av精品麻豆| 欧美精品一区二区免费开放| 国产精品一区二区在线不卡| 久久精品夜色国产| 97超碰精品成人国产| 91国产中文字幕| 人人澡人人妻人| 蜜桃国产av成人99| 国产精品一区二区在线观看99| 美女主播在线视频| 久久午夜福利片| 大又大粗又爽又黄少妇毛片口| 亚洲精品aⅴ在线观看| 高清av免费在线| 亚洲欧美一区二区三区国产| 久久久欧美国产精品| 成人黄色视频免费在线看| 国产免费视频播放在线视频| 午夜精品国产一区二区电影| 国产在线免费精品| 国产成人精品久久久久久| 女人精品久久久久毛片| 国产日韩一区二区三区精品不卡 | 视频中文字幕在线观看| 欧美日韩av久久| 久久精品熟女亚洲av麻豆精品| 国产亚洲av片在线观看秒播厂| 久久99热6这里只有精品| 国产午夜精品一二区理论片| 亚洲欧美精品自产自拍| 亚洲av.av天堂| 国产精品久久久久成人av| 久久精品国产亚洲网站| 久久婷婷青草| 国产女主播在线喷水免费视频网站| 97超视频在线观看视频| 精品少妇内射三级| 国产精品蜜桃在线观看| videosex国产| 国产熟女午夜一区二区三区 | 51国产日韩欧美| 午夜精品国产一区二区电影| tube8黄色片| 久久精品久久久久久噜噜老黄| 黑人欧美特级aaaaaa片| 少妇熟女欧美另类| av专区在线播放| 高清黄色对白视频在线免费看| 久久久国产一区二区| a 毛片基地| 精品视频人人做人人爽| .国产精品久久| 日韩中字成人| 久久精品久久精品一区二区三区| 美女国产高潮福利片在线看| 乱码一卡2卡4卡精品| 人体艺术视频欧美日本| 99久久中文字幕三级久久日本| 99九九在线精品视频| 亚洲少妇的诱惑av| 看免费成人av毛片| 亚洲精品久久久久久婷婷小说| 大码成人一级视频| 免费观看的影片在线观看| 熟妇人妻不卡中文字幕| 亚洲久久久国产精品| 国产午夜精品久久久久久一区二区三区| 国产精品一区二区在线不卡| 成年人午夜在线观看视频| 欧美日韩亚洲高清精品| 成人综合一区亚洲| 天天操日日干夜夜撸| 亚洲内射少妇av| 久久精品夜色国产| 久久久a久久爽久久v久久| 夜夜看夜夜爽夜夜摸| 桃花免费在线播放| 老司机影院成人| 精品99又大又爽又粗少妇毛片| 97超碰精品成人国产| 亚洲无线观看免费| 一区在线观看完整版| 国产黄片视频在线免费观看| 在线 av 中文字幕| 美女中出高潮动态图| 国产女主播在线喷水免费视频网站| 久久人人爽人人爽人人片va| 国语对白做爰xxxⅹ性视频网站| 99热这里只有是精品在线观看| 男女无遮挡免费网站观看| 亚洲精品aⅴ在线观看| av一本久久久久| 麻豆精品久久久久久蜜桃| 国产欧美亚洲国产| 国产精品秋霞免费鲁丝片| 精品国产国语对白av| 伊人久久国产一区二区| 国产av精品麻豆| 日韩中字成人| 国产av国产精品国产| av国产久精品久网站免费入址| 黄色欧美视频在线观看| 黄色一级大片看看| 欧美日韩视频精品一区| 日本wwww免费看| 最近中文字幕高清免费大全6| 日韩 亚洲 欧美在线| 亚洲丝袜综合中文字幕| 美女大奶头黄色视频| 一区在线观看完整版| 国产国拍精品亚洲av在线观看| 国产精品熟女久久久久浪| 亚洲美女搞黄在线观看| 国产免费现黄频在线看| 91aial.com中文字幕在线观看| 夫妻午夜视频| 天堂俺去俺来也www色官网| 91精品三级在线观看| freevideosex欧美| 国产精品女同一区二区软件| 美女国产高潮福利片在线看| 女的被弄到高潮叫床怎么办| 成年人免费黄色播放视频| 亚洲天堂av无毛| 哪个播放器可以免费观看大片| 在线观看免费高清a一片| 国产无遮挡羞羞视频在线观看| 国产av码专区亚洲av| 精品午夜福利在线看| 国产精品99久久99久久久不卡 | 这个男人来自地球电影免费观看 | 日本91视频免费播放| 国产白丝娇喘喷水9色精品| 久久99蜜桃精品久久| 久久影院123| 久久久久久久大尺度免费视频| 99国产综合亚洲精品| 99热国产这里只有精品6| 色婷婷久久久亚洲欧美| 亚洲第一av免费看| 超色免费av| 天堂8中文在线网| 国产精品一二三区在线看| 男女边吃奶边做爰视频| 亚洲中文av在线| 日本与韩国留学比较| 国产精品国产三级国产av玫瑰| 久久综合国产亚洲精品| 男人爽女人下面视频在线观看| 少妇人妻 视频| 伦理电影免费视频| 亚洲国产欧美日韩在线播放| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲精品国产色婷婷电影| a级毛片免费高清观看在线播放| 美女cb高潮喷水在线观看| 亚洲国产精品国产精品| 亚洲成人av在线免费| 亚洲av福利一区| 美女国产高潮福利片在线看| 国产日韩欧美在线精品| 久久久久国产网址| 国产一区二区三区av在线| 国产熟女午夜一区二区三区 | 亚洲,一卡二卡三卡| 亚洲精品国产av蜜桃| 99国产综合亚洲精品| 久久久久精品久久久久真实原创| 国产精品久久久久久av不卡| av在线老鸭窝| av.在线天堂| 中文欧美无线码| 亚洲高清免费不卡视频| 国产色婷婷99| 亚洲av中文av极速乱| 在线观看美女被高潮喷水网站| 精品亚洲乱码少妇综合久久| 美女脱内裤让男人舔精品视频| 一级a做视频免费观看| 亚洲,一卡二卡三卡| 中文字幕久久专区| 男的添女的下面高潮视频| 男女免费视频国产| 最近最新中文字幕免费大全7| 亚洲国产最新在线播放| 精品一区二区三卡| 男女啪啪激烈高潮av片| 一边亲一边摸免费视频| 韩国高清视频一区二区三区| 麻豆成人av视频| 777米奇影视久久| 国产精品久久久久久久久免| 免费人成在线观看视频色| videosex国产| 色吧在线观看| 亚洲人与动物交配视频| 伦精品一区二区三区| 亚洲av国产av综合av卡| 少妇猛男粗大的猛烈进出视频| 亚洲av成人精品一区久久| 日韩一本色道免费dvd| 一本色道久久久久久精品综合| 一区二区三区免费毛片| 国产又色又爽无遮挡免| 色婷婷av一区二区三区视频| 午夜福利影视在线免费观看| 另类亚洲欧美激情| 看非洲黑人一级黄片| 亚洲国产精品成人久久小说| 蜜桃在线观看..| 男女边摸边吃奶| 嫩草影院入口| 成人综合一区亚洲| 最新的欧美精品一区二区| 午夜久久久在线观看| 国产乱来视频区| 日本色播在线视频| 丰满少妇做爰视频| 日韩一区二区视频免费看| 久久久午夜欧美精品| 亚洲欧洲精品一区二区精品久久久 | 免费少妇av软件| 久久久久久伊人网av| 国产乱来视频区| 高清午夜精品一区二区三区| 国产高清国产精品国产三级| 国产精品久久久久久久久免| 国产av码专区亚洲av| 免费大片18禁| 精品99又大又爽又粗少妇毛片| 色94色欧美一区二区| 国国产精品蜜臀av免费| 国产亚洲精品久久久com| 十八禁网站网址无遮挡| 亚洲精品乱久久久久久| 日本黄色片子视频| 91精品国产九色| 母亲3免费完整高清在线观看 | 国产一级毛片在线| 国产av精品麻豆| 免费观看无遮挡的男女| 免费不卡的大黄色大毛片视频在线观看| 亚洲情色 制服丝袜| 欧美精品人与动牲交sv欧美| 精品卡一卡二卡四卡免费| 伊人久久精品亚洲午夜| 中文字幕最新亚洲高清| 精品一品国产午夜福利视频| 亚洲av男天堂| 亚洲不卡免费看| 美女大奶头黄色视频| 免费大片18禁| 日本91视频免费播放| 一区二区av电影网| 纯流量卡能插随身wifi吗| 成人黄色视频免费在线看| 国产无遮挡羞羞视频在线观看| av在线观看视频网站免费| 亚洲精品成人av观看孕妇| 男的添女的下面高潮视频| 午夜激情av网站| 久久免费观看电影| 51国产日韩欧美| a级毛片在线看网站| 国产精品久久久久久精品电影小说| www.av在线官网国产| xxxhd国产人妻xxx| 99re6热这里在线精品视频| av天堂久久9| 亚洲欧美成人精品一区二区| 成人18禁高潮啪啪吃奶动态图 | 新久久久久国产一级毛片| 一本色道久久久久久精品综合| 国产亚洲av片在线观看秒播厂| 色婷婷av一区二区三区视频| 中文字幕亚洲精品专区| 国产 一区精品| 久热久热在线精品观看| 欧美精品一区二区免费开放| 韩国av在线不卡| 午夜福利视频在线观看免费| 18禁裸乳无遮挡动漫免费视频| 国产日韩欧美在线精品| 一本色道久久久久久精品综合| 欧美精品高潮呻吟av久久| 国产欧美日韩综合在线一区二区| 久久久久久人妻| 2022亚洲国产成人精品| 欧美日韩视频高清一区二区三区二| 国产午夜精品一二区理论片| 各种免费的搞黄视频| 亚洲av成人精品一区久久| 极品人妻少妇av视频| 亚洲精品中文字幕在线视频| 男人操女人黄网站| 九色亚洲精品在线播放| 亚洲经典国产精华液单| 18禁在线无遮挡免费观看视频| 国产精品一区二区三区四区免费观看| 久久精品久久精品一区二区三区| 蜜桃在线观看..| 国国产精品蜜臀av免费| a级片在线免费高清观看视频| 各种免费的搞黄视频| 精品人妻一区二区三区麻豆| 七月丁香在线播放| 欧美成人午夜免费资源| 国产熟女午夜一区二区三区 | 久久国内精品自在自线图片| 夜夜看夜夜爽夜夜摸| 国产免费视频播放在线视频| 日韩欧美一区视频在线观看| 极品人妻少妇av视频| 亚洲国产精品成人久久小说| 国产成人午夜福利电影在线观看| 免费不卡的大黄色大毛片视频在线观看| 少妇人妻精品综合一区二区| 天天操日日干夜夜撸| 国产日韩欧美视频二区| 亚洲精品自拍成人| 国产精品国产三级国产专区5o| 22中文网久久字幕| 欧美日韩av久久| 满18在线观看网站| 亚洲欧美清纯卡通| 国产av码专区亚洲av| 中文乱码字字幕精品一区二区三区| 中文字幕人妻丝袜制服| 99九九线精品视频在线观看视频| 99re6热这里在线精品视频| 亚洲国产精品一区三区| 一个人看视频在线观看www免费| 观看美女的网站| 国产精品不卡视频一区二区| 一边亲一边摸免费视频| 午夜影院在线不卡| 亚洲精品色激情综合| 久久这里有精品视频免费| 精品一区在线观看国产| 久久久久国产网址| 一区二区三区四区激情视频| 国产免费现黄频在线看| 卡戴珊不雅视频在线播放| www.av在线官网国产| 最后的刺客免费高清国语|