• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Review and prospect of the effectsof freeze-thaw on soil geotechnical properties

    2021-12-29 03:14:42TongZhangHaiPengLiChenChenHuXinYuZhenZhenHaoXuYangXue
    Sciences in Cold and Arid Regions 2021年5期

    Tong Zhang ,HaiPeng Li*,ChenChen Hu ,XinYu Zhen ,ZhenHao Xu ,Yang Xue

    1.State Key Laboratory for Geomechanics and Deep Underground Engineering,China University of Mining and Technology,Xuzhou,Jiangsu 221116,China

    2.School of Mechanics and Civil Engineering,China University of Mining Science and Technology,Xuzhou,Jiangsu 221116,China

    ABSTRACT Freeze-thaw hazard is one of the main problems in cold regions engineering and artificial ground freezing engineering.To mitigate freeze-thaw hazards,it is essential to investigate the effects of freeze-thaw on soils engineering properties.This paper summarizes the effects of freeze-thaw on the physical and mechanical properties of soils reported in recent studies.The differences of freeze-thaw conditions between freezing shaft sinking and cold regions engineering are discussed.Based on the technological characteristics of freezing shaft sinking in deep alluvium,we further attempt to identify key research needs regarding the freeze-thaw effects on the engineering properties of deep soils.

    Keywords:freeze-thaw effects;soil physical and mechanical properties;deep clay;freezing shaft sinking

    1 Introduction

    The permafrost distribution area accounts for about 75%of the total land area in China.Therefore,infrastructure constructions in the broad cold regions,including permafrost and seasonally frozen regions,play an important role in China's economic and social development.The soils in cold regions experience freeze-thaw cycling due to the temperature changes periodically,which can cause uplift,subsidence,and cracking of subgrade,slope instability,building foun‐dation damage,oil pipeline fracture,and other engi‐neering diseases (Cheng,2003).These diseases caused by freeze-thaw are among the main engineer‐ing challenges in cold regions.

    Rich resources are buried under the deep alluvium in the central and eastern regions of China.Artificial ground freezing has been extensively applied in con‐structing vertical shafts to pass through the alluvium for resources extraction.This method is commonly re‐ferred to as freezing shaft sinking,which involves the following steps:1)drilling holes around the shaft;2)installing freezing pipes in the holes;3)circulating low-temperature brine in the freezing pipes to freeze the rock and soil around the shaft to form a frozen wall;and 4)excavate and construct the shaft linings under the protection of the frozen wall.After the com‐pletion of the shaft,the frozen wall is allowed to thaw.The thaw settlement of artificial frozen soils sig‐nificantly impacts the shaft linings in deep alluvium.For example,the shaft linings in Guotun coal mine(586-m topsoil and 702-m of frozen depth)suffered settlement-induced damage during the frozen soil wall thaw,including buckling of the water supply and drainage pipes on the shaft,seriously threatened the mine's operations(Luet al.,2013).

    In the cold regions engineering and freeze shaft sinking applications,the soils experience one or more freeze-thaw cycles.The mechanical properties of soils can be significantly weakened owing to the freeze-thaw effects on soil structure,which is the fundamental reason for freeze-thaw diseases.

    To control freeze-thaw diseases,extensive atten‐tion has been paid to the influences and mechanism of freeze-thaw on soil engineering properties.In this pa‐per,the research works about the freeze-thaw effects on physical properties,strength,consolidation defor‐mation,and soil microstructure are summarized,and the research needs regarding freeze-thaw effects on deep soils are prospected.

    2 Soil physical properties

    Since Chamberlainet al.(1979)carried out a se‐ries of uniaxial,cyclic and open system freeze-thaw tests on normally consolidated soft clay samples at low stress,researchers conducted a number of studies on the effects of freeze-thaw on the physical proper‐ties of soils,such as grain size distribution,Atterberg limits and dry bulk density.

    2.1 Grain size distribution

    The effect of freeze-thaw on the distribution of soil particles'sizes depends on the number of freeze-thaw and sensitive particles in the soils.Lehrsch(1998)found that the stability of soil aggregates increases with the increase of freeze-thaw cycles,and the stabil‐ity of aggregates is the highest when freeze-thaw cy‐cles are 2?3 times.It is also found that freeze-thaw cycles stabilized aggregates more at 0 to 15 mm than at 15 to 30 mm.Hanssonet al.(2006)found that with the soil particles becoming smaller,especially with the increase of clay content,the greater the effect of freeze-thaw is,rendering the soil more prone to frost heaving.Wanget al.(2012)studied the freeze-thaw effect on soil aggregate and found that most aggregate size classes were affected significantly(Particle size<0.05 mm)except for wet-sieved aggregates(Parti‐cle size>5 mm).Dry-sieved aggregates were rela‐tively more sensitive to the freeze-thaw treatment than wet-sieved aggregates.However,for compound soils of Pisha sandstone,sand and organic matter,the content of small soil aggregates(<0.5 mm)increased,while the content of large soil aggregates(>1.0 mm)decreased with the increase of freeze-thaw cycles(Zhanget al.,2016).

    The freeze-thaw cycle promotes the change of mineral particles and changes soil particle size compo‐sition(Figure 1).The coarse particles(>0.1 mm)were broken first during freeze-thaw cycles,and the parti‐cles of 0.05?0.1 mm and 0.005?0.05 mm were bro‐ken after 5?7 freeze-thaw cycles(Zhanget al.,2015).?zganet al.(2015)found that the particles finer than 0.075 mm were more susceptible to freeze-thaw,and the curvature and uniformity coefficient of particles after freeze-thaw were almost the same.

    Figure 1 Effect of freezing thawing on grain size distribution(Zhang et al.,2015)

    2.2 Atterberg limits

    The Atterberg limits are important physical prop‐erties of fine-grained soils,reflecting how the soil geotechnical properties vary with water content.Yanget al.(2001,2002)conducted freeze-thaw tests on un‐disturbed and remolded soils and found that the plas‐tic limit is almost unchanged for the soils after freeze and thaw,but the liquid limit declines.Zhaet al.(2008)also studied the freeze-thaw effects on soils,and their results show that the liquid and plastic limits increase,but the liquidity index decreases.It is recog‐nized that freeze-thaw action causes the disintegration of soil aggregates,which impact soil water potential,hence the liquid and plastic limits.

    Zhenget al.(2015)measured the Atterberg limit of Qinghai Tibet silty clay under different freeze-thaw cycles,and also found that with the increase of freeze-thaw cycles,the liquid limit and plastic limit will gradually increase,but the change rate will gradually decrease,whose results are contrary to those of Yanget al.(Figure 2).The reason may be due to the difference in the physical properties of the soil.

    Figure 2 The variations of liquid limit and plastic limit of silty clay after a freeze-thaw cycle(Yang et al.,2002;Zheng et al.,2015)

    2.3 Dry bulk density and void ratio

    Soil bulk density and porosity are important physi‐cal parameters of soils.And the effect of freeze and thaw on soil density or void ratio depends on the ini‐tial dry bulk densities.The density of the soils with larger initial dry bulk density decreases,whereas that of soils with smaller initial dry bulk density increases after freeze-thaw action,resulting in compaction of loose soils(Yanget al.,2003).Additionally,Liuet al.(2009)found that the variations of soil bulk density and porosity are more significant for the soils with larger initial water content

    Based on the investigations on fine-grained nonplastic till exposed to freeze-thaw cycles,Vikland‐er(1998)proposed the concept of residual void ratio;the void ratio of loose soil and dense soil tends to a stable state after multiple freeze-thaw cycles.Qiet al.(2005)summarized the research results and found that the density and permeability tend to be stable after 3?5 freeze-thaw cycles.It is also found that for loess,with the increase of freeze-thaw times,the porosity first de‐creases,then increases,and then tends to be stable(Xiaoet al.,2014).

    3 Soil mechanical properties

    3.1 Strength and elastic modulus

    Large amount of experimental results show that freeze-thaw will reduce the mechanical performance of soils,such as compressive strength,elastic modu‐lus,cohesion and internal friction angle.Especially for the effect of freeze-thaw on soil strength,the con‐sensus,shown in Figure 3,is that freeze-thaw will re‐duce the shear strength of soil.

    Wanget al.(2007)prepared remolded Qinghai clay samples,and carried out freeze-thaw and triaxi‐al compression tests to explore strength characteris‐tics.Their results show that the cohesion of soil de‐creases,and the internal friction angle increases after freeze-thaw.Buet al.(2015)found that the increase of fine particles will weaken the shear strength of coarse-grained soils when undergoing freeze-thaw.Water content and dry density also have a great influ‐ence on the shear modulus of frozen-thawed silt.With the decrease of water content and increase of dry den‐sity,the shear modulus increases(Zhanget al.,2017).Huet al.(2017a,b)reported that under different com‐paction degrees,the internal friction angle shows an increasing trend,the shear strength of clay signifi‐cantly decreases after freeze-thaw cycles and tends to be stable after five cycles.The freezing tempera‐ture and soil compactness in the freeze-thaw test will also affect the strength test results.In addition,the freeze-thaw cycles considerably affect the cohe‐sion,with the critical value of freeze-thaw cycles be‐ing about 5.However,the internal friction angle is not obviously influenced by freeze-thaw cycling(Xuet al.,2018).

    Figure 3 Effect of freezing thawing on shear strength of various soil samples under low stress(Wang et al.,2007;Bu et al.,2015;Hu et al.,2017)

    Simonsenet al.(2002)tested the variation of elas‐tic modulus of coarse-grained and fine-grained soils with the freeze-thaw cycles.The results show that af‐ter a freeze-thaw cycle,the elastic modulus decreases by about 20%?60%for different soil types.The elas‐tic modulus is not only affected by soil types but also by stress conditions and freeze-thaw cycles.Some tests show that the elastic modulus of the same soil in‐creases with the increase of confining pressure under the same freeze-thaw cycles;the elastic modulus de‐creases with the increase of freeze-thaw cycles under the same confining pressure(Wanget al.,2012).Wanget al.(2010)also studied the freeze-thaw effect on soil resilient modulus.Their results show that soil resilient modulus decreases with the increase of freeze-thaw cycles and reaches a stable state after the sixth freeze-thaw cycle.

    3.2 Compressibility and pore water pressure

    Generally,the effect of freeze-thaw on soil com‐pressibility is related to soil properties,consolidation state,and freezing modes.

    Eigenbrodet al.(1996)observed the change of com‐pression deformation of overconsolidated fine-grained soil during the freeze-thaw process and suggested that the freeze-thaw process causes the consolidation of soil.But for hard clay,if its initial water content is close to its plastic limit,the water content will not de‐crease during the freeze-thaw,and consolidation will not occur.

    Yanget al.(2001)found that after freeze-thaw,the compressibility of clay decreases,and that of sand increases.Freeze and thaw have two different effects for remolded clay with different dry densities,includ‐ing reduced compressibility in low-density soils,and enhanced compressibility of high-density soil(Wanget al.,2009).The expansive soil with lower water con‐tent shows freeze shrinkage and thaw expansion,while expansive soil with higher water content shows freeze swelling and thaw contraction(Xuet al.,2016).There is a linear relationship between the ini‐tial void ratio and compressibility.The greater the ini‐tial void ratio is,the greater the compressibility is.With the increase of freeze-thaw cycles,soil com‐pressibility increases,but the growth gradually dimin‐ishes(Cheng and Wang,2019).Fanet al.(2019)pointed out that the freeze-thaw process triggers the re-consolidation in clay;the soil in the open system will produce a large settlement with the increase of the overburden,and the consolidation coefficient has a great influence on the soil compressibility.

    The pore water pressure is a significant parameter for soil consolidation,but there are technical challeng‐es to measure the soil pore water pressure during freeze-thaw.Liuet al.(2012)proposed a method to measure the pore water pressure in high-temperature frozen soil in cold regions.Zhanget al.(2014)tested the pore water pressure changes of sand during the freeze and thaw process.Their results show that the pore water pressure of high water content samples first decreases and then slightly increases with the rise of temperature;the pore water pressure of the sample with lower water content is not sensitive to tempera‐ture.Xiaoet al.(2017)found that the pore water pres‐sure and water content first increase and then de‐crease during freezing,and the pore water pressure and water content first decrease and then increase during thawing.

    4 Soil microstructure

    The variations of soil mechanical properties re‐sult from the evolutions of soil microstructure by freeze-thaw.In the process of freezing and thawing,the reaction of water migration,phase change,and ice crystal growth on soil particles and pores is the fundamental reason for the destruction of soil struc‐ture(Zhenget al.,2015).

    Niet al.(2014)found that after multiple freeze-thaw cycles,the structure of loess becomes looser,the original,inherent cementation between loess particles is gradually weakened.The original macrospores in the soil reduce,the small pores in‐crease,and the pore ratio also increases.Cuiet al.(2014)compared microscopic parameters of silty clay by SEM before and after freeze-thaw.Their results show that after freeze-thaw,the soils become loose,and the equivalent diameter decreases;the distribu‐tion of pore orientation angle before freeze-thaw has strong directionality,but it decreases to a certain ex‐tent after freeze-thaw.Xuet al.(2016)found that the porosity and pore orientation of expansive soils gradu‐ally increase and then tend to become stable during freeze-thaw cycling,and the first freeze-thaw cycle has the most significant impact on soil microstructure.

    CT scanning has advantages in quantitatively and non-destructively revealing the internal changes of soils caused by freeze-thaw action.According to the results of CT scanning to unsaturated clay samples,the uneven volume shrinkage of samples is observed after freeze-thaw(Wanget al.,2017).The most signif‐icant change of macropore sizes occurs in the unfro‐zen zone near the final freezing front under water sup‐ply.More horizontal fissures are formed near unfro‐zen zone or freezing front,which depends on water supply conditions.The change of macropore structure is helpful to understand the influence of water soil in‐teraction on soil engineering properties,such as hy‐draulic permeability and compressibility(Fanet al.,2021).

    5 Discussions

    The research results show that the physical and mechanical properties of the soils,especially fine-grained soils,will be altered after freeze-thaw cy‐cles.However,most of the previous research focused on shallow stratum,and the depths of soils were no more than 100 m below the ground surface.For freez‐ing shaft sinking in deep alluvium,there is a lack of investigating the effect of freeze-thaw on the deep soils now.

    Deep soils undergo sedimentation for a long geo‐logic time,the engineering properties of which are ob‐viously different from shallow soils.The deep clay,shown in Figure 4,has compact structure and low wa‐ter content.The void ratio of clay buried more than 100 m is generally less than 0.8,and decreases with the increasing of depth.Deep clay has high liquid plastic limit,and the maximum value of liquid index is not more than 0.25,and decreases with the increase of depth,which is generally less than 0 when the depth is more than 100 m.

    Figure 4 The geological features of deep clay

    In freezing shaft sinking engineering,the deep soils are subjected to one time of freezing and thaw‐ing under high-stress conditions,and the stress value is 1?2 orders of magnitude larger than that of shallow soils.The field measurement results show that the ini‐tial horizontal ground pressure of stratum in 180?550 m depth varies from 1.21 MPa to 6.13 MPa.

    It is different in the directions of heat flux and the maximum principal stress between naturally fro‐zen soils and artificially frozen soils in deep stratum.As is shown in Figure 1,for naturally frozen soils,the direction of heat flux is consistent with the direc‐tion of the maximum principal stress.In contrast,the heat flux direction is perpendicular to the direc‐tion of maximum principal stress in the freeze-thaw process.

    Figure 5 Sketch for heat-stress boundary conditions of shallow and deep soils in frozen ground engineering

    Water transportation and ice formation are gov‐erned by the conditions of heat and stress(Wang,1993;Wanget al.,1995;Chenget al.,2014).Due to the difference in stress environment and thermal con‐ditions during freeze-thaw,the microstructure and physical properties of deep artificial frozen soils in freezing shaft sinking are different from that of shal‐low natural frozen soils in cold regions engineering,which will inevitably lead to different mechanical properties between deep soils and shallow soils.

    Few studies investigated the shaft lining subjected to thaw consolidation of deep artificially frozen soils after freezing shaft sinking.In particular,for the deep clay with complicated engineering properties,the con‐solidation deformation of thawed clay under high overburden pressure lasts for a long time,which has an important impact on the shaft stability.Under the special thermal and mechanical conditions in freezing shaft sinking,the knowledge of the engineering prop‐erties of deep soils is lacking,such as the effect of freeze-thaw on the microstructure and physical prop‐erties of deep soils by under high earth pressure,the strength,rheology and consolidation properties of deep thawed soils.

    Laboratory tests are an important means to study the effect of freeze-thaw on the physical and mechani‐cal properties of deep soils.At present,the conven‐tional laboratory test methods are not completely suit‐able for deep soils.It is imperative to develop key testing techniques,including preparation of deep re‐molded soil samples,measurement of pore water pres‐sure and unfrozen water content at high pressure,and reduction methods for the friction between soils and sidewall of odometer at high pressure.

    6 Conclusions and prospect

    (1)Extensive research results have been achieved about the effect of freeze-thaw on the geotechnical properties of naturally frozen soils in shallow strata.The physical and mechanical properties of soils are changed due to freeze-thaw cycles,such as the parti‐cle distribution,pores,bulk density,water content,strength,modulus of deformation.It is also found that there is a critical value for the relevant physical prop‐erties.Beyond a critical value,some physical parame‐ters of the soil will no longer be affected by freezing and thawing.

    (2)The depth of alluvium has attained 755 m in freezing shaft sinking now.The geotechnical proper‐ties of deep soils and freeze-thaw conditions are sig‐nificantly different from that of shallow soils.It is necessary to systematically study the effects of freeze-thaw at high pressure on the physical proper‐ties,strength,rheology,consolidation,and microstruc‐ture of deep soils.

    (3)To reflect deposition environments of deep soil strata,the freeze-thaw tests of deep soils should be conducted according to thermal-mechanical condi‐tions of freezing shaft sinking in deep alluvium.It is required to develop freeze-thaw experimental meth‐ods and technologies of frozen deep soils,which are valuable to freezing shaft sinking applied in ultradeep alluvium.

    Acknowledgments:

    This research was supported by the National Natural Science Foundation of China(Grant No.41771072);Jiangsu Province Innovation and Entrepreneurship Training program for University Students(Grant No.202010290171H).

    久久国产精品大桥未久av | 久久精品久久久久久久性| 国产精品熟女久久久久浪| 男人和女人高潮做爰伦理| 简卡轻食公司| 婷婷色av中文字幕| 精品久久久噜噜| 国产男女超爽视频在线观看| 精品久久久久久久久亚洲| 欧美国产精品一级二级三级 | 欧美精品人与动牲交sv欧美| 一本色道久久久久久精品综合| 91精品国产国语对白视频| av卡一久久| 国产一级毛片在线| 中文字幕久久专区| 我的老师免费观看完整版| 日日撸夜夜添| 日本av手机在线免费观看| 秋霞在线观看毛片| 日日摸夜夜添夜夜添av毛片| 国产永久视频网站| 亚洲精品国产色婷婷电影| 日本av手机在线免费观看| 韩国高清视频一区二区三区| 国产成人午夜福利电影在线观看| 纵有疾风起免费观看全集完整版| 十分钟在线观看高清视频www | 亚洲国产精品999| a级毛片在线看网站| 色吧在线观看| 亚洲精品国产av成人精品| 美女视频免费永久观看网站| 久久亚洲国产成人精品v| 国内少妇人妻偷人精品xxx网站| 亚州av有码| 好男人视频免费观看在线| 亚洲av不卡在线观看| 欧美+日韩+精品| 午夜日本视频在线| 我要看日韩黄色一级片| 成人二区视频| 精品少妇黑人巨大在线播放| 午夜av观看不卡| 成人18禁高潮啪啪吃奶动态图 | 亚洲人成网站在线播| 内射极品少妇av片p| 亚洲真实伦在线观看| 国产精品免费大片| 99热6这里只有精品| 久久久精品免费免费高清| 大话2 男鬼变身卡| 夫妻午夜视频| 丰满饥渴人妻一区二区三| 国产又色又爽无遮挡免| 国产午夜精品久久久久久一区二区三区| 亚洲欧洲精品一区二区精品久久久 | 久久人人爽人人爽人人片va| 五月天丁香电影| 亚洲国产毛片av蜜桃av| 高清午夜精品一区二区三区| 久久久久视频综合| 简卡轻食公司| 99国产精品免费福利视频| 亚洲真实伦在线观看| 成人漫画全彩无遮挡| 久久精品国产亚洲网站| 日韩,欧美,国产一区二区三区| 如日韩欧美国产精品一区二区三区 | 日本vs欧美在线观看视频 | 精品人妻偷拍中文字幕| 国产日韩一区二区三区精品不卡 | 蜜桃久久精品国产亚洲av| 久久久久国产网址| 最新中文字幕久久久久| 最近手机中文字幕大全| 午夜免费观看性视频| 欧美精品人与动牲交sv欧美| 搡老乐熟女国产| 亚洲精品成人av观看孕妇| 午夜免费男女啪啪视频观看| 免费人妻精品一区二区三区视频| 日本av手机在线免费观看| 特大巨黑吊av在线直播| www.av在线官网国产| 日韩伦理黄色片| 综合色丁香网| 伊人久久国产一区二区| 成人毛片a级毛片在线播放| 多毛熟女@视频| 狂野欧美白嫩少妇大欣赏| 日韩电影二区| 中文欧美无线码| 日韩三级伦理在线观看| 一区二区三区四区激情视频| 妹子高潮喷水视频| 精品一品国产午夜福利视频| 亚洲精品亚洲一区二区| 人人妻人人添人人爽欧美一区卜| 女的被弄到高潮叫床怎么办| 人人妻人人澡人人爽人人夜夜| 免费播放大片免费观看视频在线观看| av不卡在线播放| 成人综合一区亚洲| 日本与韩国留学比较| 一级毛片久久久久久久久女| 亚洲精品国产av蜜桃| 久久久久久久久久久免费av| www.色视频.com| 亚洲精品国产av成人精品| 黄色欧美视频在线观看| 国产黄频视频在线观看| 日本爱情动作片www.在线观看| 女的被弄到高潮叫床怎么办| 熟女电影av网| 亚洲精品国产色婷婷电影| 亚洲精品中文字幕在线视频 | 青春草亚洲视频在线观看| 少妇熟女欧美另类| 国产欧美亚洲国产| 最近最新中文字幕免费大全7| 2021少妇久久久久久久久久久| 黄色欧美视频在线观看| 22中文网久久字幕| 国产精品女同一区二区软件| 内地一区二区视频在线| 午夜福利网站1000一区二区三区| 黑人猛操日本美女一级片| 99热全是精品| 久久女婷五月综合色啪小说| 中文精品一卡2卡3卡4更新| 精品一区二区三区视频在线| 少妇被粗大的猛进出69影院 | 99国产精品免费福利视频| 亚洲欧洲国产日韩| 久久久久网色| 国产探花极品一区二区| 视频区图区小说| 一级毛片我不卡| 夜夜爽夜夜爽视频| 国产精品国产三级专区第一集| 少妇裸体淫交视频免费看高清| 三上悠亚av全集在线观看 | 国产美女午夜福利| 欧美日本中文国产一区发布| 久久久久视频综合| 妹子高潮喷水视频| 国产av精品麻豆| 午夜激情久久久久久久| 超碰97精品在线观看| 少妇高潮的动态图| 精品一区二区免费观看| 国产黄色视频一区二区在线观看| h视频一区二区三区| 男女边摸边吃奶| 人人妻人人添人人爽欧美一区卜| 在线观看人妻少妇| 亚洲av国产av综合av卡| videossex国产| 中文字幕久久专区| 少妇被粗大猛烈的视频| 国产黄色视频一区二区在线观看| 亚洲久久久国产精品| 观看av在线不卡| 男男h啪啪无遮挡| 在线亚洲精品国产二区图片欧美 | 亚洲av福利一区| 少妇 在线观看| 国产在线免费精品| 自拍欧美九色日韩亚洲蝌蚪91 | 中文欧美无线码| 99九九在线精品视频 | 丰满迷人的少妇在线观看| 欧美日韩亚洲高清精品| 三级国产精品欧美在线观看| 日本av手机在线免费观看| 91成人精品电影| 亚洲精品自拍成人| 校园人妻丝袜中文字幕| 老熟女久久久| 免费高清在线观看视频在线观看| 美女内射精品一级片tv| 蜜桃在线观看..| 久久久久精品久久久久真实原创| 男人爽女人下面视频在线观看| 尾随美女入室| 爱豆传媒免费全集在线观看| 麻豆精品久久久久久蜜桃| 日韩熟女老妇一区二区性免费视频| 日韩三级伦理在线观看| 晚上一个人看的免费电影| 欧美区成人在线视频| 国产亚洲午夜精品一区二区久久| 丝袜在线中文字幕| 久久免费观看电影| av卡一久久| 日韩电影二区| 日韩不卡一区二区三区视频在线| 国产片特级美女逼逼视频| 麻豆成人av视频| 99热网站在线观看| 久久精品久久久久久久性| 亚洲成色77777| 一边亲一边摸免费视频| 亚洲av不卡在线观看| 久久人妻熟女aⅴ| 午夜久久久在线观看| 热re99久久精品国产66热6| 99精国产麻豆久久婷婷| 国产高清有码在线观看视频| 久久国产精品男人的天堂亚洲 | 波野结衣二区三区在线| 久久影院123| 男人狂女人下面高潮的视频| 寂寞人妻少妇视频99o| 国产高清国产精品国产三级| 亚洲精品一区蜜桃| 日韩av不卡免费在线播放| 黄色毛片三级朝国网站 | 人人澡人人妻人| 亚洲美女搞黄在线观看| 自拍偷自拍亚洲精品老妇| 久久韩国三级中文字幕| 熟女av电影| 久久久久久久久大av| 久久精品夜色国产| 全区人妻精品视频| 国产av国产精品国产| 欧美97在线视频| 日本色播在线视频| 国产日韩欧美视频二区| 高清黄色对白视频在线免费看 | 男女免费视频国产| 毛片一级片免费看久久久久| 成年女人在线观看亚洲视频| 精品国产一区二区久久| 妹子高潮喷水视频| 国产av精品麻豆| 美女国产视频在线观看| 纯流量卡能插随身wifi吗| 黄色配什么色好看| 美女国产视频在线观看| 亚洲人成网站在线播| 91午夜精品亚洲一区二区三区| 久久午夜福利片| 欧美高清成人免费视频www| 亚洲国产精品专区欧美| 妹子高潮喷水视频| 纵有疾风起免费观看全集完整版| 大片免费播放器 马上看| 人妻 亚洲 视频| 久久精品久久久久久噜噜老黄| 黄色视频在线播放观看不卡| 夜夜看夜夜爽夜夜摸| 国产综合精华液| 男女无遮挡免费网站观看| 久久精品久久久久久噜噜老黄| 少妇 在线观看| 国产熟女欧美一区二区| 一二三四中文在线观看免费高清| 国产淫语在线视频| 亚洲av.av天堂| 麻豆乱淫一区二区| 纵有疾风起免费观看全集完整版| 人妻人人澡人人爽人人| 看十八女毛片水多多多| 偷拍熟女少妇极品色| 午夜影院在线不卡| 色吧在线观看| 久久久久久久国产电影| 成人黄色视频免费在线看| 日韩亚洲欧美综合| 国产精品.久久久| 成人影院久久| 国产淫语在线视频| 亚洲国产欧美在线一区| 新久久久久国产一级毛片| 日本av免费视频播放| 色婷婷久久久亚洲欧美| 九九在线视频观看精品| 久久青草综合色| 久热这里只有精品99| 成人国产麻豆网| 丰满饥渴人妻一区二区三| 国产精品久久久久久久电影| 亚洲婷婷狠狠爱综合网| 看十八女毛片水多多多| 日本猛色少妇xxxxx猛交久久| 新久久久久国产一级毛片| 哪个播放器可以免费观看大片| 日本欧美国产在线视频| 99视频精品全部免费 在线| 噜噜噜噜噜久久久久久91| 黄色欧美视频在线观看| 亚洲av.av天堂| 狠狠精品人妻久久久久久综合| 久久久亚洲精品成人影院| 久久 成人 亚洲| 国产午夜精品一二区理论片| 午夜久久久在线观看| 久久久a久久爽久久v久久| 免费播放大片免费观看视频在线观看| 中文字幕亚洲精品专区| 美女主播在线视频| 少妇熟女欧美另类| 国产免费福利视频在线观看| 亚洲国产最新在线播放| 国产欧美亚洲国产| 一区二区三区四区激情视频| 伊人久久精品亚洲午夜| 天堂8中文在线网| 午夜免费观看性视频| 日韩中文字幕视频在线看片| 中文在线观看免费www的网站| 午夜av观看不卡| 麻豆乱淫一区二区| 国产极品天堂在线| 少妇 在线观看| 波野结衣二区三区在线| 久久国产亚洲av麻豆专区| 内射极品少妇av片p| 欧美少妇被猛烈插入视频| av线在线观看网站| 国内揄拍国产精品人妻在线| 国产91av在线免费观看| 亚洲精品日韩在线中文字幕| 国产黄色视频一区二区在线观看| 国内少妇人妻偷人精品xxx网站| 亚洲四区av| 国产欧美亚洲国产| av在线播放精品| 久久久欧美国产精品| 日韩三级伦理在线观看| 日日啪夜夜爽| 亚洲国产av新网站| av在线app专区| 国产一区二区在线观看av| 国产精品久久久久久精品古装| 国产精品国产三级专区第一集| 国产美女午夜福利| 午夜日本视频在线| 亚洲欧美日韩另类电影网站| 亚洲激情五月婷婷啪啪| 亚洲精品第二区| 亚洲精品aⅴ在线观看| 一级毛片我不卡| 三级经典国产精品| 午夜91福利影院| 成人亚洲精品一区在线观看| 男男h啪啪无遮挡| 国产成人精品福利久久| 六月丁香七月| 色94色欧美一区二区| 国精品久久久久久国模美| 国产成人freesex在线| 噜噜噜噜噜久久久久久91| av视频免费观看在线观看| 国产精品三级大全| 免费看不卡的av| 日韩强制内射视频| 国产精品人妻久久久久久| 久久久精品94久久精品| 久久毛片免费看一区二区三区| 97在线视频观看| 80岁老熟妇乱子伦牲交| av天堂久久9| 欧美老熟妇乱子伦牲交| 噜噜噜噜噜久久久久久91| 午夜免费男女啪啪视频观看| 偷拍熟女少妇极品色| 人人妻人人爽人人添夜夜欢视频 | 日本欧美视频一区| 国产亚洲91精品色在线| 国产淫语在线视频| 男女国产视频网站| 人妻 亚洲 视频| a级毛片免费高清观看在线播放| 一级毛片aaaaaa免费看小| 欧美精品国产亚洲| 国产在线男女| 国产综合精华液| 一个人看视频在线观看www免费| 亚洲情色 制服丝袜| 亚洲精品一二三| 偷拍熟女少妇极品色| 亚洲,欧美,日韩| 视频中文字幕在线观看| 亚洲欧美日韩东京热| 国产黄片视频在线免费观看| 国产成人精品福利久久| 日韩欧美精品免费久久| 免费观看av网站的网址| 欧美日韩av久久| av网站免费在线观看视频| 亚洲人与动物交配视频| 欧美亚洲 丝袜 人妻 在线| 狂野欧美白嫩少妇大欣赏| 男人舔奶头视频| 97精品久久久久久久久久精品| 2022亚洲国产成人精品| 另类精品久久| 日韩中字成人| 欧美精品国产亚洲| 日韩一区二区视频免费看| 少妇的逼好多水| 亚洲丝袜综合中文字幕| 99九九线精品视频在线观看视频| 亚洲在久久综合| 日本av手机在线免费观看| 久久鲁丝午夜福利片| 亚洲,一卡二卡三卡| 亚洲av二区三区四区| 大片免费播放器 马上看| 欧美区成人在线视频| av不卡在线播放| 成人毛片a级毛片在线播放| 欧美xxxx性猛交bbbb| 午夜日本视频在线| 91精品国产九色| 3wmmmm亚洲av在线观看| 涩涩av久久男人的天堂| 2018国产大陆天天弄谢| 尾随美女入室| 国产成人a∨麻豆精品| .国产精品久久| 国产男女内射视频| 另类亚洲欧美激情| 亚洲av电影在线观看一区二区三区| 内射极品少妇av片p| 卡戴珊不雅视频在线播放| 成人亚洲欧美一区二区av| 精品久久久精品久久久| 高清黄色对白视频在线免费看 | 3wmmmm亚洲av在线观看| 丁香六月天网| 亚洲精品色激情综合| 青春草视频在线免费观看| √禁漫天堂资源中文www| 国产成人午夜福利电影在线观看| 免费观看性生交大片5| 亚洲中文av在线| videossex国产| 国产免费福利视频在线观看| 麻豆乱淫一区二区| 99热国产这里只有精品6| av黄色大香蕉| 夫妻午夜视频| 免费看光身美女| 男男h啪啪无遮挡| 精品熟女少妇av免费看| 日韩 亚洲 欧美在线| 亚洲欧美精品专区久久| 蜜桃久久精品国产亚洲av| 一本—道久久a久久精品蜜桃钙片| 夜夜爽夜夜爽视频| 欧美性感艳星| 性高湖久久久久久久久免费观看| 亚洲国产最新在线播放| 边亲边吃奶的免费视频| 婷婷色av中文字幕| 久久久久久久久大av| 久久狼人影院| 天美传媒精品一区二区| 插逼视频在线观看| 免费黄色在线免费观看| 69精品国产乱码久久久| 少妇精品久久久久久久| 男女国产视频网站| 精品酒店卫生间| 插阴视频在线观看视频| 精品人妻偷拍中文字幕| 国产精品蜜桃在线观看| 日韩大片免费观看网站| kizo精华| 在线观看免费高清a一片| 色婷婷久久久亚洲欧美| 在线观看av片永久免费下载| 香蕉精品网在线| 国产一区二区在线观看av| 美女中出高潮动态图| 亚洲国产精品一区三区| 老司机影院毛片| 亚洲欧美中文字幕日韩二区| 日本色播在线视频| 免费黄频网站在线观看国产| av天堂久久9| 性高湖久久久久久久久免费观看| 中文乱码字字幕精品一区二区三区| 亚洲真实伦在线观看| 欧美成人午夜免费资源| 欧美精品国产亚洲| 精品少妇黑人巨大在线播放| 一本大道久久a久久精品| 午夜日本视频在线| 免费黄网站久久成人精品| 免费不卡的大黄色大毛片视频在线观看| 秋霞伦理黄片| 久久 成人 亚洲| 大话2 男鬼变身卡| 男人狂女人下面高潮的视频| 亚洲一级一片aⅴ在线观看| 国产精品国产av在线观看| 国产成人免费无遮挡视频| 在线看a的网站| 韩国av在线不卡| 久久精品久久久久久噜噜老黄| 日韩电影二区| 午夜免费鲁丝| 一级毛片黄色毛片免费观看视频| 秋霞在线观看毛片| 极品人妻少妇av视频| 日韩欧美一区视频在线观看 | 大话2 男鬼变身卡| 国产一级毛片在线| 五月玫瑰六月丁香| 国产伦在线观看视频一区| 一区二区三区乱码不卡18| 久久免费观看电影| 欧美成人午夜免费资源| 夫妻午夜视频| 国产黄片美女视频| 狂野欧美激情性bbbbbb| 精品国产一区二区久久| 亚洲人成网站在线观看播放| 美女内射精品一级片tv| 亚洲一区二区三区欧美精品| 国产在线一区二区三区精| 久久久精品94久久精品| .国产精品久久| 久久久久国产精品人妻一区二区| 搡女人真爽免费视频火全软件| 国产淫语在线视频| 久久 成人 亚洲| 欧美精品人与动牲交sv欧美| 亚洲成人一二三区av| 亚州av有码| 99国产精品免费福利视频| 久久国内精品自在自线图片| 日本与韩国留学比较| av在线老鸭窝| 校园人妻丝袜中文字幕| 亚洲av日韩在线播放| 热re99久久精品国产66热6| 爱豆传媒免费全集在线观看| 色5月婷婷丁香| 中文字幕精品免费在线观看视频 | 伊人亚洲综合成人网| 亚洲人成网站在线播| 男女边吃奶边做爰视频| 人人妻人人澡人人爽人人夜夜| 久久久久国产精品人妻一区二区| 国产成人91sexporn| 久久毛片免费看一区二区三区| 王馨瑶露胸无遮挡在线观看| 国产亚洲5aaaaa淫片| 高清在线视频一区二区三区| 久久影院123| av.在线天堂| 久久精品久久久久久久性| 久久久久视频综合| 伊人久久精品亚洲午夜| 亚洲国产精品成人久久小说| 最黄视频免费看| 久热这里只有精品99| 久久午夜福利片| 只有这里有精品99| 免费黄频网站在线观看国产| 嫩草影院新地址| 欧美精品人与动牲交sv欧美| 国产在线一区二区三区精| 青春草亚洲视频在线观看| 你懂的网址亚洲精品在线观看| 男人狂女人下面高潮的视频| 日韩av免费高清视频| av有码第一页| 亚洲精品成人av观看孕妇| 最近最新中文字幕免费大全7| 99re6热这里在线精品视频| 久久久久网色| 日本wwww免费看| 亚洲国产精品999| 老司机影院成人| 看非洲黑人一级黄片| 日韩一区二区视频免费看| av国产久精品久网站免费入址| 汤姆久久久久久久影院中文字幕| 一个人免费看片子| 黄色怎么调成土黄色| 22中文网久久字幕| 精品亚洲成a人片在线观看| 午夜免费鲁丝| 久久热精品热| 涩涩av久久男人的天堂| 日本av手机在线免费观看| 美女大奶头黄色视频| av线在线观看网站| 青青草视频在线视频观看| 午夜福利网站1000一区二区三区| av线在线观看网站| 天堂8中文在线网| 欧美精品人与动牲交sv欧美| 新久久久久国产一级毛片| 嫩草影院新地址| 亚洲精品视频女| 在线观看一区二区三区激情| 少妇猛男粗大的猛烈进出视频| av在线观看视频网站免费| 精品一区二区三卡| 久久韩国三级中文字幕| 国产黄频视频在线观看| 一级毛片aaaaaa免费看小| 日韩欧美精品免费久久| 成人黄色视频免费在线看| 少妇被粗大的猛进出69影院 | 有码 亚洲区|