• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Reaction pathway change on plasmonic Au nanoparticles studied by surface-enhanced Raman spectroscopy

    2021-12-27 13:06:18RanLiCanCanZhangDanWangYanFangHuYongLongLiWeiXie
    Chinese Chemical Letters 2021年9期

    Ran Li,Can-Can Zhang,Dan Wang,Yan-Fang Hu,Yong-Long Li,Wei Xie

    Key Lab of Advanced Energy Materials Chemistry (Ministry of Education),Tianjin Key Lab Mol Recognit &Biosensing,Renewable Energy Conversion and Storage Center,College of Chemistry,Nankai University,Tianjin 300071,China

    Keywords:Surface-enhanced Raman spectroscopy Surface plasmon Au nanoparticles Photocatalysis Reaction pathway

    ABSTRACT Gold nanoparticles (Au NPs)are nanoscale sources of light and electrons,which are highly relevant for their extensive applications in the field of photocatalysis.Although a number of research works have been carried out on chemical reactions accelerated by the energetic hot electrons/holes,the possibility of reaction pathway change on the plasmonic Au surfaces has not been reported so far.In this proof-ofconcept study,we find that Au NPs change the reaction pathway in photooxidation of alkyne under visible light irradiation.This reaction produces benzil(--CO--CO--)without the presence of Au NPs.In contrast,as indicated by surface-enhanced Raman spectroscopic(SERS)results,the C--C triple bonds(--C≡C--)adsorbed on Au NPs are converted into carboxyl (--COOH) and acyl chloride (--COCl) groups.The plasmonic Au NPs not only provide energetic charge carriers but also activate the reactant molecules as conventional heterogeneous catalysts.This study discloses the second role of plasmonic NPs in photocatalysis and bridges the gap between plasmon-driven and conventional heterogeneous catalysis.

    In the past decade,gold nanoparticles (Au NPs) have attracted great attention in various photocatalytic reactions due to their strong light converting ability in visible range and high catalytic activity even at low temperature.Examples are the reduction of aromatic nitro compounds [1-4],CO oxidation [5]and carbonhalogen bond cleavage [6].Under resonant light irradiation,the surface plasmons on Au NP surface undergo non-radiative decay and generate hot electron-hole pairs that can promote photocatalysis.On the other hand,Au NPs are excellent thermocatalysts in conventional heterogeneous catalysis,where the Au surface activates the reactant molecules and/or changes the reaction pathway without the presence of hot carrier[7-9].Recent studies on Au plasmonic photocatalysis mainly focus on the use of hot electrons (holes) in chemistry;however,whether the Au NPs act also as second role to change the reaction pathway of the photocatalysis remains unclear.In situ monitoring of the interfacial chemistry on Au NPs is required to understand the plasmonic reaction mechanism at molecular level.

    Surface-enhanced Raman spectroscopy(SERS)is widely used to monitor catalytic reactions on the surface of noble metal NPs.The high sensitivity and molecular specificity of nanostructures enable SERS a powerful analytical method to explore interfacial reaction mechanism [10-12].

    Au NPs are excellent SERS substrates because they are stabler and easier to prepare than any other plasmonic metals(Ag and Cu)[5,13-15].Typically,bifunctional nanostructures have to be prepared by using both plasmonic(Au or Ag)and catalytic metals(CuO,Pt or Pd) for the detection of interfacial catalysis [16-20].Since SERS and hot carriers are both originated from plasmon decay,if the chemical reaction occurs on the plasmonic Au surface,SERS can be employed to monitor the plasmonic catalysis without using complex bifunctional nanostructures.

    Photocatalytic alkyne oxidation reactions have significant applications in synthetic chemistry and products like epoxide,ketone and acid are important chemical materials for producing steroidalmedicines.Althoughselectiveconversionofthesubstances to preferred products can be achieved by controlling the level of oxidation,the reaction pathway is difficult to change under a certain reaction condition.Here,we present a proof-of-concept study by using Au nanocube (NC) film as a plasmonic substrate to study diphenylacetylene(DA)oxidationasourmodelreaction.Itwasfound thattheplasmonicAuchangesthe reactionpathway viaactivation of C≡C and produces benzoic acid and benzoyl,instead of benzil product when Au NPs are absent.Since plasmon-induced catalysis on Au NPs is generally limited by the charge-carrier recombination,a number of Au-semiconductor hybrid nanomaterials have been employed to improve the electron-hole separation for high reactivity in photocatalysis;examples are deuteration [21],C--C coupling [22],N2fixation [23],ethanol oxidation [24],and CO2reduction[25-27].Therefore,we prepared Au/TiO2to improve the plasmonic catalytic activity in synthetic chemistry.What we found in SERS explains the increased selectivity of DA oxidation to the two products in Au/TiO2photocatalytic system(Fig.1).According to our experimental results,it was proposed that the hot holes play a key role in C≡C activation and both the plasmonic hot electrons and holes are involved in the photooxidation.

    Au NCs with a diameter of~50 nm and Au NPs with a diameter of~10 nm were synthesized by using sodium borohydride and ascorbic acid reduction method in a mixture of an aqueous solution of cetyltrimethyl ammonium chloride(CTAC).In the photocatalytic oxidation of DA,a Xe lamp was used (PLS-SXE300,Beijing Trusttech Co.,Ltd.) as the irradiation light source.The concentrations of DA and FeCl3are 1 and 0.2 mg/mL,respectively.More experimental details are available in the Supporting information.

    In a control experiment of DA oxidation without adding Au NPs,benzil was formed after the reaction mixture was illuminated under visible light in the presence of FeCl3(Fig.1,Path 1).When Au NPs (supported on TiO2,see Fig.S1 in Supporting information)were added as catalyst,the concentration of benzoic acid(BA)and benzoyl chloride (BOC) in the product dramatically increased(Fig.1,Path 2).In contrast,this change was not observed by using TiO2as the catalyst.It is reasonable to propose that there is a different reaction pathway for light-driven DA oxidation in the presence of Au NPs.

    InordertomonitorthemolecularconversionofDAoxidationatthe catalytic interfaces,we synthesized~50 nm Au NCs (Fig.S3 in Supporting information)and then prepared closely packed nanocube film (Au NC film) as our SERS substrate.The SEM image of the asprepared film in Fig.2a shows the high Au NC dispersity and regular pattern formed by the NCs.The average distance of two adjacent Au NCs is about 1.85 nm,which is beneficial for strong plasmonic coupling and generation of reproducible SERS signal.According to the 3D-finite difference time domain (FDTD) simulation,the calculated enhancement factor in the gaps between the NCs is about 2×105(Fig.2b,and Supporting information section 1.8).For the SERS measurement,ethanethioate was linked to DA to form S-(4-(phenylethynyl)phenyl) ethanethioate (S-4-PPET) (Scheme S1 in Supporting information) with strong Au-S bonds to anchor the reactant molecules on the Au surface (Fig.3a).In situ SERS monitoring was conducted with 633 nm laser after the Au NC film was immersed into a CH3CN solution of FeCl3.The peaks at 998 and 1140 cm-1(Fig.3b)areassigned tothe asymmetric stretching mode of phenyl rings [19];while the peaks at 1579 and 2216 cm-1are attributed to the symmetric stretching mode of phenyl rings and vibrationof carbon-carbontriple bonds,respectively[19,28],which are employed to evaluate the course of oxidation reaction.

    Fig.1.Reaction pathways of DA oxidation in the presence of FeCl3 in acetonitrile.

    Fig.2.(a)SEM of Au nanocube film(Au NC film).(b)3D-FDTD simulation of electric fields in the film.

    During the reaction,the peaks at 998,1140 and 2216 cm-1decrease and a new peak at~1565 cm-1arises gradually.According to the standard SERS spectrum of CH3S-Ph-CH2-Cl(BC,after incubation with Au substrate,Fig.3c),the peak at 1565 cm-1can be assigned to the symmetric stretching mode of phenyl ring of Ph-CH2-Cl analogue.And when Fe(NO3)3is used instead of FeCl3,this peak shows a redshift of 11 cm-1and appears at 1554 cm-1(Fig.S4 in Supporting information),indicating the formation of a different intermediate product by changing the anions.As the reaction goes on,the peak at 1565 cm-1disappears while the one at 1584 cm-1arises,which is similar to that of the CH3S-Ph-CH2-Cl oxidation(Fig.3c).The peak at~1584 cm-1can be assigned to the symmetric stretching mode of phenyl ring of BA and BOC (Fig.3b).

    Interestingly,the characteristic SERS signal of benzil,which was supposed to appear at around 1700-1800 cm-1(C=O),was not observed.This is in agreement with our assumption that plasmonic Au changes the original reaction pathway:the Au surface directly induces breaking of the C≡C triple bonds without producing benzil.In addition,we noticed that Fe(III) was reduced to Fe(II)during the reaction process.A chemical indicator 1,10-phenanthroline,which will give an orange coordination compound in the presence of Fe2+,shows an evidently strong absorption at~510 nm(Fig.S5 in Supporting information) after the reaction.The change of valence might be conducted according to the following Eq.1 under light illumination.So,it is necessary to find out whether Fe(III)Cl3or Fe(II)Cl2plays an important role in this reaction.

    Fig.3.(a) Preparation of Au NC film coated with S-(4-(phenylethynyl)phenyl)ethanethioate(S-4-PPET).(b)SERS spectra of DA oxidation on Au NC film with FeCl3 and solvent MeCN.Blank lines are from Au NC film coated with commercial DA,BC,BA,and BOC under the same condition.(c)SERS spectra of BC on Au NC film in MeCN solution of FeCl3.*stands for peaks of MeCN.

    As shown in Fig.S6(Supporting information),no reaction could be detected when FeCl2was used instead of FeCl3.As Fe3+attaches to C≡C triple bond by dative force[29-32],the electron density of π orbital decreases and C≡C is activated for oxidation.It is also suggested that the FeCl3to FeCl2conversion releases Cl· [33-35]and leads to the formation of Ph-CH2-Cl analogue.

    Since most photocatalytic reactions refer to adsorption and desorption processes,we further investigated whether the DA molecules have such interaction with Au NPs.First,Au/TiO2was suspended in a CH3CN solution of DA for 40 min.After filtration,the concentration of DA was detected by GC-MS with 1-naphthol as the internal standard substance.The data displayed in Fig.4a indicates a 10% decrease of the DA concentration.In contrast,such decrease was not observed after mixing with TiO2.It is obvious that Au NPs can adsorb DA in the reaction mixture.Many research groups have verified a similar photoadsorption of metallic nanostructures to molecules carrying C≡C [36-38].After reaction the product molecules will leave the metal surface and the free DA in solution will approach again to keep the reaction going.Notably,a certain part of the free DA in solution will be oxidized to benzil (Path 1),causing a decrease of the selectivity of BA and BOC (Fig.1).

    The interfacial charge transfer between Au and TiO2was investigated by SERS signal of 2,6-dimethylphenyl isocyanide(2,6-DMPI).The peak at~2170 cm-1assigned to N≡C stretching will blue-shift if there is an electron donation from δ-bond of N≡C to d-band of Au,and vice versa[39].We synthesized~50 nm Au NPs(Fig.S1)and loaded them on TiO2support via electrostatic forces.Before SERS detection,the Au NPs and Au/TiO2were incubated in an alcoholic solution of 2,6-DMPI overnight.As shown in Fig.4b,the band shifts from 2170 (Au) to 2179 cm-1(Au/TiO2).The blueshift indicates an exact electron donation from Au toTiO2,resulting in a decreased electron density and efficient charge separation[40]on Au that will benefit the oxidation reaction.

    Fig.4.(a)The concentration of DA detected by GC-MS before and after Au/TiO2 incubation.(b)SERS spectra of 2,6-DMPI adsorbed on Au/TiO2 and Au.(c)The ratio of BA and BOC under different excitation wavelengths.(d)EPR tests of Au/TiO2 with TEMPO,DA,and FeCl3 in CH3CN under visible light irradiation;#,▲and*represent the peaks of TEMPO-C,TEMPO-·OH and TEMPO-O2·-,respectively.

    Fig.5.Proposed mechanism of DA oxidation on Au/TiO2 under visible light illumination.

    The new pathway on Au NPs inspired us to explore the reaction mechanism.It was confirmed that the reaction cannot proceed without light illumination,even at elevated temperature(Fig.S2).Plasmonic hot electron-hole pairs are very active and could drive the catalytic reaction on metal surfaces [41-43].As shown in Fig.4c,when we compared the performance of Au/TiO2and TiO2at different wavelengths,the highest ratio of products BA and BOC appears at 520 nm,which is consistent with the plasmon resonance position of the Au NPs.In a negative control,Pt/TiO2without sufficient plasmonic activity was employed and showed no catalytic performance(Fig.S7 in Supporting information).It has to be mentioned here that at 400 and 450 nm,where the DA reactant with FeCl3shows strong light absorption,the photooxidation occurs in solution following Path 1 (Fig.1) and generates benzil product.

    In order to determine the reaction intermediates,we tested the generated radical species via electron paramagnetic resonance(EPR).A radical-trapping reagent 2,2,6,6-tetramethyl-1-piperdinyloxy (TEMPO) (Fig.S8a in Supporting information) was added into the reaction mixture containing Au/TiO2,DA,FeCl3,and CH3CN.No signal was detected in the dark (Fig.4d,black line).Under light illumination,typical EPR peaks of TEMPO-O2·-(marked with *) adducts were observed,which are generated from O2in air reduced by the hot electrons on Au NPs [21,44].At the same time,TEMPO-·OH (▲) generated by trace amount of water from air and FeCl3·6H2O was detected.It has also been reported previously that a small amount of water from crystalline hydrates would be ionized in organic solvent[45].It is noteworthy that large a amount of water will inhibit the reaction because the indispensable Fe3+will combine with hydroxide species to form Fe(OH)3precipitate.Furthermore,the appearance of much stronger TEMPO-C signal (marked with #) with Au/TiO2than without (Fig.S8b in Supporting information) confirms the much easier bond breakage of C≡C on plasmonic Au NPs.

    According to the results above,a reasonable mechanism is proposed in Fig.5.Under light extinction,the plasmonic hot electrons on Au NPs are transferred toTiO2,leaving hot holes on the metal surface.The DA molecules adsorbed on Au NPs are activated by the hot holes and subsequently react with Cl·species to form Ph-CH2-Cl analogue.On the other hand,the hot electrons convert O2and H2O to O2·-and·OH,respectively,which are active oxidants and eventually react with the Ph-CH2-Cl analogue to form the BA and BOC final products.

    To sum up,we demonstrate that Au NPs can change the reaction pathway in DA oxidation under visible light irradiation,which results in different products of BA and BOC,instead of forming benzil without Au NPs.The highly ordered Au NC assembly provides strong electromagnetic fields for in situ SERS monitoring of the reaction.All evidences from SERS,GC--MS and EPR suggest a radical reaction pathway in which the C≡C triple bond is activated and breaks directly on the effect of hot holes on Au NPs.On the other hand,the hot electrons enable the conversion of O2and H2O to the corresponding reactive intermediates (O2·-and·OH) and finally generate BA and BOC products.This work shows the great potential of SERS in analysing chemical reactions on metal NPs.The finding of this work discloses the second role of plasmonic NPs,in addition to the hot carrier producer,as conventional heterogeneous catalysts to interact with the molecules and change the reaction pathway.

    Declaration of competing interest

    The authors report no declarations of interest.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China(Nos.22022406,21861132016 and 21775074),the Natural Science Foundation of Tianjin(Nos.20JCJQJC00110 and 20JCYBJC00590),the Fundamental Research Funds for the Central Universities-Nankai University (No.000082),the 111 project (No.B12015),and the National Key R&D Program (Nos.2017YFA0206702 and 2016YFB0901502).

    Appendix A.Supplementary data

    Supplementarymaterialrelatedtothisarticlecanbefound,inthe online version,at doi:https://doi.org/10.1016/j.cclet.2021.02.014.

    国产精品99久久99久久久不卡| 亚洲成国产人片在线观看| 亚洲av美国av| 丝袜在线中文字幕| 国产视频首页在线观看| 欧美亚洲 丝袜 人妻 在线| 亚洲,欧美精品.| av线在线观看网站| 欧美日韩av久久| 男女高潮啪啪啪动态图| 成年美女黄网站色视频大全免费| 国产不卡av网站在线观看| 我的亚洲天堂| 久久久久久亚洲精品国产蜜桃av| 久久鲁丝午夜福利片| 精品国产国语对白av| 亚洲av欧美aⅴ国产| 99久久人妻综合| 久久综合国产亚洲精品| 免费观看a级毛片全部| 成年美女黄网站色视频大全免费| 我的亚洲天堂| 国产亚洲精品久久久久5区| 一区福利在线观看| 我要看黄色一级片免费的| 视频区图区小说| 波野结衣二区三区在线| 国产精品香港三级国产av潘金莲 | 每晚都被弄得嗷嗷叫到高潮| 亚洲成人手机| 中文精品一卡2卡3卡4更新| 久久久久久久久久久久大奶| 高清视频免费观看一区二区| 男女午夜视频在线观看| a级毛片黄视频| 高清不卡的av网站| 成年女人毛片免费观看观看9 | 国产精品免费视频内射| 高潮久久久久久久久久久不卡| 一区在线观看完整版| 少妇裸体淫交视频免费看高清 | 国产成人啪精品午夜网站| 久久精品成人免费网站| 中文字幕另类日韩欧美亚洲嫩草| 人妻一区二区av| 久久天堂一区二区三区四区| 老汉色av国产亚洲站长工具| 亚洲成人国产一区在线观看 | 亚洲精品日韩在线中文字幕| 免费观看av网站的网址| 亚洲精品久久成人aⅴ小说| 国产日韩欧美视频二区| 午夜免费鲁丝| www.精华液| 色婷婷av一区二区三区视频| cao死你这个sao货| 亚洲国产日韩一区二区| 美国免费a级毛片| 亚洲精品国产色婷婷电影| 交换朋友夫妻互换小说| 亚洲国产毛片av蜜桃av| 亚洲av成人不卡在线观看播放网 | 国产色视频综合| 久久99一区二区三区| 久久中文字幕一级| 国产在线观看jvid| 纯流量卡能插随身wifi吗| 美国免费a级毛片| 色视频在线一区二区三区| 成人国产av品久久久| 大片电影免费在线观看免费| 亚洲一卡2卡3卡4卡5卡精品中文| 国产免费福利视频在线观看| 人人妻人人爽人人添夜夜欢视频| 国产成人系列免费观看| 亚洲av在线观看美女高潮| 精品卡一卡二卡四卡免费| 精品第一国产精品| 男女边吃奶边做爰视频| 各种免费的搞黄视频| 亚洲人成电影免费在线| 麻豆av在线久日| 99精国产麻豆久久婷婷| 99国产精品免费福利视频| h视频一区二区三区| av在线app专区| 免费看av在线观看网站| 色婷婷久久久亚洲欧美| 亚洲伊人色综图| 91精品伊人久久大香线蕉| 国产精品欧美亚洲77777| 丰满人妻熟妇乱又伦精品不卡| 国产精品秋霞免费鲁丝片| 亚洲欧美一区二区三区黑人| 波野结衣二区三区在线| 捣出白浆h1v1| 日韩视频在线欧美| 亚洲精品国产区一区二| 手机成人av网站| 一区二区三区乱码不卡18| 99国产精品99久久久久| 亚洲欧美一区二区三区久久| 国产亚洲欧美精品永久| 婷婷色综合大香蕉| 亚洲精品日韩在线中文字幕| 后天国语完整版免费观看| 欧美日韩视频精品一区| 国产成人一区二区三区免费视频网站 | 一边摸一边做爽爽视频免费| 亚洲精品一卡2卡三卡4卡5卡 | 自拍欧美九色日韩亚洲蝌蚪91| 99久久精品国产亚洲精品| 女警被强在线播放| 日本vs欧美在线观看视频| 黄色片一级片一级黄色片| 亚洲熟女精品中文字幕| 如日韩欧美国产精品一区二区三区| 亚洲五月婷婷丁香| 国产一区二区三区av在线| 99热网站在线观看| 777米奇影视久久| 成人黄色视频免费在线看| 中国美女看黄片| 超色免费av| 嫁个100分男人电影在线观看 | 最近手机中文字幕大全| 一级a爱视频在线免费观看| 我要看黄色一级片免费的| 精品少妇内射三级| 两个人看的免费小视频| 精品第一国产精品| 天堂8中文在线网| 国产一区二区三区av在线| 欧美在线一区亚洲| 欧美日韩亚洲综合一区二区三区_| 十八禁高潮呻吟视频| 一边摸一边做爽爽视频免费| 国产高清videossex| 国产精品免费大片| 99久久精品国产亚洲精品| 女警被强在线播放| 男人操女人黄网站| 成年人黄色毛片网站| 婷婷色麻豆天堂久久| 精品免费久久久久久久清纯 | 欧美黑人欧美精品刺激| 高清视频免费观看一区二区| 亚洲国产日韩一区二区| 亚洲七黄色美女视频| 国产熟女欧美一区二区| 男女下面插进去视频免费观看| 亚洲黑人精品在线| 亚洲五月婷婷丁香| 亚洲人成电影免费在线| 亚洲欧洲国产日韩| 一本—道久久a久久精品蜜桃钙片| 亚洲国产av新网站| 黄色片一级片一级黄色片| 18在线观看网站| 久久精品国产亚洲av高清一级| 99国产综合亚洲精品| 美女大奶头黄色视频| 国产熟女欧美一区二区| 香蕉丝袜av| 国产三级黄色录像| 美女高潮到喷水免费观看| 一二三四社区在线视频社区8| 亚洲视频免费观看视频| 精品少妇黑人巨大在线播放| 久久女婷五月综合色啪小说| 国产精品国产av在线观看| 亚洲精品一二三| 深夜精品福利| 国产三级黄色录像| 成在线人永久免费视频| 99精国产麻豆久久婷婷| 国产熟女欧美一区二区| 久久精品国产亚洲av高清一级| 国产女主播在线喷水免费视频网站| 亚洲国产精品一区二区三区在线| 满18在线观看网站| 男的添女的下面高潮视频| 日本色播在线视频| 女人精品久久久久毛片| 高清av免费在线| 亚洲国产欧美在线一区| 久久影院123| 日日摸夜夜添夜夜爱| 免费一级毛片在线播放高清视频 | 国产成人精品无人区| 日韩 欧美 亚洲 中文字幕| 丰满少妇做爰视频| 99热全是精品| 嫩草影视91久久| 91成人精品电影| 十八禁高潮呻吟视频| 国产又爽黄色视频| 热99久久久久精品小说推荐| 亚洲,欧美精品.| 国产欧美日韩精品亚洲av| 黄色一级大片看看| 国产高清不卡午夜福利| 亚洲黑人精品在线| 久久性视频一级片| 亚洲国产av影院在线观看| 欧美黄色淫秽网站| 国产精品免费大片| 久久人人爽av亚洲精品天堂| xxxhd国产人妻xxx| 91精品伊人久久大香线蕉| 国产精品熟女久久久久浪| 国产精品99久久99久久久不卡| 婷婷成人精品国产| av线在线观看网站| 久热这里只有精品99| 十八禁网站网址无遮挡| 久久精品人人爽人人爽视色| 狠狠婷婷综合久久久久久88av| cao死你这个sao货| 汤姆久久久久久久影院中文字幕| 最新的欧美精品一区二区| 亚洲九九香蕉| 国产精品国产三级专区第一集| 久久久精品国产亚洲av高清涩受| 久久久久国产一级毛片高清牌| 亚洲国产中文字幕在线视频| 精品少妇久久久久久888优播| 又黄又粗又硬又大视频| 亚洲欧美精品综合一区二区三区| 欧美 日韩 精品 国产| 国产日韩欧美在线精品| 男女床上黄色一级片免费看| 色网站视频免费| 亚洲激情五月婷婷啪啪| 视频区图区小说| 国产精品欧美亚洲77777| 啦啦啦在线免费观看视频4| 2021少妇久久久久久久久久久| 麻豆乱淫一区二区| 国产欧美日韩一区二区三区在线| 男女无遮挡免费网站观看| 精品少妇黑人巨大在线播放| 精品国产乱码久久久久久男人| 久久精品亚洲av国产电影网| 18禁裸乳无遮挡动漫免费视频| 精品少妇久久久久久888优播| 夜夜骑夜夜射夜夜干| videos熟女内射| 男女无遮挡免费网站观看| 久久精品人人爽人人爽视色| 久久天躁狠狠躁夜夜2o2o | 一本综合久久免费| 中文字幕制服av| 一区二区日韩欧美中文字幕| 国产av精品麻豆| 男的添女的下面高潮视频| 亚洲av成人精品一二三区| 激情五月婷婷亚洲| 免费日韩欧美在线观看| a 毛片基地| 亚洲三区欧美一区| 乱人伦中国视频| 青春草视频在线免费观看| 国产三级黄色录像| 十八禁人妻一区二区| 色综合欧美亚洲国产小说| 色视频在线一区二区三区| 中文乱码字字幕精品一区二区三区| 美女视频免费永久观看网站| 亚洲精品一区蜜桃| 欧美黑人精品巨大| 性高湖久久久久久久久免费观看| a级毛片在线看网站| 精品熟女少妇八av免费久了| 久久久久精品国产欧美久久久 | 中文字幕另类日韩欧美亚洲嫩草| 欧美精品一区二区免费开放| 18禁裸乳无遮挡动漫免费视频| 久久国产精品人妻蜜桃| 99久久综合免费| 亚洲五月色婷婷综合| 午夜福利视频在线观看免费| 免费在线观看完整版高清| 51午夜福利影视在线观看| 青草久久国产| av又黄又爽大尺度在线免费看| 一区二区三区四区激情视频| 欧美性长视频在线观看| av在线app专区| 国产一卡二卡三卡精品| 免费女性裸体啪啪无遮挡网站| 麻豆av在线久日| 2018国产大陆天天弄谢| 午夜福利视频精品| 天堂俺去俺来也www色官网| 国产精品久久久av美女十八| 久久国产精品大桥未久av| 波多野结衣一区麻豆| 大片电影免费在线观看免费| 波多野结衣一区麻豆| 欧美黄色淫秽网站| 午夜福利影视在线免费观看| 成年av动漫网址| 亚洲精品美女久久av网站| 成年人黄色毛片网站| 欧美大码av| 丝袜脚勾引网站| 国产xxxxx性猛交| 亚洲九九香蕉| 成人国产av品久久久| 久久久久国产精品人妻一区二区| 伊人久久大香线蕉亚洲五| 亚洲,欧美精品.| 国产一区二区三区av在线| 人人妻人人添人人爽欧美一区卜| 亚洲精品av麻豆狂野| 韩国高清视频一区二区三区| kizo精华| 只有这里有精品99| 欧美精品av麻豆av| 亚洲国产精品成人久久小说| 成年av动漫网址| 老汉色av国产亚洲站长工具| 国产黄色免费在线视频| 成人三级做爰电影| 亚洲成人手机| 建设人人有责人人尽责人人享有的| 美女午夜性视频免费| 久久中文字幕一级| 午夜av观看不卡| 首页视频小说图片口味搜索 | 婷婷色av中文字幕| 亚洲精品国产av蜜桃| 日韩电影二区| 大陆偷拍与自拍| 女警被强在线播放| 久久国产亚洲av麻豆专区| 少妇粗大呻吟视频| 亚洲第一青青草原| 一本大道久久a久久精品| 超碰成人久久| 亚洲精品一区蜜桃| 性高湖久久久久久久久免费观看| 午夜av观看不卡| 9色porny在线观看| 91字幕亚洲| 国产免费现黄频在线看| 日本午夜av视频| 国精品久久久久久国模美| 亚洲精品国产区一区二| 99国产精品免费福利视频| 香蕉国产在线看| 国产精品一区二区免费欧美 | 啦啦啦中文免费视频观看日本| 男人舔女人的私密视频| 黄色一级大片看看| 如日韩欧美国产精品一区二区三区| 中文字幕最新亚洲高清| 韩国高清视频一区二区三区| 18禁国产床啪视频网站| 1024视频免费在线观看| www.熟女人妻精品国产| 亚洲欧美日韩另类电影网站| 天天影视国产精品| 欧美精品人与动牲交sv欧美| 日韩中文字幕视频在线看片| 一本综合久久免费| h视频一区二区三区| 一级片免费观看大全| 国产高清国产精品国产三级| 久久久精品区二区三区| 深夜精品福利| 女警被强在线播放| 中文字幕高清在线视频| 亚洲成人免费av在线播放| 久久99一区二区三区| 亚洲欧美成人综合另类久久久| 国产99久久九九免费精品| 91成人精品电影| 国产黄色免费在线视频| 高清av免费在线| 麻豆乱淫一区二区| 亚洲,欧美,日韩| 亚洲欧洲国产日韩| 日本欧美国产在线视频| 18禁国产床啪视频网站| 汤姆久久久久久久影院中文字幕| 亚洲精品久久午夜乱码| 老司机靠b影院| 午夜福利免费观看在线| 99精品久久久久人妻精品| 久久99热这里只频精品6学生| 久久久久久免费高清国产稀缺| 欧美黑人欧美精品刺激| 欧美日韩福利视频一区二区| 免费一级毛片在线播放高清视频 | 精品一区二区三区四区五区乱码 | 99热全是精品| 久久av网站| 精品熟女少妇八av免费久了| 黄色毛片三级朝国网站| 纯流量卡能插随身wifi吗| 中文字幕人妻丝袜一区二区| 操出白浆在线播放| 午夜91福利影院| 精品国产一区二区三区四区第35| 母亲3免费完整高清在线观看| √禁漫天堂资源中文www| 久久人人爽人人片av| 欧美黑人精品巨大| 天天躁夜夜躁狠狠久久av| 两个人看的免费小视频| 久久久精品区二区三区| 国产精品九九99| 人人澡人人妻人| 晚上一个人看的免费电影| 性高湖久久久久久久久免费观看| 操美女的视频在线观看| 女人爽到高潮嗷嗷叫在线视频| 欧美精品高潮呻吟av久久| 亚洲国产欧美一区二区综合| 搡老乐熟女国产| 少妇粗大呻吟视频| 丝袜美腿诱惑在线| 高清av免费在线| 侵犯人妻中文字幕一二三四区| 国产av一区二区精品久久| 国产一区二区三区av在线| 亚洲中文日韩欧美视频| 在线观看一区二区三区激情| 久9热在线精品视频| 亚洲精品日本国产第一区| 青春草视频在线免费观看| 超色免费av| 搡老乐熟女国产| 麻豆乱淫一区二区| 99国产精品免费福利视频| 国产一区亚洲一区在线观看| 精品国产超薄肉色丝袜足j| 天天添夜夜摸| 国产精品一区二区在线不卡| 婷婷成人精品国产| 母亲3免费完整高清在线观看| 久久青草综合色| av在线app专区| 国产成人免费无遮挡视频| 国精品久久久久久国模美| 久热爱精品视频在线9| 午夜精品国产一区二区电影| 丝袜脚勾引网站| 欧美日韩黄片免| 女人被躁到高潮嗷嗷叫费观| 热99久久久久精品小说推荐| 视频在线观看一区二区三区| 国产日韩一区二区三区精品不卡| 99国产精品99久久久久| 每晚都被弄得嗷嗷叫到高潮| 国产欧美日韩精品亚洲av| 亚洲天堂av无毛| 超碰成人久久| 免费在线观看完整版高清| 波多野结衣一区麻豆| 亚洲国产欧美网| 黄色 视频免费看| 亚洲成av片中文字幕在线观看| 麻豆国产av国片精品| 一本久久精品| 美女午夜性视频免费| 天天躁夜夜躁狠狠久久av| 又黄又粗又硬又大视频| 黄色视频不卡| 婷婷丁香在线五月| 手机成人av网站| 国产精品二区激情视频| 国产熟女午夜一区二区三区| 一本综合久久免费| 欧美黑人精品巨大| 欧美日韩一级在线毛片| 五月天丁香电影| 一区二区日韩欧美中文字幕| 欧美日韩视频精品一区| 91精品伊人久久大香线蕉| 一本一本久久a久久精品综合妖精| 国产成人av教育| 亚洲国产精品成人久久小说| 国产欧美日韩精品亚洲av| 一边亲一边摸免费视频| 亚洲精品中文字幕在线视频| 黄色视频不卡| 日韩av免费高清视频| 999精品在线视频| 精品免费久久久久久久清纯 | 久久ye,这里只有精品| 中文字幕制服av| 国产成人精品久久二区二区91| 久久人人爽av亚洲精品天堂| 亚洲第一av免费看| 男女边摸边吃奶| 两个人看的免费小视频| 在线观看免费视频网站a站| 久久精品久久久久久噜噜老黄| 超碰成人久久| 91精品三级在线观看| 国产精品亚洲av一区麻豆| a级毛片黄视频| 亚洲第一青青草原| 日本wwww免费看| 最近手机中文字幕大全| 在线观看一区二区三区激情| 亚洲欧美一区二区三区黑人| 国产亚洲欧美精品永久| 久久久久网色| 两个人免费观看高清视频| 亚洲激情五月婷婷啪啪| 国产99久久九九免费精品| 精品人妻一区二区三区麻豆| 色精品久久人妻99蜜桃| 国产成人免费无遮挡视频| 少妇精品久久久久久久| 男女边摸边吃奶| 国产成人a∨麻豆精品| 波多野结衣av一区二区av| 美女大奶头黄色视频| 亚洲情色 制服丝袜| 999久久久国产精品视频| 99国产精品一区二区蜜桃av | 午夜av观看不卡| 不卡av一区二区三区| 亚洲精品久久成人aⅴ小说| 亚洲国产av新网站| 亚洲精品成人av观看孕妇| 99国产综合亚洲精品| 成人18禁高潮啪啪吃奶动态图| 在线观看一区二区三区激情| 观看av在线不卡| 最近手机中文字幕大全| 久久久国产精品麻豆| 国产高清国产精品国产三级| 亚洲欧美日韩另类电影网站| 久久女婷五月综合色啪小说| 亚洲av电影在线观看一区二区三区| 999久久久国产精品视频| 日韩一本色道免费dvd| 色婷婷久久久亚洲欧美| 老司机影院毛片| 一级毛片女人18水好多 | 成年美女黄网站色视频大全免费| 啦啦啦视频在线资源免费观看| 欧美激情 高清一区二区三区| 又粗又硬又长又爽又黄的视频| av线在线观看网站| 视频区图区小说| 久久人人爽人人片av| 亚洲欧美一区二区三区黑人| 好男人视频免费观看在线| 欧美日本中文国产一区发布| 青春草亚洲视频在线观看| 美女中出高潮动态图| 亚洲国产欧美在线一区| 国产野战对白在线观看| 一级毛片 在线播放| 欧美成人精品欧美一级黄| 汤姆久久久久久久影院中文字幕| 下体分泌物呈黄色| 亚洲国产精品一区二区三区在线| 99久久综合免费| www.av在线官网国产| 国产精品 欧美亚洲| 男人舔女人的私密视频| 亚洲天堂av无毛| 男人舔女人的私密视频| 亚洲欧洲国产日韩| 精品国产超薄肉色丝袜足j| 国产色视频综合| 婷婷成人精品国产| 91老司机精品| 精品一品国产午夜福利视频| 女人精品久久久久毛片| 涩涩av久久男人的天堂| 久久久久久亚洲精品国产蜜桃av| 狠狠精品人妻久久久久久综合| 一区在线观看完整版| 一区二区三区激情视频| 国产黄色免费在线视频| 免费日韩欧美在线观看| 夫妻性生交免费视频一级片| 精品一区二区三区av网在线观看 | 黄频高清免费视频| 午夜91福利影院| 中文字幕人妻丝袜制服| 九色亚洲精品在线播放| 日韩大码丰满熟妇| 午夜视频精品福利| 极品人妻少妇av视频| 男人添女人高潮全过程视频| 国产男人的电影天堂91| 在线亚洲精品国产二区图片欧美| 最新的欧美精品一区二区| 日韩免费高清中文字幕av| 亚洲,欧美,日韩| 欧美少妇被猛烈插入视频| 国产深夜福利视频在线观看| 免费看十八禁软件| 中文字幕精品免费在线观看视频| 国产亚洲欧美在线一区二区| 丰满迷人的少妇在线观看| 国产xxxxx性猛交| 女人精品久久久久毛片| 乱人伦中国视频| 国产黄频视频在线观看| 丝袜脚勾引网站| 国产免费福利视频在线观看| 亚洲精品av麻豆狂野| 精品人妻熟女毛片av久久网站| 国产成人啪精品午夜网站|