• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Impact of brine on physical properties of saline soils

    2021-12-29 03:15:16YuZhangJieLiuAnHuaXuJianKunLiuZhaoHuiYangJianHongFang
    Sciences in Cold and Arid Regions 2021年5期

    Yu Zhang ,Jie Liu ,AnHua Xu ,JianKun Liu ,ZhaoHui Yang ,JianHong Fang

    1.School of Traffic and Transportation,Lanzhou Jiaotong University,Lanzhou,Gansu 730070,China

    2.Qinghai Communications Technical College,Xining,Qinghai810003,China

    3.School of Civil Engineering,Sun Yat-sen University,Zhuhai,Guangdong 519082,China

    4.College of Engineering,University of Alaska Anchorage,Anchorage 99508,USA

    5.Qinghai Research Institute of Transportation,Xining,Qinghai810001,China

    ABSTRACT Engineering activities in the salt lake region continue to increase where fresh water resources are scarce.This paper inves‐tigates the physical properties of saline soils during mixing with brine.Fine-grained saline soils with salt content varying from 2.6%to 78.5%were collected along Qarhan-Golmud Highway(QGH)and Sebei-Qarhan Highway(SQH)on the Qinghai-Tibet Plateau to conduct laboratory physical properties tests.Liquid plastic limit tests were conducted.Results show that liquid plastic limit parameters will decrease with an increase of salt content ranging from 2.6%to 78.5%,and the relationship between them is linear.After considering the content ratio of chloride and sulfate,results show that liquid plastic limit parameters will decrease with an increase of the ratio of chloride to sulfate ranging from 0.7%to 7.0%;liquid plastic limit parameters enter a stable period at the ratio of chloride to sulfate ranging from 7.0%to 37.4%;liquid plastic limit parameters enter a decline period at the ratio of chloride to sulfate ranging from 37.4%to 77.2%.After brine and fresh water are separately mixed into saline soil,the optimal moisture content of the soil samples after the brine action is lower than the saline soil under the action of fresh water,and the maximum dry density of the soil sample is higher than that under the action of fresh water.At the same time,these changing laws show a certain correlation with the chloride ion content and the ratio of chloride to sulfate in saline soils.The results are of significance for engineering activities in salt lake regions with extensive saline soil distribution.

    Keywords:saline soil;brine;physical properties;the ratio of chloride to sulfate

    1 Introduction

    The compaction degree of saline soil is the main influencing factor for the subsidence of saline soil subgrade(Bao and Zhang,2016).The compactness of saline soil refers to the compactness of soil that meets engineering requirements by a manual or mechanical method under a certain optimum(Wen et al.,2015;Zhang et al.,2015).When treated in a saline soil foun‐dation,reasonable compaction is not only a prerequi‐site for good treatment,but also effectively prevents or reduces the subsidence of the foundation(Zhao et al.,2014;Wang et al.,2015;Liu and Zhao,2016;Feng et al.,2017;Yue et al.,2017;Yang et al.,2019;Zhang et al.,2019;Deng,2020).

    Xi(2016)mixed NaCl solution of different concen‐trations with soil samples to simulate the saline soil with different salt content encountered in the actual project.The mechanism of the effect of salt content on the physical and mechanical properties of saline soil was systematically analyzed from the aspect of micro‐physics and chemistry;Li et al.(2017)conducted physical parameter tests on low liquid limit clay,and discussed the main factors affecting compaction de‐gree.Combined with experimental data,the method of improving compaction degree was given;Hu et al.(2018)explored factors affecting the compaction of subgrade fillers with the water content as the main factor,as the water content increases,the strength of the soil decreases;Zhang et al.(2015)obtained the maximum dry density of fine-grained soil with differ‐ent water content through compaction test,and pro‐posed the reference standard for compaction evalua‐tion;Zhang et al.(2018)studied the effects of differ‐ent concentrations of NaCl solution on the physical properties of soil samples,and noted that as the con‐centration increased,the liquid limit of soil decreased;Yang et al.(2016)used the water content rate as a sin‐gle factor variable and noted that the boundary water content is not only affected by the salt content,but al‐so by the interaction of factors such as compaction and overlying load;Ding and Chen(2018)analyzed the basic properties and water-salt migration charac‐teristics of shallow soils in different seasons in the study area through laboratory physical and chemical tests;Li et al.(2016)and Liang et al.(2009)studied the relationship between salt content and liquid-plas‐tic limit,optimal moisture content and maximum dry density in chloride saline soil,and obtained the effect of salt content of saline soil on the physical parame‐ters of saline soil.Chen and A(2019)selected two kinds of saline soil samples with different salinity,measured their salinity,physical characteristics and mechanical parameters,and analyzed the stability of subgrade slope by using Slide software.It is of great significance to study the physical properties and compacting characteristics of salinized soil in view of subgrade deformation for high salt con‐tent salinized soil and common problems such as looseness and water permeation in engineering.Some scholars have studied physical indices and compac‐tion characteristics of low-salinity saline soil when adding fresh water.Here,the salt content range of sa‐line soil subgrade filling is narrow,while the salinity range of the saline soil is relatively large in salt lake regions,ranging from 2%to 80%,and brine is used in the compaction of subgrade filling in the salt lake ar‐ea.Based on the present situation,it is necessary to study the effect of brine on the physical properties of saline soil.

    2 Engineering background

    2.1 Project introduction

    On May 15,2017,Qinghai Province began to build a section of the National Highway 215 Line(North)Se-Cha Highway connecting some of the im‐portant passages in Gansu,Qinghai and Sichuan.That is,from north of Golmud City to Qarhan in Qinghai Province,with geographical coordinates between 90°06′E to 99°42′E and 35°01′N to 39°20′N.The starting point of the line is at K90+000 at the Majishan Port on the G215 line.The end point is at K603+000 on the G215 line of Qarhan,Golmud City,Haixi.The to‐tal length of the route is 71.674 km.Figure 1 shows the site of salt particles observed in saline soil area of Qarhan.

    Figure 1 Salt crystals

    The area where the highway is located is at Dongling Lake and Dabsund Lake area.The subgrade filling pressure incorporates local salt lake brine,with analysis resultsof the brine presented in Table 1.

    2.2 Climate conditions

    The monthly average temperature and ground tem‐perature of the Haixi area from 2010 to 2020 are pre‐sented in Figure 2.It can be seen from Figure 2 that the monthly average temperature is highest in July,reaching 23°C and lowest in December.The average monthly temperature in June,July and August is above 15°C.The lowest temperature in December is as low as?9.2°C and the daily average temperature is below 0°C.The temperature difference between highest and lowest reaches 32.2°C,and the tempera‐ture changes in all seasons.The overall variation is consistent with the sinusoidal curve,and the tempera‐ture difference between winter and summer is large.As the depth increases,the difference between the ground and underground temperature increases.

    Table 1 Brine analysis results

    Figure 2 Monthly average temperature and ground temperature from 2010 to 2020

    Figure 3 is a graph of monthly average rainfall and evaporation data for the Hercynian region from 2010 to 2020.It can be seen from Figure 3 that precip‐itation is much lower than evaporation,and rainfall does not change much.In contrast,evaporation is up to 370 mm from May to August,and as low as 75 mm from December to January.The annual average evapo‐ration is about 230 mm,and the annual average rainfall is about 7 mm.

    Figure 3 Monthly average rainfall and evaporation from 2010 to 2020

    3 Physical parameters of high salinity saline soils

    3.1 Soil samples selection

    Ten soil samples were selected along the highway to determine the salt content.The results are present‐ed in Table 2,according to the"Test Methods of Soils for Highway Engineering"(JTG 3430-2020,2020),St is defined as saline soil.

    Table 2 Salt content of saline soil samples

    3.2 Particle test

    According to relevant provisions of the"Test Methods of Soils for Highway Engineering"(JTG 3430-2020,2020),the ten soil samples were subjected to a particle test.The experimental results are present‐ed in Figure 4.It can be found from the grain size curves that the ten soil samples are mainly divided in‐to two categories:The first type is due to the high salt content where the salt exists in the state of salt rock,so the particle passing rate is low,resulting in uneven gradation.The second type is due to the low salt con‐tent where the soil sample contains more fine grain soils,so the particle passing rate is high,and the gradation distribution is uniform.

    Figure 4 Soil sample test

    3.3 Liquid plastic limit test

    According to relevant provisions of the"Test Methods of Soils for Highway Engineering"(JTG 3430-2020,2020),the liquid plastic limit was deter‐mined for the ten soil samples.The experimental re‐sults are presented in Table 3.The change relation‐ships among the liquid limit,plastic limit,plasticity index,and the salt content are presented in Figure 5.

    The variation laws of salt content vs.liquid limit(ωL),plastic limit(ωP),and plasticity index(IP)were fit to regression Equation(1):

    It can be seen from Figure 5 that the liquid plastic limit parameters have a linear relationship with the salt content.As the salt content increases,the liquid plastic limit parameter decreases.

    The content of chloride ions vs.liquid limit(ωL),plastic limit(ωP),and plasticity index(IP)were fit to regression Equation(2):

    Figure 5 Salt content vs.liquid limit(ωL),plastic limit(ωP),and plasticity index(I P)For the convenience of defining the parameters in the formula,the superscript and subscript of the parameters are the abscissa and ordinate names respectively.

    Table 3 Liquid plastic limit measurement results

    Table 4 Parameters list

    As can be seen from Figure 6,the liquid plastic limit and plastic index of soil decrease gradually with an increase of chloride ion content.The three parame‐ters show a linear relationship with chloride ion con‐tent,in which the liquid limit decreases the most,the plastic limit decreases the next,and the plastic index decreases the least.It can be concluded that the con‐tent of chloride ion in soil affects the limit parameters of liquid plasticity of soil.

    Table 5 Parameters list

    The ratio of chloride to sulfate vs.liquid limit(ωL),plastic limit(ωP),and plasticity index(IP)were also fit to regression Equation(3):

    It can be seen from Figure 7 that liquid plastic lim‐it parameters will decrease with an increase of the ra‐tio of chloride to sulfate ranging from 0.74% to 7.03%;liquid plastic limit parameters enter a stable period at the ratio of chloride to sulfate ranging from 7.03%to 37.35%;liquid plastic limit parameters enter a decline period at the ratio of chloride to sulfate ranging from 37.35%to 77.15%.

    The instrument used in this experiment is the LG-100D digital display soil liquid plastic limit tester.Ac‐cording to results of the particle test and the liquid plastic limit test,the ten soils types were judged by the"Test Methods of Soils for Highway Engineering"(JTG 3430-2020,2020):MLSt is low liquid limit silt;CLSt is low liquid limit clay;SPSt is poorly graded sand;SFSt is fine grained sand.

    Figure 6 The content of chloride ions vs.liquid limit(ωL),plastic limit(ωP),and plasticity index(I P)

    4 Compaction characteristics analysis

    4.1 Brine configuration

    In order to save water resources and project cost,it is very important to use brine for highway construc‐tion projects in salt lake areas where water resources are extremely scarce.According to the salt content of the salt lake brine measured above,32%NaCl solu‐tion is simulated for use in subgrade fillers.

    Table 6 Parameters list

    Table 7 Parameters list

    Table 8 Parameters list

    Figure 7 The ratio of chloride to sulfate vs.liquid limit(ωL),plastic limit(ωP),and plasticity index(I P)

    4.2 Optimal moisture content under brine and water

    Samples were prepared in accordance with the relevant provisions of the Highway Geotechnical Test Regulations.Five different moisture contents were set at intervals of 2%water content,and brine was added according to the quality of the required water,fol‐lowed by heavy-duty compaction test.The optimal moisture content and maximum dry density are presented in Table 9.

    Table 9 Optimal moisture content and maximum dry density under brine

    The optimal moisture content vs.the salt content of saline soil were also fit to regression Equation(4):

    Table 10 Parameters list

    It can be seen from Figure 8 that under the two test conditions of fresh water and brine,the optimal moisture content of the soil samples after the brine ac‐tion is lower than the saline soil under the action of fresh water.When the salt content increases,the opti‐mal moisture content decreases.Salt particles in sa‐line soils cannot be dissolved by nearly saturated brines,while most of the salt particles in saline soils are easily dissolved by added fresh water,and weak‐ening the soil skeleton.Therefore,the optimal mois‐ture content under the condition of adding brine is lower than under adding fresh water.

    When the optimal moisture content is deter‐mined by brine,the content of chloride ion in soil changes with the addition of brine.Figure 9 shows the relationship curve between optimal moisture con‐tent and the content of chloride ion while Figure 10 shows the relationship curve between optimal mois‐ture content and the content ratio of chloride ion to sulfate ion.

    The optimal moisture content vs.the content of chloride ionswere also fit to regression Equation(5):

    Figure 8 Relationship between salt content and optimal moisture content of soil samplesNote:The abscissa is log base 10.

    Figure 9 Relationship between the content of chloride ions and optimal moisture content of soil samples

    Figure 9 shows that when the chloride content is in the range of 3.22%to 18.83%,the optimal moisture content decreases sharply with an increase of chloride content.When the chloride content is in the range of 18.83%to 47.16%,the optimal moisture content de‐creases slowly with an increase of chloride content.The decrease of optimal moisture content is attributed to an increase of chloride ion concentration.

    Figure 10 Relationship between the ratio of chloride to sulfate and optimal moisture content of soil samples

    The optimal moisture content vs.the ratio of chlo‐ride to sulfate were fit to regression Equation(6):

    As can be seen from Figure 10,the optimal mois‐ture content also has a linear relationship with the ratio of chlorine to sulfur.With an increase of chlorosulfur ratio,the optimal moisture content decreases.Under the condition of adding brine,chloride ion in the soil body increases rapidly and sulfate ion is dilut‐ed.Chloride ion has a major effect on the optimal moisture content.

    Table 11 Parameters list

    Table 12 Parameters list

    4.3 Maximum dry density under brine and water

    Samples were prepared in accordance with rele‐vant provisions of the Highway Geotechnical Test Procedures.Five different moisture contents were set at intervals of 2%moisture content,and fresh water was added according to the required water quality,fol‐lowed by heavy compaction test.The optimal mois‐ture content and maximum dry density are presented in Table 13.

    The maximum dry density vs.the salt content of saline soil were also fit to regression Equation(7):

    According to Figure 11,when salt is added to the sample,and the salt content varies from 2.59%to 36.10%,the maximum dry density increases with an increase of salt content;when the salt content is in the range of 36.10%?64.41%,the maximum dry density enters the stable period;and when the salt content var‐ies from 64.41%to 78.50%,the maximum dry density continued to increase with an increase of salt content.The maximum dry density of the salt water is higher than the maximum dry density under the effect of fresh water.Although undissolved salts in the soil con‐tinue to act as skeletons after the addition of nearly saturated brine,most salts are dissolved and the skele‐ton effect weakens when fresh water is added.There‐fore,the maximum dry density under brine condition is higher than under fresh water.

    Table 13 Optimal moisture content and maximum dry density under freshwater

    Figure 11 Relationship between salt content and maximum dry density of saline soil

    Figure 12 shows the relationship curve between the maximum dry density and the content of chloride ion.Figure 13 shows the relationship curve between the maximum dry density and the content ratio of chloride ion to sulfate ion.

    The maximum dry density vs.the content of chlo‐ride ions were also fit to regression Equation(8):

    Figure 12 shows that with an increase of chloride ion content,the change of maximum dry density is al‐so divided into three stages,when the chloride ion content change from 3.22%to 18.83%,the maximum dry density increases with the chloride ion content;chloride ion content ranges from 18.83%to 39.16%,the maximum dry density is stable;the chloride ion content range from 39.16%to 47.16%,the maximum dry density continues to increase.

    Figure 12 Relationship between the content of chloride ions and maximum dry density of saline soil

    The maximum dry density vs.the ratio of chloride to sulfate were also fit to regression Equation(9):

    The variation rule of the maximum dry density in Figure 13 is consistent with that in Figure 12.The rea‐son is that soil samples contain a large number of chloride ions,which play a major role in influencing the maximum dry density of the soil sample.

    Table 14 Parameters list

    Figure 13 Relationship between the ratio of chloride to sulfate and maximum dry density of saline soil

    4.4 Compaction model of saline soils

    According to the aforementioned experimen‐tal data,the relationship between salinity of the saline soil,the brine concentration and the maxi‐mum dry density of the saline soil can be ob‐tained.This relationship is in accordance with Equation(10):

    5 Conclusions

    Through particle analysis,liquid-plastic limit de‐termination and compaction test of the ten soil sam‐ples taken,basic physical parameters were obtained,and the following conclusions were drawn:

    (1)With an increase of salt content,the liquid plastic limit and plasticity index of soil decrease slow‐ly,the optimal moisture content of soil decreases,and the maximum dry density increases.

    (2)Compared with brine,the optimal moisture content of the sample under fresh water has different degrees of increase,while the maximum dry density is lower than that of the sample prepared with brine.With an increase of chloride ion content,the optimal moisture content decreased and the maximum dry density increased.

    (3)The fitting equations of salinity,brine concen‐tration and maximum dry density of saline soil were obtained,revealing the relationship between the three.

    (4)The liquid plastic limit parameters have a lin‐ear relationship with the salt content and the content of chloride ions.As the ratio of chlorine to sulfate in‐creases,three stages are defined,which are descend‐ing,stable,and descending.The optimal moisture con‐tent has a linear relationship with salt content and the ratio of chlorine to sulfate.With an increase of the content of chloride ions and the ratio of chlorine to sulfate,the maximum dry density can be divided into three stages,rising,stable,and rising.

    Acknowledgments:

    This research was jointly supported by grants from the National Natural Science Foundation of China(No.41501062),the Longyuan Youth Innovation and Entrepreneurship Talent(Team)Project of Gansu Province and Natural Science Foundation of Gansu Province(No.20JR10RA227).

    Table 15 Parameters list

    Table 16 Parameters list

    Table 17 Parameters list

    熟女人妻精品中文字幕| 午夜精品久久久久久毛片777| 国产精品免费一区二区三区在线| 精品乱码久久久久久99久播| 99在线人妻在线中文字幕| 国产高清视频在线观看网站| 国产av在哪里看| 亚洲第一区二区三区不卡| 午夜视频国产福利| 亚洲人成网站高清观看| 99久久成人亚洲精品观看| 精品人妻一区二区三区麻豆 | 丁香六月欧美| 小蜜桃在线观看免费完整版高清| 日日夜夜操网爽| 看免费av毛片| 好看av亚洲va欧美ⅴa在| 757午夜福利合集在线观看| 在线a可以看的网站| 伦理电影大哥的女人| 国产精品人妻久久久久久| 中文字幕久久专区| 中文字幕高清在线视频| 欧美日韩国产亚洲二区| 亚洲无线观看免费| 久久精品国产亚洲av涩爱 | 九九久久精品国产亚洲av麻豆| 91麻豆精品激情在线观看国产| 亚洲熟妇熟女久久| 美女xxoo啪啪120秒动态图 | 成人国产综合亚洲| 夜夜看夜夜爽夜夜摸| 午夜福利高清视频| 日韩成人在线观看一区二区三区| 国产主播在线观看一区二区| 十八禁网站免费在线| 日本免费a在线| 在线观看午夜福利视频| 最近在线观看免费完整版| 最新在线观看一区二区三区| 成人亚洲精品av一区二区| 国产aⅴ精品一区二区三区波| 亚洲中文日韩欧美视频| 欧美激情国产日韩精品一区| 欧美又色又爽又黄视频| 日本免费一区二区三区高清不卡| 色在线成人网| 99国产极品粉嫩在线观看| h日本视频在线播放| 久久国产精品人妻蜜桃| 中文字幕精品亚洲无线码一区| or卡值多少钱| 久久久成人免费电影| 亚洲成人免费电影在线观看| 中文字幕久久专区| 精品欧美国产一区二区三| 一个人免费在线观看电影| 少妇被粗大猛烈的视频| 亚洲无线观看免费| 欧美中文日本在线观看视频| 亚洲精品影视一区二区三区av| 亚洲激情在线av| 午夜免费成人在线视频| 免费av不卡在线播放| 老女人水多毛片| 久久亚洲真实| 亚洲七黄色美女视频| 老熟妇仑乱视频hdxx| 久久国产乱子伦精品免费另类| 亚洲美女视频黄频| 男女下面进入的视频免费午夜| 国产精品久久久久久精品电影| 欧美黑人欧美精品刺激| 一个人免费在线观看的高清视频| 欧美激情在线99| 狠狠狠狠99中文字幕| 亚洲成av人片免费观看| 久久99热6这里只有精品| 男插女下体视频免费在线播放| 精品欧美国产一区二区三| 亚洲精品456在线播放app | a级一级毛片免费在线观看| 国产激情偷乱视频一区二区| 欧美乱色亚洲激情| 在线观看免费视频日本深夜| 亚洲av成人不卡在线观看播放网| 精华霜和精华液先用哪个| 亚洲18禁久久av| 嫩草影院精品99| www.www免费av| 熟女人妻精品中文字幕| 国内精品久久久久久久电影| 国产黄a三级三级三级人| 天天一区二区日本电影三级| 国产精品一区二区免费欧美| 黄色丝袜av网址大全| 能在线免费观看的黄片| 18禁黄网站禁片免费观看直播| 国产高清激情床上av| 成年女人永久免费观看视频| 国产一区二区亚洲精品在线观看| 亚洲性夜色夜夜综合| 美女xxoo啪啪120秒动态图 | 色综合婷婷激情| 亚洲av五月六月丁香网| 国产三级中文精品| 搡老岳熟女国产| www.999成人在线观看| 国产精品女同一区二区软件 | 久久久久性生活片| 久久伊人香网站| 看黄色毛片网站| 久久香蕉精品热| 五月伊人婷婷丁香| 丰满人妻一区二区三区视频av| 色综合站精品国产| 亚洲黑人精品在线| 免费在线观看成人毛片| av黄色大香蕉| 日日夜夜操网爽| 国产老妇女一区| 此物有八面人人有两片| 亚洲激情在线av| 九九热线精品视视频播放| 久久亚洲真实| 免费在线观看成人毛片| 精品人妻一区二区三区麻豆 | 精品99又大又爽又粗少妇毛片 | 十八禁人妻一区二区| 天天躁日日操中文字幕| 亚洲国产色片| 我的女老师完整版在线观看| 91av网一区二区| 人妻夜夜爽99麻豆av| 国语自产精品视频在线第100页| 国产精品乱码一区二三区的特点| 在线十欧美十亚洲十日本专区| 男人舔奶头视频| 欧美黑人欧美精品刺激| 性插视频无遮挡在线免费观看| 国产精品美女特级片免费视频播放器| 成人亚洲精品av一区二区| 十八禁国产超污无遮挡网站| 一个人看视频在线观看www免费| 女同久久另类99精品国产91| 国产精品影院久久| 国产欧美日韩一区二区三| 一区二区三区四区激情视频 | 国产精品野战在线观看| 久久精品91蜜桃| 黄色女人牲交| 亚洲无线在线观看| av女优亚洲男人天堂| 亚洲精品乱码久久久v下载方式| 国产精品人妻久久久久久| 欧美三级亚洲精品| 久久精品国产亚洲av香蕉五月| 天美传媒精品一区二区| 久久午夜亚洲精品久久| 又爽又黄a免费视频| 欧美激情国产日韩精品一区| 两个人的视频大全免费| 精品久久久久久,| 噜噜噜噜噜久久久久久91| 欧美xxxx黑人xx丫x性爽| 久久久久性生活片| 亚洲美女搞黄在线观看 | 久久午夜福利片| 综合色av麻豆| 欧美激情在线99| 97人妻精品一区二区三区麻豆| 国产黄片美女视频| 午夜福利18| 综合色av麻豆| 亚洲欧美清纯卡通| 亚洲成a人片在线一区二区| 国产不卡一卡二| 无遮挡黄片免费观看| 国产欧美日韩精品亚洲av| 免费搜索国产男女视频| 麻豆成人午夜福利视频| 欧美xxxx黑人xx丫x性爽| 日韩成人在线观看一区二区三区| 亚洲,欧美精品.| 日本 欧美在线| 一卡2卡三卡四卡精品乱码亚洲| 亚洲无线观看免费| 国产爱豆传媒在线观看| 免费电影在线观看免费观看| 亚洲国产精品成人综合色| 国产精品亚洲av一区麻豆| 波多野结衣巨乳人妻| 免费在线观看影片大全网站| 精品午夜福利在线看| 97热精品久久久久久| 色av中文字幕| 在线十欧美十亚洲十日本专区| eeuss影院久久| a级毛片a级免费在线| 午夜激情福利司机影院| 欧美最黄视频在线播放免费| 国产极品精品免费视频能看的| 热99在线观看视频| 免费看美女性在线毛片视频| 亚洲成a人片在线一区二区| 国产熟女xx| 日韩成人在线观看一区二区三区| 有码 亚洲区| 亚洲最大成人手机在线| 国产av一区在线观看免费| 欧美不卡视频在线免费观看| av在线观看视频网站免费| 国产一区二区亚洲精品在线观看| 久久性视频一级片| 亚洲第一电影网av| 国语自产精品视频在线第100页| 又黄又爽又免费观看的视频| 乱码一卡2卡4卡精品| 国产欧美日韩一区二区精品| 如何舔出高潮| 国产v大片淫在线免费观看| 一边摸一边抽搐一进一小说| 欧美日韩亚洲国产一区二区在线观看| 久久久久久久久久成人| av在线蜜桃| 91麻豆精品激情在线观看国产| 欧美激情在线99| 首页视频小说图片口味搜索| 91狼人影院| av中文乱码字幕在线| 久久久精品欧美日韩精品| 在线看三级毛片| 欧美乱色亚洲激情| 亚洲成人中文字幕在线播放| 免费大片18禁| 欧美xxxx性猛交bbbb| 国产av一区在线观看免费| 美女被艹到高潮喷水动态| 动漫黄色视频在线观看| 亚洲欧美日韩高清专用| 99精品久久久久人妻精品| 夜夜躁狠狠躁天天躁| ponron亚洲| 深爱激情五月婷婷| 久久99热6这里只有精品| 18+在线观看网站| 成人国产一区最新在线观看| 久久久久久大精品| 国产亚洲欧美98| 免费看光身美女| 亚洲av成人不卡在线观看播放网| 国产精品自产拍在线观看55亚洲| 日本黄色片子视频| 在线观看舔阴道视频| 久久国产乱子伦精品免费另类| 69av精品久久久久久| 久久久久精品国产欧美久久久| 黄色日韩在线| 国内揄拍国产精品人妻在线| 俄罗斯特黄特色一大片| 亚洲精品456在线播放app | 国产伦一二天堂av在线观看| 婷婷色综合大香蕉| 久久久精品欧美日韩精品| 麻豆av噜噜一区二区三区| 91狼人影院| 深夜a级毛片| 岛国在线免费视频观看| 99久久精品国产亚洲精品| 99国产精品一区二区三区| 国产伦精品一区二区三区视频9| 欧美黑人巨大hd| 亚洲人成网站高清观看| 大型黄色视频在线免费观看| 黄色视频,在线免费观看| 国产单亲对白刺激| 国产精品98久久久久久宅男小说| 宅男免费午夜| 亚洲成av人片免费观看| 小蜜桃在线观看免费完整版高清| 日韩人妻高清精品专区| 久久人人爽人人爽人人片va | 国产毛片a区久久久久| 午夜影院日韩av| 毛片一级片免费看久久久久 | 日韩 亚洲 欧美在线| 国产激情偷乱视频一区二区| 午夜影院日韩av| 一个人观看的视频www高清免费观看| 亚洲国产精品久久男人天堂| 999久久久精品免费观看国产| 麻豆国产97在线/欧美| 51国产日韩欧美| 亚洲av中文字字幕乱码综合| 欧美又色又爽又黄视频| 岛国在线免费视频观看| 亚洲精品乱码久久久v下载方式| 精品不卡国产一区二区三区| 亚洲av美国av| 亚洲最大成人手机在线| 99热精品在线国产| 欧美乱色亚洲激情| 免费黄网站久久成人精品 | 自拍偷自拍亚洲精品老妇| 欧美高清成人免费视频www| 久久人妻av系列| 少妇裸体淫交视频免费看高清| 性色avwww在线观看| 欧美高清性xxxxhd video| 在线观看舔阴道视频| www日本黄色视频网| 美女cb高潮喷水在线观看| 99精品在免费线老司机午夜| 日本五十路高清| 国产一区二区激情短视频| 日本撒尿小便嘘嘘汇集6| 欧美激情国产日韩精品一区| 欧美区成人在线视频| 国产精品一区二区三区四区久久| 最后的刺客免费高清国语| 国产综合懂色| av福利片在线观看| 久久久久久久久久黄片| 在现免费观看毛片| 天堂av国产一区二区熟女人妻| 亚洲 国产 在线| 少妇裸体淫交视频免费看高清| 亚洲av电影不卡..在线观看| 久久精品91蜜桃| 中文字幕熟女人妻在线| 亚洲国产色片| 欧美潮喷喷水| 久久欧美精品欧美久久欧美| 亚洲av熟女| 中文字幕免费在线视频6| 激情在线观看视频在线高清| 亚洲av免费在线观看| 日韩亚洲欧美综合| 蜜桃久久精品国产亚洲av| 伊人久久精品亚洲午夜| 久久这里只有精品中国| 日本a在线网址| 性欧美人与动物交配| 日本成人三级电影网站| 哪里可以看免费的av片| 97超级碰碰碰精品色视频在线观看| 欧美激情久久久久久爽电影| 一区福利在线观看| 一本久久中文字幕| 日本三级黄在线观看| 一本一本综合久久| 窝窝影院91人妻| av天堂在线播放| 精品午夜福利在线看| 欧美一区二区精品小视频在线| 国产一区二区激情短视频| 国产单亲对白刺激| 欧美性猛交╳xxx乱大交人| 中出人妻视频一区二区| 小说图片视频综合网站| 精品久久久久久久久久免费视频| 国产老妇女一区| 91麻豆精品激情在线观看国产| 亚洲精品久久国产高清桃花| 亚洲av电影在线进入| 一本久久中文字幕| netflix在线观看网站| 国产午夜精品久久久久久一区二区三区 | 动漫黄色视频在线观看| 男女床上黄色一级片免费看| 久久久色成人| av在线老鸭窝| 此物有八面人人有两片| 欧美不卡视频在线免费观看| 国产高潮美女av| 国产亚洲欧美在线一区二区| 精品久久久久久久久久久久久| 国内精品美女久久久久久| 精品久久国产蜜桃| 99热6这里只有精品| 十八禁国产超污无遮挡网站| 精品人妻熟女av久视频| 国内久久婷婷六月综合欲色啪| 午夜福利在线观看免费完整高清在 | 日韩欧美国产在线观看| 99精品久久久久人妻精品| 国产精品野战在线观看| 欧美又色又爽又黄视频| 成人特级av手机在线观看| 免费观看人在逋| 露出奶头的视频| 又爽又黄a免费视频| 两个人的视频大全免费| 免费大片18禁| 黄色丝袜av网址大全| 最好的美女福利视频网| 久久午夜亚洲精品久久| 黄色配什么色好看| 天堂√8在线中文| 国产成人啪精品午夜网站| 97碰自拍视频| 99久久无色码亚洲精品果冻| 亚洲国产日韩欧美精品在线观看| 国产主播在线观看一区二区| 欧美乱妇无乱码| 成人国产综合亚洲| 国产av不卡久久| 国产久久久一区二区三区| 精品国产亚洲在线| 老熟妇乱子伦视频在线观看| 97超视频在线观看视频| 午夜精品久久久久久毛片777| 国内精品一区二区在线观看| 国产私拍福利视频在线观看| 国产人妻一区二区三区在| 小蜜桃在线观看免费完整版高清| 中文字幕人妻熟人妻熟丝袜美| 精品一区二区三区视频在线观看免费| 天美传媒精品一区二区| 亚洲在线观看片| 18禁黄网站禁片免费观看直播| 国产精品美女特级片免费视频播放器| 婷婷精品国产亚洲av| 性色av乱码一区二区三区2| 亚洲中文日韩欧美视频| 国产成年人精品一区二区| 99热这里只有精品一区| 我的老师免费观看完整版| 在线观看美女被高潮喷水网站 | 亚洲av五月六月丁香网| 欧美性猛交╳xxx乱大交人| 亚洲人成网站高清观看| 男女做爰动态图高潮gif福利片| 性欧美人与动物交配| 欧美又色又爽又黄视频| 麻豆成人午夜福利视频| 日本黄色视频三级网站网址| 69av精品久久久久久| 搡老熟女国产l中国老女人| 亚洲精品粉嫩美女一区| 国产又黄又爽又无遮挡在线| 非洲黑人性xxxx精品又粗又长| 国产精品一区二区免费欧美| 国产高清激情床上av| 两人在一起打扑克的视频| 国产乱人视频| 制服丝袜大香蕉在线| 9191精品国产免费久久| 久久精品综合一区二区三区| 天堂影院成人在线观看| 男人舔女人下体高潮全视频| 亚洲一区高清亚洲精品| 中文字幕av成人在线电影| 午夜免费激情av| 国产精品一区二区三区四区免费观看 | 又爽又黄a免费视频| 亚洲国产精品sss在线观看| 老司机午夜十八禁免费视频| 国产精品综合久久久久久久免费| 日韩高清综合在线| 白带黄色成豆腐渣| 69人妻影院| 91在线观看av| 色综合站精品国产| 窝窝影院91人妻| АⅤ资源中文在线天堂| 国产成人a区在线观看| 日本 av在线| 亚洲久久久久久中文字幕| 日本五十路高清| 免费在线观看亚洲国产| 男人舔奶头视频| 最近在线观看免费完整版| 欧美区成人在线视频| 亚洲av免费在线观看| 久久久久性生活片| 1000部很黄的大片| 一区二区三区激情视频| 亚洲av熟女| 国内精品一区二区在线观看| 有码 亚洲区| 男女那种视频在线观看| 免费av毛片视频| 老司机午夜福利在线观看视频| 免费看a级黄色片| 亚洲人与动物交配视频| 一区二区三区激情视频| 久久久久九九精品影院| 在线观看66精品国产| 老鸭窝网址在线观看| 伦理电影大哥的女人| 一个人免费在线观看电影| 人人妻人人看人人澡| 综合色av麻豆| 成人一区二区视频在线观看| 久久精品影院6| 亚洲欧美日韩高清在线视频| 亚洲自偷自拍三级| 在线播放国产精品三级| 男女做爰动态图高潮gif福利片| 中文字幕免费在线视频6| 国产三级在线视频| 亚洲人成伊人成综合网2020| 男人舔奶头视频| 亚洲人成伊人成综合网2020| 国产精品影院久久| 午夜激情福利司机影院| 国内少妇人妻偷人精品xxx网站| 五月玫瑰六月丁香| 国产一区二区激情短视频| 精品日产1卡2卡| 成人国产一区最新在线观看| 成年人黄色毛片网站| 少妇高潮的动态图| 色哟哟·www| 精品一区二区三区av网在线观看| 人妻丰满熟妇av一区二区三区| 国产精品av视频在线免费观看| 性欧美人与动物交配| 美女免费视频网站| 精品午夜福利视频在线观看一区| 日韩中字成人| 国产单亲对白刺激| 日韩欧美精品v在线| 国内精品久久久久久久电影| 午夜福利在线在线| 国产亚洲欧美98| 亚洲欧美日韩无卡精品| 狂野欧美白嫩少妇大欣赏| 国内精品一区二区在线观看| 偷拍熟女少妇极品色| 麻豆一二三区av精品| or卡值多少钱| 内射极品少妇av片p| 舔av片在线| 免费观看精品视频网站| 国产av不卡久久| 怎么达到女性高潮| 九色成人免费人妻av| 免费观看精品视频网站| 国产黄a三级三级三级人| 午夜视频国产福利| 国产亚洲欧美在线一区二区| 亚洲午夜理论影院| 我要搜黄色片| 国产探花极品一区二区| 我要搜黄色片| 国产成+人综合+亚洲专区| 久久6这里有精品| 国产精品不卡视频一区二区 | 99热这里只有精品一区| 色噜噜av男人的天堂激情| 两人在一起打扑克的视频| 亚洲国产精品sss在线观看| 蜜桃久久精品国产亚洲av| 国产不卡一卡二| 亚洲天堂国产精品一区在线| 免费高清视频大片| 中文字幕高清在线视频| 一个人免费在线观看电影| 老司机深夜福利视频在线观看| 亚洲国产精品成人综合色| 亚洲成人免费电影在线观看| 日韩亚洲欧美综合| 午夜福利高清视频| 国产69精品久久久久777片| 村上凉子中文字幕在线| 免费黄网站久久成人精品 | 级片在线观看| 亚洲精品色激情综合| 国产在线精品亚洲第一网站| 亚洲熟妇熟女久久| 在线播放无遮挡| 免费观看人在逋| 亚洲专区国产一区二区| 亚洲最大成人手机在线| 亚洲国产高清在线一区二区三| 禁无遮挡网站| 日本免费一区二区三区高清不卡| 简卡轻食公司| 日本五十路高清| 成年女人毛片免费观看观看9| 热99在线观看视频| 精品人妻一区二区三区麻豆 | 老女人水多毛片| 国产av不卡久久| 好看av亚洲va欧美ⅴa在| 免费搜索国产男女视频| 国产精品亚洲一级av第二区| 精品人妻熟女av久视频| av天堂在线播放| 成熟少妇高潮喷水视频| 欧美黑人欧美精品刺激| 国产精品不卡视频一区二区 | av天堂中文字幕网| 日韩高清综合在线| 亚洲专区中文字幕在线| 久久草成人影院| 久久精品国产清高在天天线| 亚洲av中文字字幕乱码综合| 黄色视频,在线免费观看| 亚洲av二区三区四区| 午夜免费激情av| 久久热精品热| 一级黄片播放器| 亚洲国产精品999在线| 观看免费一级毛片| 嫩草影院精品99| 亚洲av二区三区四区| 男人和女人高潮做爰伦理| 亚洲精品亚洲一区二区| 亚洲一区高清亚洲精品| 我的女老师完整版在线观看| 国产精品电影一区二区三区| 乱人视频在线观看|