• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical Solution of VLEC Hydrodynamic Response Coupled with Tank Sloshing

    2021-12-31 07:52:46-,-
    船舶力學(xué) 2021年12期

    -,-

    (Jiangnan Shipyard(Group)Co.,Ltd.,Shanghai 201913,China)

    Abstract: The coupling effects of tank sloshing on the ship motion and wave-induced loads of a very large ethane carrier(VLEC)with a loading capacity of 98 000 m3 and four prismatic independent Type B cargo tanks are systematically investigated. The ship motion equation coupled with tank sloshing is calculated in frequency domain based on the three-dimensional linear potential flow theory. The added mass, damping coefficient and restoring stiffness correction due to tank sloshing are fully considered. The response amplitude operators (RAO) of ship motion and sectional loads with and without considering tank sloshing are obtained. Taking the equivalent design wave determined from the maximum RAO of roll as excitation input condition,the three-dimensional fluid sloshing movement behavior and sloshing-induced impact pressure are simulated by the computational fluid dynamics (CFD)method. The renormalized group (RNG) k-ε turbulence model is selected based on the Reynolds-Averaged Navier-Stokes (RANS) equation, and the volume of fluid method is adopted to predict the free surface elevation. The results can provide a valuable reference for the overall design and structural safety assessment of VLEC.

    Key words:VLEC;ship motion;tank sloshing;coupling effects;frequency domain analysis;volume of fluid method

    0 Introduction

    US shale gas development boom prompts significant increase in ethane production,lower prices,as well as marked increase in demands for ethane in Asia and Europe,which in turn brings a lot of transport demands. Ethane carriers gradually become the hotspot of international gas ship market. Historically, ethane has been transported in small liquefied ethane/ethylene carriers designed and constructed to carry ethylene as well as ethane. Almost all the vessels adopt Type C cargo tanks which limit the cargo loading capacity. It is estimated that the maximum feasible size of a ship with Type C cargo tanks is around 40 000 m3based on the design pressure limitation and economic factor. The recent US revolution in ethane production has fuelled a growing demand for far larger, high-capacity ethane carriers. Thus, very large ethane carrier (VLEC) with prismatic independent Type B cargo tanks would play an important role for ethane transport in the near future.The key technology of VLEC is the design and construction of a cargo containment system.

    Tank sloshing behavior is of important concern in the design of liquefied gas carriers.Sloshing flow in liquid cargo tanks is firstly excited by ship motion, but the sloshing flow itself affects the ship motion in return.The coexistence of free surfaces inside the tank and outside the hull provides different dynamic loads. The hydrodynamics analysis of a liquid cargo ship has commonly been investigated by ignoring the coupling effects because of its complexity. Recent numerical simulation and experiments have shown that it is only valid when the ship size is much larger than the size of the liquid cargo tank or when the tank is fully loaded.Ships with partially filled liquid tanks are sensitive to tank sloshing in rough sea[1]. Several studies have been carried out to predict the coupling effects between ship motion and tank sloshing until now.In particular,the recent studies can be categorized into two main approaches: the frequency domain approach adopting linear sloshing flow and the time domain approach assuming nonlinear sloshing flow.Molin et al(2002)[2],Malenica et al(2003)[3], Newman (2005)[4]and Huang et al (2009)[5]have studied the coupling effects based on linear potential theory in the frequency domain. The approach is used under the assumption of small amplitude ship and fluid motions.However,issues invariably arise regarding the applicability of linear sloshing flow assumption as the amplitude or intensity increases[6]. To account for the nonlinear effects, simulations in time domain based on computational fluid dynamics (CFD) were conducted by Lee et al(2007)[7],Kim et al(2007)[8],and Mitra et al(2012)[9].In the time domain simulation,the nonlinear viscous damping can be included,the fluid motion inside the liquid tank is not necessarily small. However, very violent fluid motions such as overturning and splash cannot be considered.When the internal fluid motion is mild,impact pressure on the tank wall is extremely difficult to simulate. Model test study is still the main means, Mikelis et al (1984)[10], Francescutto and Contento(1994)[11],Nasar et al (2012)[12]carried out a series of model tests about the coupling effects.In their study, they concluded that the coupling effects do not always result in the increase of sloshing-induced pressure and that the increase or decrease of pressure is dependent on resonant condition.

    In general, the coupling effects analysis is still a challenging task. Most of the studies mentioned are about LNG,FPSO and barge.A VLEC with 98 000 m3loading capacity and four prismatic independent Type B tanks is systematically analyzed in the investigation. The main focus is the influence of tank sloshing on the global hydrodynamic response of VLEC, breaking or splash loads on the containment system caused by ship motion with strong nonlinearity are not taken into account. For this purpose, the linear potential theory in the frequency domain is adopted and acceptable with reasonable accuracy. As is well known, the large sloshing fluid movement is prone to create highly-localized impact pressures on the tank wall, particularly when resonant excitation occurs, which in turn causes structural damage. A CFD method is adopted to simulate the three-dimensional fluid sloshing movement behavior and sloshing-induced impact pressure for local strength assessment of independent Type B tank.

    1 Mathematical formulation

    1.1 Modeling of linear hydrodynamics

    Since the entire analysis is linearized,nonlinear sloshing effects are not included.With the assumption of incompressible and inviscid fluid, the perturbation potentialφPis expressed as a sum of the diffraction potentialφDand the radiation potentialφR:

    For the internal fluid, the diffraction problem is not solved because no incident wave exists.Only the boundary-value problem and solution of the radiation problem are stated here.

    The radiation potentialφRcan be described by the superposition of six basic motion modes with time and space separation:

    whereηj(j=1,2,…,6)denotes the complex amplitudes of the body oscillatory motion in its six rigid-body degrees of freedom,φjis the corresponding unit-amplitude radiation potentials, eiωtdenotes the oscillation factor, i is the imaginary unit andωis the encounter frequency, andtdenotes the time.

    The boundary value problem for theφjcan be written as:

    wheregis gravitational acceleration, the unit vectornis normal to the body boundary and points out of the fluid domain,andris the position vector.

    For the internal fluid, the mean free surface has the vertical velocityZ˙0. The velocity potentialφPis added to solve the boundary value problem on the body surface[13].

    whereρsis the density of internal fluid.

    By introduction of the zero-speed free-surface Green function that satisfies the free surface condition and the radiation condition, the previous boundary value problem can be solved by the well-known boundary integral equation.

    1.2 Hydrostatic restoring stiffness correction

    The hydrostatic effect of internal fluid is considered as the reduction of restoring force, in particular roll motion[14].

    Fig.1 Correction in restoring force due to internal fluid

    whereWis weight of the ship,wSis weight of the internal fluid,ISis 2nd rotational inertia moment of the internal free surface,VSis volume of the internal fluid.

    Eq.(7)represents the restoring stiffness correctionKSdue to sloshing fluid as follows:

    Therefore,KSis only related toISandρS,and not affected by filling level or location of tanks.

    1.3 Ship motion equation coupled with tank sloshing

    The hydrodynamic coefficients such as added massMaand potential dampingCcan be obtained through the following equations:

    whereSBindicates the mean wet surface of the body,jandkmean the motion modes.

    Only the inertia force of sloshing fluid is considered, since there is no radiation damping for the internal problem within the potential theory.Sloshing forceFS(ω)is given by:

    whereMas(ω)is added mass of sloshing fluid.

    whereγis a ratio to the critical roll damping and depends on the ship characteristic. For VLEC,γis 0.04 compared with conventional ship in a range of 0.02-0.05.

    Eq.(14)and Eq.(15)are merged into the following equation:

    Based on the theories mentioned above, the analysis of coupling effects between ship motion and tank sloshing can be carried out.

    2 Hydrodynamic model

    The global hydrodynamic response analysis is performed for a system consisting of a panel model and a mass model. To calculate the inner tank hydrodynamics, tank definition shall be included in the panel model.The panel model representing VLEC outer hull and four prismatic independent Type B tanks is shown in Fig.2.It is of importance that the mesh density reflects the hydrodynamic pressure variation around the structure. In tanks where the pressure variation is large, the tanks are modeled with a considerably fine mesh.

    The mass model for the sectional load calculation is shown in Fig.3. The mass is simply modeled as transverse beams and point masses representing mass distribution,thereby ensuring that the roll radius of gyration and metacentric heights are correct. Moreover, tank fluid shall be excluded from the mass model,since it is represented by the added mass from the internal radiation problem.

    Fig.2 Panel model

    Fig.3 Mass model

    3 Simulation results

    3.1 Roll added mass and radiation damping

    The added mass and radiation damping of sloshing fluid in tanks at three different filling levels(30%,50%and 70%)are calculated as shown in Figs.4-5.Roll added massA44 is non-dimensionalized byρVL2and roll radiation dampingD44 is non-dimensionalized byρVL gL,Vis displaced volume of panel model,Lis ship length.

    Fig.4 Roll added mass of sloshing fluid

    Fig.5 Roll radiation damping of sloshing fluid

    To get a better understanding of the characteristics of sloshing resonance, the natural sloshing frequencies are determined. The natural transverse sloshing frequenciesωr,nin different surface modes for a rectangular tank are calculated through the linear approximation equation[15]:

    whereBTdenotes the transverse sloshing breadth,hindicates the filling depth of tank,nrepresents the surface mode number.

    For a prismatic tank with chamfered bottom, Faltinsen and Timokha (2009)[16]proposed a correction factor:

    For a typical tank, the main parameters are: length 39.6 m, width 34.4 m, and height 18.8 m, and the first mode sloshing frequency at different filling levels are shown in Tab.1.

    The results show that the peak frequency of roll hydrodynamic coefficients is well consistent with the transverse sloshing resonance frequency. Roll hydrodynamic coefficients vary with the filling level changing especially,and reach its maximum exactly at the first sloshing resonance frequency.Away from sloshing resonance frequency,roll hydrodynamic coefficients decrease significantly.

    3.2 Ship motion and sectional load

    For simplicity of analysis, 30% and 70% filling levels are considered and all partially-filled tanks are filled at the same filling level. Both numerical simulations considering and ignoring tanksloshing are conducted by the radiation-diffraction panel code WADAM.

    Tab.1 The first mode natural transverse sloshing frequencies

    Figs.6-8 show the effects of tank sloshing on three main ship motion at 30%and 70%filling levels. An insignificant effect of tank sloshing on pitch and heave motion was observed in heading sea condition as shown in Figs.6-7.Roll motion amplitude tends to decrease as filling level increases and the single peak of roll RAO is split into two separated smaller peaks as shown in Fig.8. The phenomenon of great interest is that the two peaks do not exactly appear at the roll natural frequency and the first mode tank sloshing frequency. The first peak is the roll natural frequency which is shifted towards a lower frequency due to the reduction of roll restoring stiffness caused by external fluid dynamic. The second peak induced by sloshing dynamics is shifted toward higher frequency than the first mode tank sloshing frequency.

    Fig.6 Pitch RAO in heading sea

    Fig.7 Heave RAO in heading sea

    Fig.8 Roll RAO in beam sea

    Taking 70% filling level for example, the sloshing-induced peak can be observed at the frequency of 0.95 rad/s,which is 11.8%larger than the first mode tank sloshing frequency of 0.85 rad/s.Meanwhile, the sloshing-induced peak in roll motion shifts towards higher frequency as the filling levels increase. It can be explained through that the first mode sloshing frequency becomes bigger as the filling levels increase. Similar observation has also been reported by Bunnik et al (2010)[17]and Zhao et al (2014)[18].Roll motion coupled with tank sloshing appreciably changes with the excitation frequency. Taking 30% filling level for example, roll motion is relatively small in a certain frequency range of 0.40-0.75 rad/s, and reaches the minimum at 0.56 rad/s, then the partiallyfilled tank acts as an anti-rolling tank.

    Fig.9 VBM and VSF amidships RAO in heading sea

    Fig.10 TM amidships RAO in beam sea

    Additionally, hydrodynamic loads of VLEC at 30% tank filling level under regular wave are calculated.Figs.9-10 represent that the comparison of three different sectional loads RAO at amidships with and without considering tank sloshing, such as vertical bending moment(VBM),torsional moment (TM) and vertical shear force (VSF). The wave-induced moment and force are non-dimensionalized byρVgWaandρVgWa/L,respectively.Wais wave amplitude of the incident wave.

    For heading sea condition,VBM and VSF show no significant deviations whether tank sloshing is considered or not,from which it can be inferred that the effects of tank sloshing on the global longitudinal loads will be less significant since the dynamic effect of sloshing liquid motion is much smaller than the longitudinal inertia effect of hull. It is concluded that the effects of tank sloshing on the VLEC hull girder strength assessment can usually be neglected. However, for TM in beam sea condition, the single peak RAO curve of TM transforms to the multiple peak form due to tank sloshing and several significant increased peaks can be observed.

    3.3 Sloshing-induced impact pressure

    Sloshing-induced impact pressure is critical for the design of cargo containment system.Based on the previous ship motion calculation, tank sloshing undergoing large amplitude roll motion in beam regular waves at 30%filling level is simulated and discussed in the present study.

    LR (2004)[19]gave the formulae to determine the approximate maximum‘lifetime’ship motions.The ship’s natural roll periodSnrand the maximum‘lifetime’roll angleφmaxare given by:

    whererdenotes the radius of gyration of roll,GMpresents transverse metacentric height with free surface correction,Bdenotes ship breadth. For VLEC, eitherrorGMvaries significantly between loading conditions.

    As for the long-term prediction, the wave statistics model is given through the North Atlantic wave scatter diagram. The Pierson-Moskowitz spectrum is assigned to simulate the sea state conditions and the‘cosine squared’spreading is applied to model the short-crested waves.The long-term prediction of roll motion with heading 90° and all wave directions included at each exceedance probability levels are shown in Fig.11.

    The results show that the maximum‘20 years’roll motion calculated by LR rule is equivalent to the long-term response extreme value in beam wave condition at the exceedance probability level of 10-8.However,considering all the wave directions,the long-term probability level of roll increases to 10-9.

    Fig.11 Long-term prediction of roll motion

    Tab.2 Roll motion calculated value

    The maximum‘lifetime’roll angle formula given by LR rule is only related to ship breadth and length,which does not consider the sloshing effect.It can be concluded that the maximum‘lifetime’roll angle of VLEC calculated by LR rule is in general over-predicted without including the coupling effects, and the natrual roll period calculated by LR rule is lower compared with that obtained by the numerical calculation method.

    The wave frequency, heading and phase of the equivalent design wave are determined from the maximum RAO for roll.The long-term prediction extreme value is taken as the excitation input and the roll oscillation center is located in the center of gravity.A general-purpose CFD code FLOW-3D is adopted to simulate the three-dimensional fluid sloshing movement behavior and sloshing-induced impact pressure.The tank CFD model is shown in Fig.12.A proper definition of the boundary conditions at the free surface is important for an accurate capture of the free-surface dynamics. The volume of fluid method (VOF) is adopted to predict the free surface elevation. Incompressible viscosity flow is considered and renormalized group(RNG)k-εturbulence model is selected based on the Reynolds-Averaged Navier-Stokes (RANS)equation.Implicit solver method is used to do the numerical calculation.

    Fig.12 Tank CFD model

    Fig.13 Free surface and pressure distribution at t=13.5 s

    Fig.14 Free surface and pressure distribution at t=14.3 s

    As the tank oscillates at 30% filling level,three categories of sloshing phenomena and obvious free surface can be observed in Figs.13-14.A standing wave is formed when the excitation frequency is far below the sloshing natural frequency. As the frequency increases, a series of progressive travelling waves with a very short wavelength appear.A hydraulic jump is formed due to a small disturbance at a range of frequency around the sloshing resonance frequency.Since the hydraulic jump has high kinetic energy, it produces a higher impact pressure on the tank wall, which increases the risk of structure damage.

    4 Conclusions

    The coupling effects of tank sloshing on VLEC motion and sectional loads are numerically simulated by the linear frequency domain approach. The application of this approach is practical and efficient in evaluating the simplified coupling problem. A CFD method is adopted to simulate the three-dimensional fluid sloshing movement behavior and sloshing induced impact pressure. Based on the present investigation,the following conclusions can be drawn:

    (1)The effects of tank sloshing on heave and pitch motion in heading sea condition are insignificant compared with those on roll motion. Both heave and pitch motion show no dependency on the tank filling level.

    (2)Tank sloshing would either increase or reduce roll motion,which depends on the first mode transverse frequency of tank sloshing and the roll natural frequency of VLEC. Roll motion can be significantly reduced by tank sloshing when the excitation frequency is close to the first mode sloshing frequency.

    (3) Instead of one single high resonance peak, roll RAO coupled with tank sloshing presents two smaller peaks,whose position and magnitude are sensitive to the tank filling level.

    (4)For hull girder loads,torsional moment is more sensitive to tank sloshing than vertical bending moment and shear force. It indicates that tank sloshing can usually be neglected in the global longitudinal strength assessment of VLEC except in the torsional strength assessment.

    (5) High impact pressures on the tank wall could be induced by hydraulic jump sloshing waves,especially at low filling levels.

    The conclusions can provide valuable reference for the development of VLEC. The validity of the results discussed here clearly requires more detailed investigations.Future study is also needed to focus on the nonlinearity coupling effects and model test.

    最好的美女福利视频网| 日韩高清综合在线| 亚洲一区高清亚洲精品| 精品高清国产在线一区| 男人舔奶头视频| 国产成年人精品一区二区| 中国美女看黄片| 熟女少妇亚洲综合色aaa.| 成人永久免费在线观看视频| 亚洲真实伦在线观看| 黄色视频不卡| 久久香蕉激情| 高潮久久久久久久久久久不卡| 女同久久另类99精品国产91| 欧美在线黄色| 老鸭窝网址在线观看| 亚洲第一欧美日韩一区二区三区| 亚洲av五月六月丁香网| 国产蜜桃级精品一区二区三区| av视频在线观看入口| 国产69精品久久久久777片 | 两个人的视频大全免费| 亚洲精品色激情综合| 一级片免费观看大全| 老司机福利观看| 国产成+人综合+亚洲专区| 精品人妻1区二区| 19禁男女啪啪无遮挡网站| 欧美zozozo另类| 一边摸一边抽搐一进一小说| 久久这里只有精品19| 熟女少妇亚洲综合色aaa.| 桃色一区二区三区在线观看| 伦理电影免费视频| 可以在线观看毛片的网站| 国产成人精品久久二区二区免费| 亚洲国产欧美网| 超碰成人久久| 久久香蕉精品热| 神马国产精品三级电影在线观看 | 国产97色在线日韩免费| 亚洲avbb在线观看| 久久精品91无色码中文字幕| 日韩成人在线观看一区二区三区| 美女高潮喷水抽搐中文字幕| 国产精品爽爽va在线观看网站| 夜夜爽天天搞| 最近在线观看免费完整版| 日本在线视频免费播放| 国产精品野战在线观看| 亚洲国产欧美网| av福利片在线观看| 我的老师免费观看完整版| 老熟妇仑乱视频hdxx| 日韩成人在线观看一区二区三区| 国产主播在线观看一区二区| 欧美黑人欧美精品刺激| 成在线人永久免费视频| 一本久久中文字幕| 女警被强在线播放| 精品午夜福利视频在线观看一区| 国产乱人伦免费视频| 久久精品夜夜夜夜夜久久蜜豆 | 黄色丝袜av网址大全| 午夜激情av网站| 亚洲片人在线观看| 禁无遮挡网站| 天堂av国产一区二区熟女人妻 | 在线观看免费日韩欧美大片| 啦啦啦观看免费观看视频高清| 国产一区二区三区视频了| 亚洲精品色激情综合| 1024手机看黄色片| 女人爽到高潮嗷嗷叫在线视频| 欧美+亚洲+日韩+国产| 亚洲av日韩精品久久久久久密| 免费在线观看黄色视频的| 国产激情欧美一区二区| 无遮挡黄片免费观看| 一个人免费在线观看电影 | 亚洲欧美精品综合一区二区三区| 亚洲国产欧洲综合997久久,| 在线观看日韩欧美| 看黄色毛片网站| 日本五十路高清| 免费看美女性在线毛片视频| 午夜成年电影在线免费观看| 一区二区三区高清视频在线| 叶爱在线成人免费视频播放| 日本在线视频免费播放| 午夜视频精品福利| 国产一区二区三区在线臀色熟女| 亚洲男人的天堂狠狠| 变态另类成人亚洲欧美熟女| 久久精品国产清高在天天线| bbb黄色大片| 搡老熟女国产l中国老女人| 久久人人精品亚洲av| 欧美日韩乱码在线| 黄色丝袜av网址大全| 欧美三级亚洲精品| 99国产综合亚洲精品| 国产精品亚洲av一区麻豆| 99国产精品一区二区三区| 国产亚洲精品第一综合不卡| 精品久久久久久久末码| 亚洲 欧美一区二区三区| 久久久久久九九精品二区国产 | 手机成人av网站| 丰满的人妻完整版| 狂野欧美白嫩少妇大欣赏| 91在线观看av| 国产免费av片在线观看野外av| 91国产中文字幕| 黑人欧美特级aaaaaa片| 亚洲真实伦在线观看| 亚洲欧美一区二区三区黑人| 久久人妻av系列| 久久婷婷成人综合色麻豆| 91成年电影在线观看| 国产亚洲欧美98| 亚洲最大成人中文| www.999成人在线观看| 18禁黄网站禁片午夜丰满| 久久久久免费精品人妻一区二区| 亚洲成人中文字幕在线播放| 黄片大片在线免费观看| 欧美日韩国产亚洲二区| 午夜免费观看网址| 99热6这里只有精品| 超碰成人久久| 1024香蕉在线观看| 亚洲免费av在线视频| 手机成人av网站| 88av欧美| 老司机福利观看| 亚洲成人免费电影在线观看| 国产精品精品国产色婷婷| 老司机午夜福利在线观看视频| 50天的宝宝边吃奶边哭怎么回事| 精品电影一区二区在线| 嫩草影院精品99| 一本久久中文字幕| 欧美乱色亚洲激情| 五月玫瑰六月丁香| 午夜福利成人在线免费观看| 日韩欧美 国产精品| 99国产综合亚洲精品| 欧美日韩亚洲国产一区二区在线观看| 精品国产亚洲在线| 搡老妇女老女人老熟妇| 欧洲精品卡2卡3卡4卡5卡区| 亚洲全国av大片| 国产黄色小视频在线观看| 亚洲第一电影网av| 伊人久久大香线蕉亚洲五| 91av网站免费观看| 91大片在线观看| 亚洲av成人不卡在线观看播放网| 欧美成人一区二区免费高清观看 | 悠悠久久av| 99国产综合亚洲精品| 国产激情久久老熟女| 日本成人三级电影网站| 视频区欧美日本亚洲| xxxwww97欧美| 精品少妇一区二区三区视频日本电影| 国产一区二区激情短视频| 热99re8久久精品国产| 中文资源天堂在线| 少妇粗大呻吟视频| 大型黄色视频在线免费观看| 成人一区二区视频在线观看| 亚洲一区二区三区不卡视频| 国产一区二区三区视频了| 国产私拍福利视频在线观看| 九色成人免费人妻av| 亚洲av日韩精品久久久久久密| 欧美成人性av电影在线观看| 禁无遮挡网站| 国产单亲对白刺激| 日日夜夜操网爽| 手机成人av网站| 三级国产精品欧美在线观看 | 成人永久免费在线观看视频| 久久久久久九九精品二区国产 | 国产视频内射| 最近最新中文字幕大全电影3| 又黄又粗又硬又大视频| 人妻夜夜爽99麻豆av| 午夜福利免费观看在线| 亚洲第一电影网av| 亚洲精品在线观看二区| 亚洲av熟女| 精品第一国产精品| 日韩免费av在线播放| 久久精品国产亚洲av高清一级| 午夜成年电影在线免费观看| 波多野结衣高清无吗| 在线观看美女被高潮喷水网站 | 少妇人妻一区二区三区视频| 给我免费播放毛片高清在线观看| 日韩国内少妇激情av| 国产av一区二区精品久久| 久久九九热精品免费| 在线国产一区二区在线| 一a级毛片在线观看| 高清毛片免费观看视频网站| 又黄又粗又硬又大视频| 99精品欧美一区二区三区四区| 精品一区二区三区四区五区乱码| 亚洲精品一卡2卡三卡4卡5卡| 亚洲国产欧洲综合997久久,| 成人三级做爰电影| 国产爱豆传媒在线观看 | 国内精品一区二区在线观看| 最好的美女福利视频网| 亚洲精品久久成人aⅴ小说| 亚洲av成人一区二区三| 国产乱人伦免费视频| 村上凉子中文字幕在线| 亚洲av成人av| 最近最新免费中文字幕在线| 欧洲精品卡2卡3卡4卡5卡区| 特级一级黄色大片| 亚洲真实伦在线观看| 成年版毛片免费区| 一个人免费在线观看的高清视频| 最新美女视频免费是黄的| 波多野结衣高清无吗| 啪啪无遮挡十八禁网站| 亚洲av片天天在线观看| 国产免费av片在线观看野外av| 麻豆成人午夜福利视频| 国产黄片美女视频| 国产一区二区三区在线臀色熟女| 亚洲人成网站高清观看| 欧美黑人精品巨大| 桃色一区二区三区在线观看| 一区二区三区激情视频| 亚洲人成77777在线视频| 亚洲国产精品久久男人天堂| 亚洲 国产 在线| 国产成人精品无人区| 看片在线看免费视频| 亚洲激情在线av| 亚洲一区高清亚洲精品| 久久精品人妻少妇| 真人一进一出gif抽搐免费| 岛国在线观看网站| 叶爱在线成人免费视频播放| 成人欧美大片| 长腿黑丝高跟| 最新美女视频免费是黄的| 日韩成人在线观看一区二区三区| 国内精品久久久久久久电影| 少妇粗大呻吟视频| 久久午夜亚洲精品久久| 在线a可以看的网站| 日韩欧美免费精品| 黑人操中国人逼视频| 五月玫瑰六月丁香| 久久国产精品人妻蜜桃| 亚洲国产看品久久| 国产精品亚洲av一区麻豆| 久久久久久人人人人人| 国产欧美日韩一区二区精品| 亚洲电影在线观看av| 岛国在线免费视频观看| 一本大道久久a久久精品| 国产一区二区在线av高清观看| 日本在线视频免费播放| 亚洲精品久久成人aⅴ小说| xxxwww97欧美| 99国产极品粉嫩在线观看| 久久性视频一级片| 午夜两性在线视频| 日韩大码丰满熟妇| 日本成人三级电影网站| 亚洲国产精品成人综合色| 香蕉久久夜色| 一个人免费在线观看的高清视频| 一区二区三区国产精品乱码| 亚洲精品美女久久av网站| 日本在线视频免费播放| 久久这里只有精品中国| 久久精品国产99精品国产亚洲性色| 午夜视频精品福利| 国产真实乱freesex| 日韩中文字幕欧美一区二区| 男女视频在线观看网站免费 | 久久久久亚洲av毛片大全| 男人的好看免费观看在线视频 | 真人一进一出gif抽搐免费| 亚洲精品一卡2卡三卡4卡5卡| 午夜亚洲福利在线播放| 一本综合久久免费| 国内毛片毛片毛片毛片毛片| 欧美日韩国产亚洲二区| 国内毛片毛片毛片毛片毛片| 欧美日本视频| 天天添夜夜摸| 久久精品国产综合久久久| 免费高清视频大片| 中文字幕久久专区| 日韩三级视频一区二区三区| 中文字幕久久专区| 变态另类丝袜制服| 亚洲欧美日韩高清在线视频| 亚洲18禁久久av| 中文在线观看免费www的网站 | 黄色片一级片一级黄色片| 精品一区二区三区视频在线观看免费| 日韩大码丰满熟妇| 亚洲熟女毛片儿| 国产精品 国内视频| 不卡av一区二区三区| a级毛片a级免费在线| 啦啦啦观看免费观看视频高清| 国产精品一及| 国产精品 欧美亚洲| 国产不卡一卡二| 国产精品亚洲av一区麻豆| 欧美又色又爽又黄视频| 中文字幕精品亚洲无线码一区| 老汉色∧v一级毛片| 嫁个100分男人电影在线观看| 国产精品一区二区精品视频观看| 18禁美女被吸乳视频| 国产午夜精品论理片| 欧美一区二区国产精品久久精品 | 国产91精品成人一区二区三区| 欧洲精品卡2卡3卡4卡5卡区| 国产av一区二区精品久久| 亚洲avbb在线观看| 99久久精品热视频| 国产精品永久免费网站| 日本黄大片高清| 亚洲七黄色美女视频| 亚洲美女视频黄频| 久久久久国内视频| 麻豆一二三区av精品| www.自偷自拍.com| 两个人视频免费观看高清| 欧洲精品卡2卡3卡4卡5卡区| 久久久久久人人人人人| 国产成人精品久久二区二区91| 国产探花在线观看一区二区| 久久人人精品亚洲av| 色播亚洲综合网| 欧美一级a爱片免费观看看 | 久久人妻福利社区极品人妻图片| 日韩欧美国产在线观看| 久久久久亚洲av毛片大全| 日本 欧美在线| 国产1区2区3区精品| 国产主播在线观看一区二区| 18禁黄网站禁片午夜丰满| 欧美精品亚洲一区二区| 亚洲国产欧美人成| 久久伊人香网站| 嫩草影视91久久| 国产精品 国内视频| 中文字幕高清在线视频| 草草在线视频免费看| 操出白浆在线播放| 国产乱人伦免费视频| 欧美一区二区国产精品久久精品 | 美女免费视频网站| 色av中文字幕| 草草在线视频免费看| 在线播放国产精品三级| 亚洲成人国产一区在线观看| 淫妇啪啪啪对白视频| 欧美黄色片欧美黄色片| 精品国内亚洲2022精品成人| 国产精品爽爽va在线观看网站| 欧美高清成人免费视频www| 精品久久久久久久毛片微露脸| 亚洲av片天天在线观看| 黄色视频,在线免费观看| 国产亚洲精品一区二区www| 黄色视频,在线免费观看| 亚洲一区二区三区不卡视频| 亚洲av熟女| 欧美日韩精品网址| 又大又爽又粗| 国产一级毛片七仙女欲春2| 国产精华一区二区三区| 99久久久亚洲精品蜜臀av| 久久香蕉激情| av天堂在线播放| xxxwww97欧美| 午夜福利欧美成人| 亚洲第一电影网av| 十八禁网站免费在线| 国产探花在线观看一区二区| 精品久久久久久久毛片微露脸| 国产熟女xx| 亚洲最大成人中文| 制服丝袜大香蕉在线| 欧美绝顶高潮抽搐喷水| 久久亚洲真实| 国产午夜福利久久久久久| 最近在线观看免费完整版| 午夜福利高清视频| 欧美丝袜亚洲另类 | a级毛片a级免费在线| 国产熟女xx| 男女之事视频高清在线观看| 亚洲色图av天堂| 久久亚洲真实| 妹子高潮喷水视频| 18禁黄网站禁片午夜丰满| 女人高潮潮喷娇喘18禁视频| 欧美另类亚洲清纯唯美| 免费在线观看完整版高清| 50天的宝宝边吃奶边哭怎么回事| a级毛片a级免费在线| 一本大道久久a久久精品| 丝袜美腿诱惑在线| 午夜激情av网站| 午夜免费激情av| 午夜两性在线视频| bbb黄色大片| 久久人人精品亚洲av| 色av中文字幕| 欧美黄色片欧美黄色片| 99国产精品99久久久久| 18禁美女被吸乳视频| av免费在线观看网站| 日韩大码丰满熟妇| 999久久久国产精品视频| 桃色一区二区三区在线观看| 欧美黑人精品巨大| 怎么达到女性高潮| 俄罗斯特黄特色一大片| 手机成人av网站| 亚洲五月婷婷丁香| 波多野结衣高清无吗| 可以免费在线观看a视频的电影网站| 午夜a级毛片| 精品第一国产精品| 亚洲av电影在线进入| 超碰成人久久| 桃红色精品国产亚洲av| 国产三级中文精品| 欧美日韩亚洲国产一区二区在线观看| 99热只有精品国产| 成人精品一区二区免费| 岛国在线免费视频观看| 在线观看www视频免费| 99久久国产精品久久久| 亚洲国产看品久久| 夜夜躁狠狠躁天天躁| 女生性感内裤真人,穿戴方法视频| 女生性感内裤真人,穿戴方法视频| 国产精品电影一区二区三区| 日本免费a在线| 国产黄片美女视频| 国产真实乱freesex| 久久人人精品亚洲av| 国产久久久一区二区三区| 深夜精品福利| 久久精品国产综合久久久| 欧美在线一区亚洲| 国产一区二区三区视频了| 亚洲欧美激情综合另类| 一区福利在线观看| 国产99久久九九免费精品| 欧美性猛交╳xxx乱大交人| 老熟妇乱子伦视频在线观看| 麻豆国产av国片精品| 亚洲精品在线观看二区| 日本三级黄在线观看| 亚洲熟妇中文字幕五十中出| 无限看片的www在线观看| 18美女黄网站色大片免费观看| 99久久久亚洲精品蜜臀av| 首页视频小说图片口味搜索| 男女做爰动态图高潮gif福利片| 人妻丰满熟妇av一区二区三区| 欧美性猛交╳xxx乱大交人| 国产乱人伦免费视频| 国产熟女午夜一区二区三区| 久久久国产欧美日韩av| 最近最新中文字幕大全电影3| videosex国产| 欧美精品亚洲一区二区| 操出白浆在线播放| 国产精品香港三级国产av潘金莲| 免费观看精品视频网站| 亚洲欧美一区二区三区黑人| 精品一区二区三区视频在线观看免费| 国产97色在线日韩免费| 国产精品免费一区二区三区在线| 人人妻人人看人人澡| 色播亚洲综合网| 老司机靠b影院| 久久久国产成人精品二区| 免费电影在线观看免费观看| 中文资源天堂在线| 俺也久久电影网| 精品人妻1区二区| 丰满人妻熟妇乱又伦精品不卡| 国产精品九九99| 不卡av一区二区三区| 青草久久国产| 在线视频色国产色| 亚洲人成网站高清观看| 少妇裸体淫交视频免费看高清 | 老鸭窝网址在线观看| 久久久久久人人人人人| 欧美极品一区二区三区四区| 亚洲精品美女久久久久99蜜臀| 熟妇人妻久久中文字幕3abv| 在线观看免费日韩欧美大片| 午夜福利18| 男女那种视频在线观看| 国产伦人伦偷精品视频| 亚洲一区二区三区色噜噜| 国产97色在线日韩免费| 亚洲男人天堂网一区| 国产精品亚洲美女久久久| 久久久久九九精品影院| 亚洲自拍偷在线| 国产精品一区二区免费欧美| 日韩欧美免费精品| 亚洲中文字幕一区二区三区有码在线看 | 黄色视频,在线免费观看| 麻豆成人av在线观看| 免费在线观看亚洲国产| 18禁国产床啪视频网站| 亚洲一区二区三区不卡视频| 成人手机av| 日韩欧美精品v在线| 91大片在线观看| 亚洲九九香蕉| 欧美三级亚洲精品| 精品欧美一区二区三区在线| 免费高清视频大片| 精品久久久久久久人妻蜜臀av| 国产精品自产拍在线观看55亚洲| 黄色毛片三级朝国网站| 久久久久久国产a免费观看| 99久久99久久久精品蜜桃| 精品国产乱码久久久久久男人| 超碰成人久久| 免费人成视频x8x8入口观看| 久久国产精品影院| 中国美女看黄片| 精品国产亚洲在线| 日本一区二区免费在线视频| 亚洲 国产 在线| 99在线视频只有这里精品首页| 亚洲人成网站在线播放欧美日韩| 免费人成视频x8x8入口观看| 日本成人三级电影网站| 桃红色精品国产亚洲av| 身体一侧抽搐| 亚洲成人久久爱视频| 国产野战对白在线观看| 欧美日韩亚洲国产一区二区在线观看| 婷婷六月久久综合丁香| 黑人欧美特级aaaaaa片| 亚洲精品国产精品久久久不卡| 中文字幕高清在线视频| 亚洲欧美一区二区三区黑人| 99国产精品一区二区三区| 久久久国产成人免费| 国产高清激情床上av| 国产亚洲精品综合一区在线观看 | 天天躁夜夜躁狠狠躁躁| 91麻豆av在线| 国产av一区二区精品久久| 夜夜躁狠狠躁天天躁| 亚洲精品国产精品久久久不卡| 99精品在免费线老司机午夜| 男女床上黄色一级片免费看| 亚洲在线自拍视频| videosex国产| 欧美绝顶高潮抽搐喷水| 久久天躁狠狠躁夜夜2o2o| 国产一区二区三区视频了| 久久这里只有精品19| 欧美在线黄色| 久久伊人香网站| 在线免费观看的www视频| 日韩大尺度精品在线看网址| 舔av片在线| 国产精品一区二区三区四区免费观看 | 久久久国产成人精品二区| 久久久水蜜桃国产精品网| 在线观看66精品国产| 首页视频小说图片口味搜索| 黄色视频不卡| 精品少妇一区二区三区视频日本电影| 久久久国产成人精品二区| 国产三级黄色录像| 中文亚洲av片在线观看爽| 99久久综合精品五月天人人| 国产精品日韩av在线免费观看| 国产亚洲精品久久久久久毛片| 久久久久国产一级毛片高清牌| 欧美日韩中文字幕国产精品一区二区三区| 精品少妇一区二区三区视频日本电影| 久久草成人影院| 久久久国产精品麻豆| 好男人电影高清在线观看| 亚洲国产精品久久男人天堂| 免费看美女性在线毛片视频| 久久久久久人人人人人| 久久午夜综合久久蜜桃| 欧美zozozo另类| 最好的美女福利视频网|