• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical Solution of VLEC Hydrodynamic Response Coupled with Tank Sloshing

    2021-12-31 07:52:46-,-
    船舶力學(xué) 2021年12期

    -,-

    (Jiangnan Shipyard(Group)Co.,Ltd.,Shanghai 201913,China)

    Abstract: The coupling effects of tank sloshing on the ship motion and wave-induced loads of a very large ethane carrier(VLEC)with a loading capacity of 98 000 m3 and four prismatic independent Type B cargo tanks are systematically investigated. The ship motion equation coupled with tank sloshing is calculated in frequency domain based on the three-dimensional linear potential flow theory. The added mass, damping coefficient and restoring stiffness correction due to tank sloshing are fully considered. The response amplitude operators (RAO) of ship motion and sectional loads with and without considering tank sloshing are obtained. Taking the equivalent design wave determined from the maximum RAO of roll as excitation input condition,the three-dimensional fluid sloshing movement behavior and sloshing-induced impact pressure are simulated by the computational fluid dynamics (CFD)method. The renormalized group (RNG) k-ε turbulence model is selected based on the Reynolds-Averaged Navier-Stokes (RANS) equation, and the volume of fluid method is adopted to predict the free surface elevation. The results can provide a valuable reference for the overall design and structural safety assessment of VLEC.

    Key words:VLEC;ship motion;tank sloshing;coupling effects;frequency domain analysis;volume of fluid method

    0 Introduction

    US shale gas development boom prompts significant increase in ethane production,lower prices,as well as marked increase in demands for ethane in Asia and Europe,which in turn brings a lot of transport demands. Ethane carriers gradually become the hotspot of international gas ship market. Historically, ethane has been transported in small liquefied ethane/ethylene carriers designed and constructed to carry ethylene as well as ethane. Almost all the vessels adopt Type C cargo tanks which limit the cargo loading capacity. It is estimated that the maximum feasible size of a ship with Type C cargo tanks is around 40 000 m3based on the design pressure limitation and economic factor. The recent US revolution in ethane production has fuelled a growing demand for far larger, high-capacity ethane carriers. Thus, very large ethane carrier (VLEC) with prismatic independent Type B cargo tanks would play an important role for ethane transport in the near future.The key technology of VLEC is the design and construction of a cargo containment system.

    Tank sloshing behavior is of important concern in the design of liquefied gas carriers.Sloshing flow in liquid cargo tanks is firstly excited by ship motion, but the sloshing flow itself affects the ship motion in return.The coexistence of free surfaces inside the tank and outside the hull provides different dynamic loads. The hydrodynamics analysis of a liquid cargo ship has commonly been investigated by ignoring the coupling effects because of its complexity. Recent numerical simulation and experiments have shown that it is only valid when the ship size is much larger than the size of the liquid cargo tank or when the tank is fully loaded.Ships with partially filled liquid tanks are sensitive to tank sloshing in rough sea[1]. Several studies have been carried out to predict the coupling effects between ship motion and tank sloshing until now.In particular,the recent studies can be categorized into two main approaches: the frequency domain approach adopting linear sloshing flow and the time domain approach assuming nonlinear sloshing flow.Molin et al(2002)[2],Malenica et al(2003)[3], Newman (2005)[4]and Huang et al (2009)[5]have studied the coupling effects based on linear potential theory in the frequency domain. The approach is used under the assumption of small amplitude ship and fluid motions.However,issues invariably arise regarding the applicability of linear sloshing flow assumption as the amplitude or intensity increases[6]. To account for the nonlinear effects, simulations in time domain based on computational fluid dynamics (CFD) were conducted by Lee et al(2007)[7],Kim et al(2007)[8],and Mitra et al(2012)[9].In the time domain simulation,the nonlinear viscous damping can be included,the fluid motion inside the liquid tank is not necessarily small. However, very violent fluid motions such as overturning and splash cannot be considered.When the internal fluid motion is mild,impact pressure on the tank wall is extremely difficult to simulate. Model test study is still the main means, Mikelis et al (1984)[10], Francescutto and Contento(1994)[11],Nasar et al (2012)[12]carried out a series of model tests about the coupling effects.In their study, they concluded that the coupling effects do not always result in the increase of sloshing-induced pressure and that the increase or decrease of pressure is dependent on resonant condition.

    In general, the coupling effects analysis is still a challenging task. Most of the studies mentioned are about LNG,FPSO and barge.A VLEC with 98 000 m3loading capacity and four prismatic independent Type B tanks is systematically analyzed in the investigation. The main focus is the influence of tank sloshing on the global hydrodynamic response of VLEC, breaking or splash loads on the containment system caused by ship motion with strong nonlinearity are not taken into account. For this purpose, the linear potential theory in the frequency domain is adopted and acceptable with reasonable accuracy. As is well known, the large sloshing fluid movement is prone to create highly-localized impact pressures on the tank wall, particularly when resonant excitation occurs, which in turn causes structural damage. A CFD method is adopted to simulate the three-dimensional fluid sloshing movement behavior and sloshing-induced impact pressure for local strength assessment of independent Type B tank.

    1 Mathematical formulation

    1.1 Modeling of linear hydrodynamics

    Since the entire analysis is linearized,nonlinear sloshing effects are not included.With the assumption of incompressible and inviscid fluid, the perturbation potentialφPis expressed as a sum of the diffraction potentialφDand the radiation potentialφR:

    For the internal fluid, the diffraction problem is not solved because no incident wave exists.Only the boundary-value problem and solution of the radiation problem are stated here.

    The radiation potentialφRcan be described by the superposition of six basic motion modes with time and space separation:

    whereηj(j=1,2,…,6)denotes the complex amplitudes of the body oscillatory motion in its six rigid-body degrees of freedom,φjis the corresponding unit-amplitude radiation potentials, eiωtdenotes the oscillation factor, i is the imaginary unit andωis the encounter frequency, andtdenotes the time.

    The boundary value problem for theφjcan be written as:

    wheregis gravitational acceleration, the unit vectornis normal to the body boundary and points out of the fluid domain,andris the position vector.

    For the internal fluid, the mean free surface has the vertical velocityZ˙0. The velocity potentialφPis added to solve the boundary value problem on the body surface[13].

    whereρsis the density of internal fluid.

    By introduction of the zero-speed free-surface Green function that satisfies the free surface condition and the radiation condition, the previous boundary value problem can be solved by the well-known boundary integral equation.

    1.2 Hydrostatic restoring stiffness correction

    The hydrostatic effect of internal fluid is considered as the reduction of restoring force, in particular roll motion[14].

    Fig.1 Correction in restoring force due to internal fluid

    whereWis weight of the ship,wSis weight of the internal fluid,ISis 2nd rotational inertia moment of the internal free surface,VSis volume of the internal fluid.

    Eq.(7)represents the restoring stiffness correctionKSdue to sloshing fluid as follows:

    Therefore,KSis only related toISandρS,and not affected by filling level or location of tanks.

    1.3 Ship motion equation coupled with tank sloshing

    The hydrodynamic coefficients such as added massMaand potential dampingCcan be obtained through the following equations:

    whereSBindicates the mean wet surface of the body,jandkmean the motion modes.

    Only the inertia force of sloshing fluid is considered, since there is no radiation damping for the internal problem within the potential theory.Sloshing forceFS(ω)is given by:

    whereMas(ω)is added mass of sloshing fluid.

    whereγis a ratio to the critical roll damping and depends on the ship characteristic. For VLEC,γis 0.04 compared with conventional ship in a range of 0.02-0.05.

    Eq.(14)and Eq.(15)are merged into the following equation:

    Based on the theories mentioned above, the analysis of coupling effects between ship motion and tank sloshing can be carried out.

    2 Hydrodynamic model

    The global hydrodynamic response analysis is performed for a system consisting of a panel model and a mass model. To calculate the inner tank hydrodynamics, tank definition shall be included in the panel model.The panel model representing VLEC outer hull and four prismatic independent Type B tanks is shown in Fig.2.It is of importance that the mesh density reflects the hydrodynamic pressure variation around the structure. In tanks where the pressure variation is large, the tanks are modeled with a considerably fine mesh.

    The mass model for the sectional load calculation is shown in Fig.3. The mass is simply modeled as transverse beams and point masses representing mass distribution,thereby ensuring that the roll radius of gyration and metacentric heights are correct. Moreover, tank fluid shall be excluded from the mass model,since it is represented by the added mass from the internal radiation problem.

    Fig.2 Panel model

    Fig.3 Mass model

    3 Simulation results

    3.1 Roll added mass and radiation damping

    The added mass and radiation damping of sloshing fluid in tanks at three different filling levels(30%,50%and 70%)are calculated as shown in Figs.4-5.Roll added massA44 is non-dimensionalized byρVL2and roll radiation dampingD44 is non-dimensionalized byρVL gL,Vis displaced volume of panel model,Lis ship length.

    Fig.4 Roll added mass of sloshing fluid

    Fig.5 Roll radiation damping of sloshing fluid

    To get a better understanding of the characteristics of sloshing resonance, the natural sloshing frequencies are determined. The natural transverse sloshing frequenciesωr,nin different surface modes for a rectangular tank are calculated through the linear approximation equation[15]:

    whereBTdenotes the transverse sloshing breadth,hindicates the filling depth of tank,nrepresents the surface mode number.

    For a prismatic tank with chamfered bottom, Faltinsen and Timokha (2009)[16]proposed a correction factor:

    For a typical tank, the main parameters are: length 39.6 m, width 34.4 m, and height 18.8 m, and the first mode sloshing frequency at different filling levels are shown in Tab.1.

    The results show that the peak frequency of roll hydrodynamic coefficients is well consistent with the transverse sloshing resonance frequency. Roll hydrodynamic coefficients vary with the filling level changing especially,and reach its maximum exactly at the first sloshing resonance frequency.Away from sloshing resonance frequency,roll hydrodynamic coefficients decrease significantly.

    3.2 Ship motion and sectional load

    For simplicity of analysis, 30% and 70% filling levels are considered and all partially-filled tanks are filled at the same filling level. Both numerical simulations considering and ignoring tanksloshing are conducted by the radiation-diffraction panel code WADAM.

    Tab.1 The first mode natural transverse sloshing frequencies

    Figs.6-8 show the effects of tank sloshing on three main ship motion at 30%and 70%filling levels. An insignificant effect of tank sloshing on pitch and heave motion was observed in heading sea condition as shown in Figs.6-7.Roll motion amplitude tends to decrease as filling level increases and the single peak of roll RAO is split into two separated smaller peaks as shown in Fig.8. The phenomenon of great interest is that the two peaks do not exactly appear at the roll natural frequency and the first mode tank sloshing frequency. The first peak is the roll natural frequency which is shifted towards a lower frequency due to the reduction of roll restoring stiffness caused by external fluid dynamic. The second peak induced by sloshing dynamics is shifted toward higher frequency than the first mode tank sloshing frequency.

    Fig.6 Pitch RAO in heading sea

    Fig.7 Heave RAO in heading sea

    Fig.8 Roll RAO in beam sea

    Taking 70% filling level for example, the sloshing-induced peak can be observed at the frequency of 0.95 rad/s,which is 11.8%larger than the first mode tank sloshing frequency of 0.85 rad/s.Meanwhile, the sloshing-induced peak in roll motion shifts towards higher frequency as the filling levels increase. It can be explained through that the first mode sloshing frequency becomes bigger as the filling levels increase. Similar observation has also been reported by Bunnik et al (2010)[17]and Zhao et al (2014)[18].Roll motion coupled with tank sloshing appreciably changes with the excitation frequency. Taking 30% filling level for example, roll motion is relatively small in a certain frequency range of 0.40-0.75 rad/s, and reaches the minimum at 0.56 rad/s, then the partiallyfilled tank acts as an anti-rolling tank.

    Fig.9 VBM and VSF amidships RAO in heading sea

    Fig.10 TM amidships RAO in beam sea

    Additionally, hydrodynamic loads of VLEC at 30% tank filling level under regular wave are calculated.Figs.9-10 represent that the comparison of three different sectional loads RAO at amidships with and without considering tank sloshing, such as vertical bending moment(VBM),torsional moment (TM) and vertical shear force (VSF). The wave-induced moment and force are non-dimensionalized byρVgWaandρVgWa/L,respectively.Wais wave amplitude of the incident wave.

    For heading sea condition,VBM and VSF show no significant deviations whether tank sloshing is considered or not,from which it can be inferred that the effects of tank sloshing on the global longitudinal loads will be less significant since the dynamic effect of sloshing liquid motion is much smaller than the longitudinal inertia effect of hull. It is concluded that the effects of tank sloshing on the VLEC hull girder strength assessment can usually be neglected. However, for TM in beam sea condition, the single peak RAO curve of TM transforms to the multiple peak form due to tank sloshing and several significant increased peaks can be observed.

    3.3 Sloshing-induced impact pressure

    Sloshing-induced impact pressure is critical for the design of cargo containment system.Based on the previous ship motion calculation, tank sloshing undergoing large amplitude roll motion in beam regular waves at 30%filling level is simulated and discussed in the present study.

    LR (2004)[19]gave the formulae to determine the approximate maximum‘lifetime’ship motions.The ship’s natural roll periodSnrand the maximum‘lifetime’roll angleφmaxare given by:

    whererdenotes the radius of gyration of roll,GMpresents transverse metacentric height with free surface correction,Bdenotes ship breadth. For VLEC, eitherrorGMvaries significantly between loading conditions.

    As for the long-term prediction, the wave statistics model is given through the North Atlantic wave scatter diagram. The Pierson-Moskowitz spectrum is assigned to simulate the sea state conditions and the‘cosine squared’spreading is applied to model the short-crested waves.The long-term prediction of roll motion with heading 90° and all wave directions included at each exceedance probability levels are shown in Fig.11.

    The results show that the maximum‘20 years’roll motion calculated by LR rule is equivalent to the long-term response extreme value in beam wave condition at the exceedance probability level of 10-8.However,considering all the wave directions,the long-term probability level of roll increases to 10-9.

    Fig.11 Long-term prediction of roll motion

    Tab.2 Roll motion calculated value

    The maximum‘lifetime’roll angle formula given by LR rule is only related to ship breadth and length,which does not consider the sloshing effect.It can be concluded that the maximum‘lifetime’roll angle of VLEC calculated by LR rule is in general over-predicted without including the coupling effects, and the natrual roll period calculated by LR rule is lower compared with that obtained by the numerical calculation method.

    The wave frequency, heading and phase of the equivalent design wave are determined from the maximum RAO for roll.The long-term prediction extreme value is taken as the excitation input and the roll oscillation center is located in the center of gravity.A general-purpose CFD code FLOW-3D is adopted to simulate the three-dimensional fluid sloshing movement behavior and sloshing-induced impact pressure.The tank CFD model is shown in Fig.12.A proper definition of the boundary conditions at the free surface is important for an accurate capture of the free-surface dynamics. The volume of fluid method (VOF) is adopted to predict the free surface elevation. Incompressible viscosity flow is considered and renormalized group(RNG)k-εturbulence model is selected based on the Reynolds-Averaged Navier-Stokes (RANS)equation.Implicit solver method is used to do the numerical calculation.

    Fig.12 Tank CFD model

    Fig.13 Free surface and pressure distribution at t=13.5 s

    Fig.14 Free surface and pressure distribution at t=14.3 s

    As the tank oscillates at 30% filling level,three categories of sloshing phenomena and obvious free surface can be observed in Figs.13-14.A standing wave is formed when the excitation frequency is far below the sloshing natural frequency. As the frequency increases, a series of progressive travelling waves with a very short wavelength appear.A hydraulic jump is formed due to a small disturbance at a range of frequency around the sloshing resonance frequency.Since the hydraulic jump has high kinetic energy, it produces a higher impact pressure on the tank wall, which increases the risk of structure damage.

    4 Conclusions

    The coupling effects of tank sloshing on VLEC motion and sectional loads are numerically simulated by the linear frequency domain approach. The application of this approach is practical and efficient in evaluating the simplified coupling problem. A CFD method is adopted to simulate the three-dimensional fluid sloshing movement behavior and sloshing induced impact pressure. Based on the present investigation,the following conclusions can be drawn:

    (1)The effects of tank sloshing on heave and pitch motion in heading sea condition are insignificant compared with those on roll motion. Both heave and pitch motion show no dependency on the tank filling level.

    (2)Tank sloshing would either increase or reduce roll motion,which depends on the first mode transverse frequency of tank sloshing and the roll natural frequency of VLEC. Roll motion can be significantly reduced by tank sloshing when the excitation frequency is close to the first mode sloshing frequency.

    (3) Instead of one single high resonance peak, roll RAO coupled with tank sloshing presents two smaller peaks,whose position and magnitude are sensitive to the tank filling level.

    (4)For hull girder loads,torsional moment is more sensitive to tank sloshing than vertical bending moment and shear force. It indicates that tank sloshing can usually be neglected in the global longitudinal strength assessment of VLEC except in the torsional strength assessment.

    (5) High impact pressures on the tank wall could be induced by hydraulic jump sloshing waves,especially at low filling levels.

    The conclusions can provide valuable reference for the development of VLEC. The validity of the results discussed here clearly requires more detailed investigations.Future study is also needed to focus on the nonlinearity coupling effects and model test.

    日韩欧美在线乱码| 身体一侧抽搐| 一级爰片在线观看| 精品无人区乱码1区二区| 国产高清有码在线观看视频| 久久人人爽人人爽人人片va| 精品人妻一区二区三区麻豆| 女人十人毛片免费观看3o分钟| 免费av毛片视频| 小说图片视频综合网站| 欧美人与善性xxx| 久久久a久久爽久久v久久| 99热全是精品| 99久久精品国产国产毛片| 久久久久久大精品| 欧美日本亚洲视频在线播放| .国产精品久久| 在线播放无遮挡| 国产av一区在线观看免费| 精品人妻熟女av久视频| 一个人观看的视频www高清免费观看| 国产一区亚洲一区在线观看| 日韩制服骚丝袜av| 精品人妻视频免费看| 国产女主播在线喷水免费视频网站 | 看片在线看免费视频| 国语对白做爰xxxⅹ性视频网站| 一边亲一边摸免费视频| 久久这里只有精品中国| 亚洲精品自拍成人| 成人亚洲欧美一区二区av| 成人一区二区视频在线观看| 欧美另类亚洲清纯唯美| 久久人人爽人人片av| 在现免费观看毛片| 国模一区二区三区四区视频| 久久久久久国产a免费观看| 精品久久久久久电影网 | 大香蕉97超碰在线| 好男人视频免费观看在线| 我要搜黄色片| 国产精品一区二区三区四区久久| 三级国产精品欧美在线观看| 少妇高潮的动态图| 色5月婷婷丁香| 直男gayav资源| 久久99热6这里只有精品| 在线免费十八禁| 一边摸一边抽搐一进一小说| 国产黄色小视频在线观看| 亚洲18禁久久av| 国产 一区精品| 在线a可以看的网站| 国产在线男女| 欧美潮喷喷水| 国产精品电影一区二区三区| 中文字幕亚洲精品专区| 天堂中文最新版在线下载 | 成人毛片a级毛片在线播放| 国产成人freesex在线| 日韩一区二区视频免费看| 熟女人妻精品中文字幕| 日本爱情动作片www.在线观看| 99在线人妻在线中文字幕| 日本wwww免费看| 欧美又色又爽又黄视频| 精品熟女少妇av免费看| 欧美不卡视频在线免费观看| 欧美日本视频| av专区在线播放| 久久久久久久国产电影| 啦啦啦啦在线视频资源| 少妇人妻精品综合一区二区| 午夜免费激情av| 六月丁香七月| 欧美性感艳星| 国产一区亚洲一区在线观看| 久久久久精品久久久久真实原创| 欧美一区二区精品小视频在线| 网址你懂的国产日韩在线| 亚洲人成网站在线观看播放| 99久久成人亚洲精品观看| 亚洲国产色片| 国产亚洲av嫩草精品影院| 少妇猛男粗大的猛烈进出视频 | 国产91av在线免费观看| 国产人妻一区二区三区在| 精品一区二区三区视频在线| 国产成人a∨麻豆精品| 欧美性感艳星| 深爱激情五月婷婷| 日日摸夜夜添夜夜爱| 五月玫瑰六月丁香| 精品国产三级普通话版| 欧美日韩在线观看h| 国产精品久久久久久久电影| 熟妇人妻久久中文字幕3abv| 免费观看精品视频网站| 久久精品国产99精品国产亚洲性色| 久久午夜福利片| 国产成人a∨麻豆精品| 免费大片18禁| 国产精品日韩av在线免费观看| 深夜a级毛片| 国产一级毛片七仙女欲春2| 国产精品电影一区二区三区| 中文在线观看免费www的网站| 别揉我奶头 嗯啊视频| 亚洲av不卡在线观看| 亚洲熟妇中文字幕五十中出| 99久久精品热视频| 国产成年人精品一区二区| 亚洲熟妇中文字幕五十中出| 亚洲最大成人av| 丝袜美腿在线中文| 国产精品熟女久久久久浪| 热99re8久久精品国产| 久久精品国产99精品国产亚洲性色| 中文字幕免费在线视频6| 老师上课跳d突然被开到最大视频| 中文字幕久久专区| 亚洲在久久综合| 最近中文字幕2019免费版| 午夜福利网站1000一区二区三区| 中文字幕av成人在线电影| 欧美日本亚洲视频在线播放| 搡女人真爽免费视频火全软件| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 一边摸一边抽搐一进一小说| 国产真实乱freesex| 国产69精品久久久久777片| 高清在线视频一区二区三区 | 国产乱人视频| 五月伊人婷婷丁香| 亚洲av福利一区| 精品久久久久久久久av| 狠狠狠狠99中文字幕| 国内精品宾馆在线| 成人鲁丝片一二三区免费| 亚洲国产精品久久男人天堂| 又黄又爽又刺激的免费视频.| 欧美日本视频| 国产av码专区亚洲av| av在线观看视频网站免费| 热99在线观看视频| 听说在线观看完整版免费高清| 亚洲国产最新在线播放| 少妇人妻精品综合一区二区| 97热精品久久久久久| 日韩av在线大香蕉| 精品久久久久久久末码| 国产精品女同一区二区软件| 亚洲18禁久久av| eeuss影院久久| 日日啪夜夜撸| 日韩精品有码人妻一区| 亚洲av男天堂| 欧美一区二区国产精品久久精品| 噜噜噜噜噜久久久久久91| 日韩成人av中文字幕在线观看| 一级毛片我不卡| 一本一本综合久久| 青春草国产在线视频| 亚洲美女搞黄在线观看| 国产成人a区在线观看| 精品久久久噜噜| 伊人久久精品亚洲午夜| 大话2 男鬼变身卡| 只有这里有精品99| 七月丁香在线播放| 性插视频无遮挡在线免费观看| 建设人人有责人人尽责人人享有的 | 国产免费男女视频| 黄色日韩在线| 成人毛片60女人毛片免费| 免费观看a级毛片全部| 国产成年人精品一区二区| 少妇裸体淫交视频免费看高清| 国产精品久久视频播放| 麻豆精品久久久久久蜜桃| 亚洲天堂国产精品一区在线| 秋霞伦理黄片| 国语自产精品视频在线第100页| 在线观看av片永久免费下载| 亚洲精品日韩av片在线观看| 长腿黑丝高跟| 亚洲av熟女| 人妻少妇偷人精品九色| 国产精品永久免费网站| 亚洲欧美成人精品一区二区| 波野结衣二区三区在线| 国产真实伦视频高清在线观看| 久久精品夜夜夜夜夜久久蜜豆| 日韩大片免费观看网站 | 麻豆乱淫一区二区| 级片在线观看| 内射极品少妇av片p| 国产免费一级a男人的天堂| 婷婷色综合大香蕉| 我的女老师完整版在线观看| 国产精品女同一区二区软件| 国产精品一区www在线观看| 婷婷色av中文字幕| 国产色婷婷99| 看十八女毛片水多多多| 婷婷色麻豆天堂久久 | 国产色爽女视频免费观看| 日韩国内少妇激情av| 男的添女的下面高潮视频| 色综合亚洲欧美另类图片| 听说在线观看完整版免费高清| 在线免费十八禁| 麻豆成人av视频| 欧美激情久久久久久爽电影| 人妻夜夜爽99麻豆av| 91av网一区二区| 国产男人的电影天堂91| 国产成人a∨麻豆精品| 桃色一区二区三区在线观看| 久久久精品大字幕| .国产精品久久| 91aial.com中文字幕在线观看| 成年女人永久免费观看视频| 精品久久久久久久末码| 日本黄色片子视频| 国产色婷婷99| 国产精品一区二区在线观看99 | 久久久欧美国产精品| 国产毛片a区久久久久| 日本五十路高清| 国产精品国产三级国产av玫瑰| 亚洲av一区综合| 成人性生交大片免费视频hd| 久久人妻av系列| 看十八女毛片水多多多| 免费看a级黄色片| 97在线视频观看| 99久久精品国产国产毛片| 久久精品国产亚洲av天美| 两性午夜刺激爽爽歪歪视频在线观看| 久久精品91蜜桃| 精品久久久久久电影网 | 久久这里有精品视频免费| 免费看光身美女| 在线观看av片永久免费下载| 男人舔女人下体高潮全视频| 精品久久久久久久久亚洲| 欧美精品国产亚洲| 男人的好看免费观看在线视频| 直男gayav资源| 波野结衣二区三区在线| 久久精品久久久久久噜噜老黄 | 国产色爽女视频免费观看| 大香蕉久久网| 自拍偷自拍亚洲精品老妇| 国产亚洲91精品色在线| 男女视频在线观看网站免费| 日韩一区二区三区影片| 亚洲三级黄色毛片| 一个人看的www免费观看视频| 成人三级黄色视频| 国产精品三级大全| 国产精品嫩草影院av在线观看| 国产在线一区二区三区精 | 91aial.com中文字幕在线观看| 国产成人福利小说| 国产在视频线精品| 如何舔出高潮| 色5月婷婷丁香| 村上凉子中文字幕在线| 久久精品综合一区二区三区| 亚洲四区av| 亚洲国产精品国产精品| 伦精品一区二区三区| 汤姆久久久久久久影院中文字幕 | ponron亚洲| 七月丁香在线播放| 天天躁日日操中文字幕| 极品教师在线视频| 18+在线观看网站| 欧美精品一区二区大全| 亚洲自偷自拍三级| 性色avwww在线观看| 又爽又黄a免费视频| .国产精品久久| 亚洲美女视频黄频| 欧美日韩国产亚洲二区| 成年版毛片免费区| 成人国产麻豆网| 久久韩国三级中文字幕| 成年av动漫网址| 国语自产精品视频在线第100页| 亚洲成人精品中文字幕电影| ponron亚洲| 亚洲电影在线观看av| 九九久久精品国产亚洲av麻豆| 91久久精品国产一区二区成人| 国产亚洲精品久久久com| 国产亚洲一区二区精品| 麻豆一二三区av精品| 又粗又爽又猛毛片免费看| 偷拍熟女少妇极品色| 桃色一区二区三区在线观看| 国产激情偷乱视频一区二区| 中文字幕av成人在线电影| 精品久久国产蜜桃| 韩国av在线不卡| 久久精品国产亚洲av涩爱| 欧美日本亚洲视频在线播放| 一级二级三级毛片免费看| 啦啦啦啦在线视频资源| 国产精品.久久久| 亚洲一级一片aⅴ在线观看| 午夜精品在线福利| 欧美变态另类bdsm刘玥| 村上凉子中文字幕在线| 偷拍熟女少妇极品色| 蜜桃亚洲精品一区二区三区| 国产精品乱码一区二三区的特点| 日本与韩国留学比较| 综合色丁香网| 婷婷色av中文字幕| 欧美日本视频| 村上凉子中文字幕在线| 偷拍熟女少妇极品色| 99久国产av精品| 两性午夜刺激爽爽歪歪视频在线观看| 男人舔奶头视频| 免费看美女性在线毛片视频| 特大巨黑吊av在线直播| 国产伦在线观看视频一区| 成人亚洲欧美一区二区av| 国产精品99久久久久久久久| 夫妻性生交免费视频一级片| 亚洲自拍偷在线| 国产高清有码在线观看视频| 三级国产精品片| 在线播放无遮挡| www日本黄色视频网| 亚洲av熟女| 别揉我奶头 嗯啊视频| 亚洲国产高清在线一区二区三| 国产精品一区二区三区四区久久| 午夜激情欧美在线| 亚洲国产日韩欧美精品在线观看| 国产精品福利在线免费观看| 国产高清国产精品国产三级 | 麻豆成人av视频| 日本黄大片高清| 国产成人福利小说| 在线免费十八禁| 赤兔流量卡办理| 黄片无遮挡物在线观看| 91在线精品国自产拍蜜月| 国产亚洲av片在线观看秒播厂 | 尤物成人国产欧美一区二区三区| 欧美激情久久久久久爽电影| 国产欧美另类精品又又久久亚洲欧美| 1024手机看黄色片| 欧美高清成人免费视频www| 神马国产精品三级电影在线观看| 青青草视频在线视频观看| 亚洲人成网站在线播| 天天一区二区日本电影三级| 色噜噜av男人的天堂激情| 性色avwww在线观看| 久久精品熟女亚洲av麻豆精品 | 国产黄色视频一区二区在线观看 | 亚洲av成人av| 日韩高清综合在线| 久久人妻av系列| 中文字幕av成人在线电影| 狂野欧美激情性xxxx在线观看| 极品教师在线视频| 国产精品1区2区在线观看.| 亚洲自偷自拍三级| 亚洲欧美中文字幕日韩二区| 亚洲国产日韩欧美精品在线观看| 少妇被粗大猛烈的视频| 18禁裸乳无遮挡免费网站照片| 久久久精品大字幕| 纵有疾风起免费观看全集完整版 | 成人三级黄色视频| 亚洲高清免费不卡视频| 国产精品人妻久久久久久| 亚州av有码| 免费黄色在线免费观看| 18+在线观看网站| 2022亚洲国产成人精品| 91在线精品国自产拍蜜月| 国产高清三级在线| 亚洲激情五月婷婷啪啪| 久久99热这里只频精品6学生 | 国产精品一区二区三区四区免费观看| 国产私拍福利视频在线观看| 成人av在线播放网站| 看免费成人av毛片| 亚洲一级一片aⅴ在线观看| 能在线免费观看的黄片| 熟妇人妻久久中文字幕3abv| 爱豆传媒免费全集在线观看| 国产乱来视频区| 国内精品一区二区在线观看| 99久久精品热视频| 国产片特级美女逼逼视频| 91狼人影院| 草草在线视频免费看| 国产精品一区www在线观看| 天天一区二区日本电影三级| 亚洲国产精品专区欧美| 18禁在线播放成人免费| av黄色大香蕉| 国产真实伦视频高清在线观看| 能在线免费观看的黄片| 看十八女毛片水多多多| 舔av片在线| 可以在线观看毛片的网站| 久久99热这里只有精品18| 干丝袜人妻中文字幕| 纵有疾风起免费观看全集完整版 | 五月玫瑰六月丁香| 午夜精品国产一区二区电影 | 成人二区视频| 国产精品av视频在线免费观看| 乱码一卡2卡4卡精品| 亚洲熟妇中文字幕五十中出| 亚洲欧美成人精品一区二区| 久久99热这里只频精品6学生 | 我要搜黄色片| 国产精品.久久久| 一本久久精品| 日韩av不卡免费在线播放| 青春草国产在线视频| 精品久久久久久久久亚洲| av线在线观看网站| 搡女人真爽免费视频火全软件| 内地一区二区视频在线| 国产一区亚洲一区在线观看| 久久久欧美国产精品| 天美传媒精品一区二区| 三级男女做爰猛烈吃奶摸视频| 99久久精品国产国产毛片| 插逼视频在线观看| 51国产日韩欧美| 成人毛片60女人毛片免费| 麻豆成人午夜福利视频| 天堂中文最新版在线下载 | 国产精品精品国产色婷婷| 亚洲在久久综合| 国产精品久久久久久av不卡| 人妻夜夜爽99麻豆av| 秋霞在线观看毛片| 亚洲精品国产av成人精品| 国产伦一二天堂av在线观看| 激情 狠狠 欧美| 久久久欧美国产精品| 精品久久国产蜜桃| 国产日韩欧美在线精品| 国产成人91sexporn| 亚洲人成网站在线播| av国产免费在线观看| 女的被弄到高潮叫床怎么办| 久久99蜜桃精品久久| 人妻系列 视频| 又粗又爽又猛毛片免费看| 久久久久网色| 岛国毛片在线播放| 国产高清有码在线观看视频| 不卡视频在线观看欧美| 校园人妻丝袜中文字幕| 久久久久久久久久成人| 中国国产av一级| 欧美日韩国产亚洲二区| 国产高清国产精品国产三级 | 亚洲精品乱码久久久久久按摩| 亚洲av免费高清在线观看| 国产精品久久久久久久电影| 成人无遮挡网站| 日本免费在线观看一区| 午夜免费激情av| 成年女人看的毛片在线观看| 亚洲精品国产av成人精品| 国产高清不卡午夜福利| 一本久久精品| 日本黄色视频三级网站网址| 日韩亚洲欧美综合| 日本黄大片高清| 日韩 亚洲 欧美在线| 久久久久久九九精品二区国产| 成人av在线播放网站| 国内少妇人妻偷人精品xxx网站| 99在线视频只有这里精品首页| 日韩欧美 国产精品| 水蜜桃什么品种好| 久久热精品热| 精品无人区乱码1区二区| 夜夜看夜夜爽夜夜摸| 一本一本综合久久| 成年版毛片免费区| 能在线免费看毛片的网站| 午夜福利在线观看免费完整高清在| 男人的好看免费观看在线视频| 人妻夜夜爽99麻豆av| 午夜福利视频1000在线观看| 国产午夜福利久久久久久| 色播亚洲综合网| 国产精品一区二区三区四区免费观看| 丝袜美腿在线中文| 天天一区二区日本电影三级| 久久99热这里只频精品6学生 | 久久99蜜桃精品久久| 99热这里只有是精品在线观看| 日日啪夜夜撸| 麻豆精品久久久久久蜜桃| 国产三级在线视频| 成年免费大片在线观看| 国产精品无大码| 国产乱来视频区| 日本wwww免费看| 99热精品在线国产| 岛国在线免费视频观看| 寂寞人妻少妇视频99o| 国产单亲对白刺激| 国产一区亚洲一区在线观看| 久久精品国产亚洲av涩爱| 亚洲最大成人手机在线| 亚洲欧美日韩无卡精品| 久久久a久久爽久久v久久| 男女边吃奶边做爰视频| 成年版毛片免费区| 日韩 亚洲 欧美在线| 亚洲av成人精品一二三区| 国产色爽女视频免费观看| 亚洲欧洲日产国产| 女人久久www免费人成看片 | 男人舔女人下体高潮全视频| 99热精品在线国产| 精品久久久久久久久av| 欧美不卡视频在线免费观看| 国产精品美女特级片免费视频播放器| 日韩中字成人| 看片在线看免费视频| 毛片一级片免费看久久久久| 在线观看av片永久免费下载| 亚洲精品乱码久久久v下载方式| 国产亚洲午夜精品一区二区久久 | 国产成人一区二区在线| 插阴视频在线观看视频| 亚洲乱码一区二区免费版| 又黄又爽又刺激的免费视频.| 嫩草影院精品99| 全区人妻精品视频| 亚洲精品456在线播放app| 亚洲自偷自拍三级| 黄色配什么色好看| 日韩 亚洲 欧美在线| 色综合亚洲欧美另类图片| 中文资源天堂在线| 日本一二三区视频观看| 亚洲成人中文字幕在线播放| 国产一区有黄有色的免费视频 | 午夜免费激情av| 国产精品国产三级专区第一集| 老师上课跳d突然被开到最大视频| 99九九线精品视频在线观看视频| 免费观看在线日韩| 成人二区视频| 精品久久久久久久久av| 波野结衣二区三区在线| 日韩一区二区三区影片| 亚洲自偷自拍三级| www.av在线官网国产| 日韩 亚洲 欧美在线| 九九久久精品国产亚洲av麻豆| 国产精品人妻久久久久久| 亚洲欧美清纯卡通| 91av网一区二区| 成人一区二区视频在线观看| 男女视频在线观看网站免费| 亚洲精品日韩在线中文字幕| av在线老鸭窝| 狠狠狠狠99中文字幕| 国产女主播在线喷水免费视频网站 | 成人性生交大片免费视频hd| 黄片无遮挡物在线观看| 麻豆精品久久久久久蜜桃| 国产精品国产三级国产av玫瑰| 天天一区二区日本电影三级| 人妻少妇偷人精品九色| 国产成人91sexporn| 高清视频免费观看一区二区 | a级一级毛片免费在线观看| 久久午夜福利片| 亚洲精品久久久久久婷婷小说 | av免费观看日本| 可以在线观看毛片的网站| 天美传媒精品一区二区| 欧美三级亚洲精品| 欧美成人精品欧美一级黄| 成年女人永久免费观看视频| 老司机影院毛片| 久久精品久久久久久久性| av又黄又爽大尺度在线免费看 | 中文字幕熟女人妻在线| 日本黄色视频三级网站网址| 啦啦啦啦在线视频资源| 长腿黑丝高跟| 一个人看的www免费观看视频| 久久精品久久久久久久性| 99在线人妻在线中文字幕| 黄色日韩在线| 麻豆av噜噜一区二区三区| 麻豆国产97在线/欧美| 国产高清不卡午夜福利| 国产一级毛片在线|