• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Enhancing the performances of all-small-molecule ternary organic solar cells via achieving optimized morphology and 3D charge pathways

    2021-12-27 13:06:22YanhongChangJingLiYilinChangYixiaoZhangJianqiZhangKunLuXiangnanSunZhixiangWei
    Chinese Chemical Letters 2021年9期

    Yanhong Chang,Jing Li,Yilin Chang,Yixiao Zhang,Jianqi Zhang,Kun Lu,,Xiangnan Sun,e,f,,Zhixiang Wei,

    a Department of Environmental Science and Engineering,University of Science and Technology Beijing,Beijing 100083,China

    b CAS Key Laboratory of Nanosystem and Hierarchical Fabrication,CAS Center for Excellence in Nanoscience,National Center for Nanoscience and Technology,Beijing 100190,China

    c Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants,Beijing 100083,China

    d University of Chinese Academy of Sciences,Beijing 100049,China

    e Shandong First Medical University &Shandong Academy of Medical Sciences,Taian 271016,China

    f School of Materials Science and Engineering,Zhengzhou University,Zhengzhou 450001,China

    Keywords:All-small-molecule Ternary organic solar cells Alloyed acceptor Morphology optimization 3D charge pathways

    ABSTRACT With the emergence of non-fullerene acceptors(NFAs),the power conversion efficiencies (PCEs)of allsmall-molecule organic solar cells (ASM-OSCs) have been significantly improved.However,due to the strong crystallinities of small molecules,it is much more challenging to obtain the ideal phase separation morphology and efficient charge transport pathways for ASM-OSCs.Here,a high-efficiency ternary ASMOSC has been successfully constructed based on H11/IDIC-4F system by introduction of IDIC with a similar backbone as IDIC-4F but weak crystallinity.Notably,the addition of IDIC has effectively suppressed large-scale phase aggregation and optimized the morphology of the blend film.More importantly,the molecular orientation has also been significantly adjusted,and a mixed face-on and edge-on orientation has formed,thus establishing a more favorable three-dimensional (3D) charge pathways in the active layer.With these improvements,the enhanced short-circuit current density(JSC)and fill factor (FF) of the ternary system have been achieved.In addition,because of the high lowest unoccupied molecular orbital(LUMO)energy level of IDIC as well as the alloyed structure of the IDIC and IDIC-4F,the promoted open circuit voltage (VOC) of the ternary system has also been realized.

    In recent years,a great deal of progress has been made in organic solar cells (OSCs) owing to the development of new photovoltaic materials and the optimization of device fabrication[1-10].Up to now,power conversion efficiencies(PCEs)of over 18% have been achieved for single-junction OSCs [11].It is worth mentioning that most of the high-efficient OSCs are based on the copolymers as donors [12,13].However,donor polymers have disadvantage of synthetic complexity,batch-to-batch variation and purification difficulty,severely restricting further industrialapplications of OSCs [14,15].In contrast,small molecules possess distinctive superiorities relative to polymers in definite chemical structures,high purity and negligible batch-difference,which are highly suited to larger-scale processes[16-20].Although the PCEs of all-small-molecule organic solar cells(ASM-OSCs)have reached more than 15% [21-23]by virtue of the introduction of nonfullerene acceptors(NFAs) and the application of ternary strategy[22,23],there are still obvious gaps compared with polymer solar cells,no matter in photovoltaic performance or the scale of research.The main reasons for the relatively low efficiencies of ASM-OSCs can be attributed to the strong aggregation behavior of small molecules,which is not conducive to the formation of ideal morphologies and efficient charge transport pathways.To address these challenges is becoming an increasingly urgent for the field.

    A series of studies have demonstrated that introducing the third-component acceptor into ASM-OSCs is an effective strategy to optimize the morphology and improve charge transport for the newly-constructed ternary system [22,24-29].For example,Zhou et al.reported a high-efficiency ASM ternary system,which is composed of small molecule donor (BTR),a NFA (NITI) and a fullerene acceptor (PC71BM) as the third component.With the combination of fullerene and non-fullerene acceptors,a hierarchical morphology consisting of a PC71BM transporting highway and an intricate non-fullerene phase-separated pathway has been successfully achieved,which significantly facilitates the charge carrier generation and transport [30].Compared with fullerene acceptors,NFAs are more attractive in the tunable absorption spectra,energy levels and crystallinity [31-37].However,the report about ternary ASM-OSCs with two non-fullerene acceptors is extremely rare.Until recently,Nian et al.used a highly crystalline NFA(4TIC)as the additional acceptor to construct the ternary ASMOSCs.4TIC has played important role not only in enhancing the crystallinity of the ternary blend,but also in maintaining the favorable face-on orientation in the proper multi-length scale morphology,all of which dominate the improvements of overall performance for the ternary system [23].These results indicate that the additional acceptor,especially NFA,has great potential in constructing high-performance ternary ASM-OSCs which is worth further exploration.

    In this study,we have constructed a high-efficiency ternary ASM-OSC based on the binary system of H11/IDIC-4F [38]by introducing IDIC as the third component,with a similar backbone structure as IDIC-4F,but high lowest unoccupied molecular orbital(LUMO) energy level and weak crystallinity [39-42].The obvious difference between our work and Nian’s report is that both the morphology and molecular orientation have changed dramatically after the addition of IDIC.On one hand,the root-mean-square(RMS)roughness of the ternary blend film has been significantly decreased,leading to a much smoother surface morphology.On the other hand,there has been a mixed face-on and edge-on orientation in the ternary blend film,thus creating a type of three-dimensional (3D) charge pathways for the improved short-circuit current density(JSC)and fill factor (FF).Moreover,since IDIC and IDIC-4F can form an alloyed structure in the ternary blend,so the addition of IDIC makes it great forobtaining the enhanced open circuitvoltage(VOC)for the ternary ASM-OSC.Consequently,the PCE of the H11/IDIC-4F based device has enhanced from 10.2% to 11.9% after the addition of IDIC.This work demonstrates that the morphology and molecular orientation of ASM-OSCs can be finely controlled by the introduction of additional NFAwith relatively weak crystallinity,which provides an effective avenue to promote the device performance for ASM-OSCs.

    The chemical structures of H11,IDIC and IDIC-4F are presented in Fig.1a.The normalized absorption spectra of the H11,IDIC and IDIC-4F solution and neat film are displayed in Fig.S1(Supporting information)and Fig.1b,respectively.H11 shows main absorption from 400 nm to 700 nm with the maximum absorption peaks at 558 nm and 600 nm.IDIC and IDIC-4F have similar absorption characteristics.But compared with IDIC,IDIC-4F exhibits redshifted absorption edge due to the incorporation of fluorine atoms.The shoulder peaks are observed in neat films of both IDIC and IDIC-4F,suggesting IDIC and IDIC-4F possess strong π-π interactions in the solid state [40].Moreover,excellent absorption complementarity exists between H11 and IDIC/IDIC-4F.As shown in Fig.1c,the LUMO/highest occupied molecular orbital (HOMO)energy levels of H11,IDIC and IDIC-4F are-3.03 eV/-5.31 eV[39],-3.94 eV/-5.71 eV and-4.05 eV/-5.77 eV,respectively.The energy levels of IDIC and IDIC-4F was measured by cyclic voltammetry and the results are shown in Fig.S2(Supporting information).On one hand,the LUMO level offset between H11 and IDIC/IDIC-4F is about 0.9 eV,which is large enough for exciton dissociation and charge transfer [43,44].On the other hand,because VOCis proportional to the energy level offset between the HOMO level of donor and the LUMO level of acceptor[45,46],IDIC-based device can display higher VOCthan that of IDIC-4F-based device according to its slightly higher LUMO energy level.

    Fig.1.(a)The chemical structure of H11,IDIC and IDIC-4F.(b)Normalized absorption of H11,IDIC and IDIC-4F in neat films.(c)Energy level diagram of H11,IDIC and IDIC-4F.

    The devices with the conventional structure of ITO/PEDOT:PSS/active layer/PDINO/Ag were constructed.The details of the device fabricationwere described insupporting information.The H11/IDICbased binary device exhibited a slightly higher PCE of 9.9% (VOC=0.99 V,JSC=15.68 mA/cm2,FF=64.1%) compared with Bin’s resultof 9.73% [39].With the same D/A ratio,the H11/IDIC-4F-based binary device delivered a PCE of 10.2% (VOC=0.81 V,JSC=17.76 mA/cm2,FF=70.7%)with the Donor/Acceptor(D/A)ratio of 1.7:1,which is roughly equivalent to the PCE of 10.4% reported by Janssen’s group [38].Such a tiny gap might be attributed to the different D/A ratio with their report.Notably,for the H11/IDIC-4Fbased system,although the VOCis far below that of H11/IDIC-based device,both the JSCand FF are significantly improved.Considering their respective advantages of the two binary systems,IDIC was added into H11/IDIC-4F-based system as the third component for constructing high-performance ternary OSCs.By adjusting the content of IDIC,an optimal PCE of 11.9% with a moderate VOCof 0.89 V and significantly enhanced JSCof 18.48 mA/cm2and FF of 72.3% for the ternary OSC was finally obtained.The corresponding photovoltaic parameters are summarized in Table 1,and the detailed photovoltaic performances of the binary and ternary devices with different D/A ratios are shown in Tables S1-S3(Supporting information).Fig.2a shows related current density versus voltage(J-V)curves under AM 1.5 G,100 mW/cm2.As shown in Fig.S3 (Supporting information),the VOCs of the ternary OSCs present a linear-increase trend with the increase of the content of IDIC,demonstrating that the two acceptors can form an alloyed structure due to their almost the same molecular backbone[47,48].To confirm IDIC and IDIC-4F can form an alloyed structure,differential scanning calorimetry (DSC) measurements was employed.As shown in Fig.S4 (Supporting information),the highest melting point of IDIC and IDIC-4Farelocated at 296.0℃ and 293.1℃,respectively.Itisclearlythatthemeltingpeaksof theblend happened moved in the low temperature direction.The results demonstrate that IDIC and IDIC-4F form the alloyed receptor[43].Moreover,the reasons accounting for the improved JSCand FF of the ternary system will be further analyzed in the following parts.The external quantum efficiency (EQE) curves of the binary and the optimized ternary ASM-OSCs are shown in Fig.2b.Compared with the two binary devices,the EQE values of the optimized ternary device are obviously enhanced in a wide range of 435-720 nm,indicating more of the light can be converted into the current after introduction of IDIC into the binary systems.The calculated JSCvalues according to the EQE spectra for H11/IDIC,H11/IDIC-4F and H11/IDIC/IDIC-4F based devices are 15.329,17.277 and 17.934 mA/cm2,respectively.The errors between the calculated JSCvalues and the measuredJSCvaluesareless than 5%,meaningthat the photovoltaic performances of the binary and ternary OSCs are reliable.

    Table 1 Photovoltaic parameters of the binary and the optimized ternary ASM-OSCs.a

    For studying the effects of introduction of IDIC on the charge recombination,J-V curves were measured under different light intensities(Plight).Normally,a slope value can be obtained by fitting the VOCand lnPlightaccording to the relation VOC∝kT/qlnPlight(k is the Boltzmann constant,T is absolute temperature,and q is elementary charge).If the slope value is much closer to 2 kT/q,trapassisted recombination will be the dominant recombination mode.While if the slope value is much closer to 1 kT/q,bimolecular recombination will be more dominant[49].From Fig.2c,the slope values for the H11/IDIC-based system,H11/IDIC-4F-based system and the optimized ternary system can be calculated as 1.19 kT/q,1.26 kT/q and 1.29 kT/q,indicating these three systems are more influenced by bimolecular recombination.Then,the bimolecular recombination of three systems are investigated by fitting the JSCand ln Plightaccording to the relation JSC∝Plightα,where α reflects status of the bimolecular recombination.Bimolecular recombination can be considered as negligible when α approach 1 [50].As displayed in Fig.2d,the fitted α values for the H11/IDIC-based system,H11/IDIC-4F-based system and the optimized ternary system are 1.102,1.061 and 1.058,respectively.Obviously,the value of the optimized ternary system is closest to 1,suggesting that the bimolecular recombination in the ternary system is extremely weak.And the suppressed bimolecular recombination is in accordance with the improvements of JSCand FF for the optimized ternary system.

    Charge carrier mobilities of the binary and the optimized ternary devices were assessed by a space-charge limited current (SCLC)method [51].The corresponding device structure of hole-only or electron-only device is ITO/PEDOT:PSS/active layer/ Au or ITO/Al/active layer/Al,respectively.The detailed measurements and charge carrier mobilities are shown in Fig.S5 and Table S4 (Supporting information).The hole and electron mobilities of the optimized ternary device are 7.40×10-5and 5.56×10-5cm2V-1s-1,which are slightly higher than those of the two binary devices,1.98×10-5and 2.67×10-5cm2V-1s-1for H11/IDIC system and 4.03×10-5and 5.19×10-5cm2V-1s-1for H11/IDIC-4F system.The improved charge carrier mobilities partly explains the enhanced JSCand FF for the ternary system.

    Fig.2.(a)J-V curves.(b)EQE curves of the binary and the optimized ternary ASM-OSCs.(c)VOC dependence on light intensity of the binary and the optimized ternary ASMOSCs.(d) JSC dependence on light intensity of the binary and the optimized ternary ASM-OSCs.

    Atomic force microscopy(AFM)was employed for investigating the surface morphology of above three types of active layers.As shown in Fig.3,the obvious aggregated domains exist in both H11/IDIC and H11/IDIC-4F-based active layers,resulting in the extremely high RMS roughness for H11/IDIC blend film(2.22 nm) and H11/IDIC-4F blend film (3.41 nm).While the RMS roughness of the optimized ternary blend film has been significantly decreased to 1.22 nm by the addition of IDIC to the binary film.As shown in Fig.S6(Supporting information),the RMS roughness values for the ternary blend films with 30%,50%,60% and 70% IDIC were decreased to 1.39 nm,1.33 nm,1.74 nm and 1.68 nm,respectively.The results suggest that the blending of two phase is beneficial to reduce the RMS roughness for the blend films.Moreover,it can be clearly seen that the optimized ternary blend film exhibits much smoother surface characteristic,which is beneficial to obtain higher JSCand FF for the ternary system.The improvement of the morphology for the ternary system can be largely attributed to the good compatibility of the donor and two acceptors.

    The crystallinity and molecular orientation of the binary and ternary blended films were analyzed by Grazing-incidence wideangle X-ray scattering (GIWAXS).As shown in Fig.4a,an obvious π-π diffraction peak (010) appears in the in-plane (IP) direction,indicating the preferential edge-on orientation for H11/IDIC blend film.While from Fig.4c,it can be concluded that H11/IDIC-4F blend film prefers to adopt the face-on orientation mainly because the π-π diffraction peak (010) exists in the out-of-plane (OOP)direction.Interestingly,after adding the IDIC to the H11/IDIC-4F blend film,the π-π diffraction peaks (010) appear in both IP and OOP direction (Fig.4b and Fig.S7 in Supporting information),suggesting the mixed face-on and edge-on orientation in the ternary blend films.As reported in the previous study,the mixed orientation does help establish three-dimensional (3D) charge pathways,thus facilitating the vertical and parallel charge transports in BHJ films and leading to the enhanced JSC,FF and PCE[52,53].

    Fig.3.(a-c)AFM height images and(d-f)AFM phase images of the binary and the optimized ternary ASM-OSCs.

    Fig.4.(a-c)The 2D GIWAXS patterns of corresponding active layers for the binary and the optimized ternary ASM-OSCs.

    In summary,we have constructed a ternary ASM-OSCs though the addition of IDIC into H11/IDIC-4F-based binary system.By adjusting the contents of IDIC in the blend,the ternary ASM-OSCs presented an optimal PCE of 11.9%,which is superior to the performance of H11/IDIC-4F-based binary system (10.2%).Such a significant improvement is derived from the simultaneous growths of VOC,JSCand FF for the ternary system.Benefiting from the relatively high LUMO level of IDIC and the good compatibility with IDIC-4F,the two acceptors blend can form an alloyed structure,enabling the enhanced VOCfor the ternary device.Moreover,the optimized morphology and the mixed face-on and edge-on orientation were successfully obtained,mainly due to the weak crystallinity of IDIC and the orientation of IDIC-based binary system.All of these have contributed to the significant improvements of charge carrier mobilities,JSCand FF.These results demonstrate that introducing a homologous acceptor to a nonfullerene-based binary ASM-system may be an effective approach to achieve the excellent photovoltaic performances for the corresponding ternary ASM-OSCs.

    Declaration of competing interest

    The authors report no declarations of interest.

    Acknowledgments

    This work was supported financially by National Natural Science Foundation of China (Nos.21822503,51973043,51822301 and 91963126),the Ministry of Science and Technology of the People's Republic of China (Nos.2016YFA0200700,2017YFA0206600),the Strategic Priority Research Program of the Chinese Academy of Sciences (No.XDB36020000),Beijing National Laboratory for Molecular Sciences (No.BNLMS201907),Youth Innovation Promotion Association,K.C.Wong Education Foundation,and the CAS Pioneer Hundred Talents Program.Yanhong Chang thanks National Environmental and Energy Base for International Science &Technology Cooperation.

    Appendix A.Supplementary data

    Supplementarymaterialrelatedtothisarticlecanbefound,inthe online version,at doi:https://doi.org/10.1016/j.cclet.2021.03.067.

    九九在线视频观看精品| 免费观看性生交大片5| av在线播放精品| 国产片特级美女逼逼视频| 亚洲欧美一区二区三区国产| 国产一区有黄有色的免费视频| 亚洲国产精品999| 国产精品久久久久久久电影| 亚洲精品,欧美精品| 高清日韩中文字幕在线| 一级毛片久久久久久久久女| 最近的中文字幕免费完整| 久久久久久久大尺度免费视频| 建设人人有责人人尽责人人享有的 | 亚洲美女黄色视频免费看| 亚洲av男天堂| 国产av国产精品国产| 久久久久精品性色| 国产爽快片一区二区三区| 国产伦精品一区二区三区四那| 国产白丝娇喘喷水9色精品| 亚洲一区二区三区欧美精品| 亚洲成人中文字幕在线播放| 成人影院久久| 在线免费十八禁| 亚洲精品国产av蜜桃| 久久婷婷青草| 国产高潮美女av| 亚洲欧美成人综合另类久久久| 激情五月婷婷亚洲| 亚洲综合精品二区| 99久久人妻综合| 91精品一卡2卡3卡4卡| 美女脱内裤让男人舔精品视频| 只有这里有精品99| a级毛片免费高清观看在线播放| 女人十人毛片免费观看3o分钟| 人妻少妇偷人精品九色| 国产精品久久久久久精品电影小说 | 亚洲精品aⅴ在线观看| 男女下面进入的视频免费午夜| 久久久精品94久久精品| 人妻系列 视频| 日本欧美视频一区| 高清午夜精品一区二区三区| 九九久久精品国产亚洲av麻豆| 18禁裸乳无遮挡动漫免费视频| 亚洲怡红院男人天堂| 国产综合精华液| 美女xxoo啪啪120秒动态图| 亚洲综合色惰| 2022亚洲国产成人精品| 免费看光身美女| 日日摸夜夜添夜夜添av毛片| 啦啦啦视频在线资源免费观看| 色婷婷av一区二区三区视频| 99热国产这里只有精品6| 永久网站在线| 久久久午夜欧美精品| 国产伦精品一区二区三区视频9| 亚洲精品日韩在线中文字幕| 精品国产露脸久久av麻豆| 欧美xxⅹ黑人| 观看av在线不卡| 国产精品秋霞免费鲁丝片| 高清日韩中文字幕在线| 国产亚洲午夜精品一区二区久久| 成人漫画全彩无遮挡| 99九九线精品视频在线观看视频| 亚洲av.av天堂| 亚洲国产精品专区欧美| 日本wwww免费看| 黑人高潮一二区| 我的女老师完整版在线观看| 有码 亚洲区| 在线观看免费高清a一片| 大片免费播放器 马上看| 超碰97精品在线观看| 日韩欧美一区视频在线观看 | 亚洲欧美日韩东京热| 男人舔奶头视频| 在线观看三级黄色| 亚洲精品国产成人久久av| 一区二区三区乱码不卡18| 婷婷色av中文字幕| av在线老鸭窝| 色综合色国产| 精品久久久久久电影网| 日韩欧美精品免费久久| 高清毛片免费看| 一个人看视频在线观看www免费| 亚洲精品视频女| 精品久久久久久久久av| 精品人妻熟女av久视频| 精品亚洲成国产av| 精品酒店卫生间| 免费人妻精品一区二区三区视频| 成人影院久久| 青春草国产在线视频| 久久国产精品男人的天堂亚洲 | 最黄视频免费看| 亚洲av电影在线观看一区二区三区| 亚洲国产色片| a级一级毛片免费在线观看| 亚洲欧美精品自产自拍| av又黄又爽大尺度在线免费看| 国产精品久久久久久av不卡| 免费看日本二区| 亚洲美女搞黄在线观看| 91狼人影院| 亚洲中文av在线| 汤姆久久久久久久影院中文字幕| 多毛熟女@视频| 国产老妇伦熟女老妇高清| 国产大屁股一区二区在线视频| 亚洲色图av天堂| 亚洲成人中文字幕在线播放| videossex国产| 亚洲人成网站在线播| 少妇的逼水好多| 久久女婷五月综合色啪小说| 成人黄色视频免费在线看| 日韩av免费高清视频| 久久久久网色| 赤兔流量卡办理| 国产成人精品福利久久| 熟妇人妻不卡中文字幕| 亚洲国产精品一区三区| 少妇人妻 视频| 国产精品国产三级专区第一集| 国产av码专区亚洲av| 最近中文字幕2019免费版| 国产成人a区在线观看| 91精品国产九色| 热re99久久精品国产66热6| 啦啦啦啦在线视频资源| 国产精品一二三区在线看| 欧美国产精品一级二级三级 | 色哟哟·www| 人妻夜夜爽99麻豆av| 高清黄色对白视频在线免费看 | 男人爽女人下面视频在线观看| 国产精品精品国产色婷婷| 多毛熟女@视频| 99久久综合免费| 亚洲精品日本国产第一区| 一级av片app| 国产欧美日韩精品一区二区| 黑丝袜美女国产一区| 精华霜和精华液先用哪个| 少妇的逼好多水| 男女国产视频网站| 久久精品久久精品一区二区三区| 黄色视频在线播放观看不卡| 国产大屁股一区二区在线视频| 国产日韩欧美亚洲二区| 高清毛片免费看| tube8黄色片| 国产av精品麻豆| 18禁裸乳无遮挡动漫免费视频| 亚洲四区av| 中文字幕久久专区| 日本与韩国留学比较| 丰满迷人的少妇在线观看| 久久人人爽人人片av| 久久av网站| 成人黄色视频免费在线看| 国产av国产精品国产| 欧美高清性xxxxhd video| 三级经典国产精品| 十分钟在线观看高清视频www | 久久久成人免费电影| 91精品伊人久久大香线蕉| 国产在线一区二区三区精| 九九在线视频观看精品| 亚州av有码| 久久久久网色| 欧美老熟妇乱子伦牲交| 国产熟女欧美一区二区| 人体艺术视频欧美日本| 日韩,欧美,国产一区二区三区| 赤兔流量卡办理| 青春草视频在线免费观看| 久久鲁丝午夜福利片| 精品一品国产午夜福利视频| 久久婷婷青草| 欧美最新免费一区二区三区| 亚洲av国产av综合av卡| 久久精品人妻少妇| 久久久成人免费电影| 亚洲av电影在线观看一区二区三区| 高清欧美精品videossex| 如何舔出高潮| 99久久精品一区二区三区| 国产黄片美女视频| 国产亚洲5aaaaa淫片| 亚洲美女黄色视频免费看| 日韩中文字幕视频在线看片 | 亚洲国产最新在线播放| 亚洲精品国产av蜜桃| 亚洲人成网站在线观看播放| 亚洲欧美精品自产自拍| 中国三级夫妇交换| 人人妻人人添人人爽欧美一区卜 | 高清毛片免费看| 午夜免费观看性视频| 女性生殖器流出的白浆| 国内少妇人妻偷人精品xxx网站| 看非洲黑人一级黄片| 免费av中文字幕在线| 欧美成人a在线观看| 人妻少妇偷人精品九色| 蜜桃亚洲精品一区二区三区| 欧美变态另类bdsm刘玥| 成人毛片60女人毛片免费| 在线看a的网站| 少妇人妻一区二区三区视频| a级毛片免费高清观看在线播放| 欧美日韩国产mv在线观看视频 | 久久人妻熟女aⅴ| 日本与韩国留学比较| 亚洲国产欧美在线一区| 欧美日韩国产mv在线观看视频 | 纵有疾风起免费观看全集完整版| 欧美性感艳星| 欧美高清性xxxxhd video| 老司机影院毛片| 亚洲av福利一区| 日韩 亚洲 欧美在线| 人妻一区二区av| 亚洲av成人精品一二三区| 天堂8中文在线网| 日韩亚洲欧美综合| 国产成人一区二区在线| 久久99热这里只有精品18| 国产精品熟女久久久久浪| 人人妻人人看人人澡| 少妇被粗大猛烈的视频| 夜夜骑夜夜射夜夜干| 小蜜桃在线观看免费完整版高清| 国内揄拍国产精品人妻在线| 五月天丁香电影| 在线播放无遮挡| 精品国产三级普通话版| 精品人妻熟女av久视频| 少妇高潮的动态图| 国产真实伦视频高清在线观看| 毛片一级片免费看久久久久| 久久毛片免费看一区二区三区| 观看av在线不卡| 春色校园在线视频观看| 国产精品麻豆人妻色哟哟久久| 交换朋友夫妻互换小说| 色吧在线观看| 成人国产av品久久久| 大陆偷拍与自拍| 一区在线观看完整版| 欧美国产精品一级二级三级 | 亚洲av男天堂| av国产精品久久久久影院| 亚洲va在线va天堂va国产| 丝瓜视频免费看黄片| 熟女电影av网| 黄色怎么调成土黄色| 国产大屁股一区二区在线视频| 91午夜精品亚洲一区二区三区| 久久青草综合色| 蜜桃久久精品国产亚洲av| 在线观看av片永久免费下载| 天堂中文最新版在线下载| 又大又黄又爽视频免费| 日韩人妻高清精品专区| 欧美人与善性xxx| 好男人视频免费观看在线| 亚洲精品日韩在线中文字幕| 久久久久久久亚洲中文字幕| 啦啦啦中文免费视频观看日本| 日韩av在线免费看完整版不卡| 中文字幕制服av| 日韩三级伦理在线观看| 欧美日韩综合久久久久久| 女性被躁到高潮视频| 在线观看一区二区三区| 精品一品国产午夜福利视频| 国产精品嫩草影院av在线观看| 卡戴珊不雅视频在线播放| 免费观看性生交大片5| 九色成人免费人妻av| av免费观看日本| 午夜日本视频在线| 99国产精品免费福利视频| 最近最新中文字幕大全电影3| 亚洲图色成人| 亚洲不卡免费看| 免费看日本二区| 亚洲精品第二区| 丰满少妇做爰视频| 亚洲欧美日韩卡通动漫| 偷拍熟女少妇极品色| 18禁裸乳无遮挡动漫免费视频| 久久精品久久久久久噜噜老黄| 日韩中字成人| 黄片wwwwww| 黑人猛操日本美女一级片| 久久久国产一区二区| 七月丁香在线播放| 日韩精品有码人妻一区| 日本av免费视频播放| 91aial.com中文字幕在线观看| 国产午夜精品久久久久久一区二区三区| 日日啪夜夜撸| 91午夜精品亚洲一区二区三区| 国产精品一区二区三区四区免费观看| 小蜜桃在线观看免费完整版高清| 成年女人在线观看亚洲视频| 国产成人a区在线观看| 乱码一卡2卡4卡精品| 欧美成人午夜免费资源| 女的被弄到高潮叫床怎么办| a级毛色黄片| 中文字幕精品免费在线观看视频 | 少妇丰满av| 纵有疾风起免费观看全集完整版| 久久久久久久久久人人人人人人| 熟女av电影| 成年女人在线观看亚洲视频| 国产av国产精品国产| 一级av片app| 男的添女的下面高潮视频| av一本久久久久| 狂野欧美白嫩少妇大欣赏| 免费看不卡的av| 观看免费一级毛片| 最近的中文字幕免费完整| 大香蕉97超碰在线| 日韩欧美精品免费久久| 亚洲av电影在线观看一区二区三区| 国产精品人妻久久久影院| 欧美日韩视频精品一区| 中文在线观看免费www的网站| av黄色大香蕉| 亚洲精品第二区| 韩国av在线不卡| 久久影院123| 国产黄频视频在线观看| 最近中文字幕2019免费版| 久久精品国产亚洲av涩爱| 美女中出高潮动态图| 午夜精品国产一区二区电影| 国产精品久久久久久久久免| 免费黄色在线免费观看| 三级国产精品片| 国产精品熟女久久久久浪| 美女cb高潮喷水在线观看| 一级毛片我不卡| 91在线精品国自产拍蜜月| 久久人人爽av亚洲精品天堂 | 亚洲人与动物交配视频| 极品教师在线视频| 高清欧美精品videossex| 成人特级av手机在线观看| 免费久久久久久久精品成人欧美视频 | 午夜免费鲁丝| 黑人猛操日本美女一级片| 男女边吃奶边做爰视频| 九色成人免费人妻av| 久久久国产一区二区| 国产亚洲欧美精品永久| 亚洲av福利一区| 狂野欧美激情性xxxx在线观看| a级毛片免费高清观看在线播放| 噜噜噜噜噜久久久久久91| 激情五月婷婷亚洲| 久久影院123| 国产在视频线精品| 欧美精品亚洲一区二区| 国产 一区 欧美 日韩| 麻豆成人av视频| 欧美日韩在线观看h| 舔av片在线| 最近2019中文字幕mv第一页| 国产大屁股一区二区在线视频| 精品酒店卫生间| 看非洲黑人一级黄片| 久久影院123| 久久久色成人| 内地一区二区视频在线| 国产在线免费精品| 深夜a级毛片| 免费av中文字幕在线| 亚洲国产色片| 在线观看免费视频网站a站| 波野结衣二区三区在线| av国产免费在线观看| 最近中文字幕高清免费大全6| 国产精品伦人一区二区| 国产精品人妻久久久久久| 亚洲精品视频女| 九色成人免费人妻av| 黄色视频在线播放观看不卡| 亚洲人成网站高清观看| 全区人妻精品视频| 成人国产av品久久久| 亚洲精品中文字幕在线视频 | videossex国产| 午夜精品国产一区二区电影| 在线播放无遮挡| 亚洲精品久久久久久婷婷小说| 狂野欧美激情性xxxx在线观看| 国产亚洲一区二区精品| 一个人看视频在线观看www免费| 成人黄色视频免费在线看| 国产成人免费无遮挡视频| 美女视频免费永久观看网站| 一个人看视频在线观看www免费| 国产真实伦视频高清在线观看| 久久久久人妻精品一区果冻| 久久久久性生活片| 欧美+日韩+精品| 精品国产三级普通话版| 2021少妇久久久久久久久久久| 联通29元200g的流量卡| 在线看a的网站| 欧美少妇被猛烈插入视频| 日韩一区二区三区影片| 欧美高清成人免费视频www| 亚洲欧美日韩无卡精品| 丰满迷人的少妇在线观看| 三级国产精品片| 欧美+日韩+精品| 久久精品久久久久久噜噜老黄| 能在线免费看毛片的网站| tube8黄色片| 日韩欧美 国产精品| 伦理电影免费视频| 天堂俺去俺来也www色官网| 国产精品一区二区三区四区免费观看| 日本vs欧美在线观看视频 | 亚洲成人手机| 男女无遮挡免费网站观看| 亚洲天堂av无毛| 欧美xxxx黑人xx丫x性爽| av免费观看日本| 亚洲精品国产av成人精品| 午夜视频国产福利| 国产永久视频网站| 免费大片18禁| 最近最新中文字幕大全电影3| 精品人妻偷拍中文字幕| 一级毛片久久久久久久久女| 欧美高清性xxxxhd video| 亚洲欧美一区二区三区黑人 | av专区在线播放| 亚洲欧美日韩无卡精品| 大香蕉97超碰在线| 伦精品一区二区三区| 高清日韩中文字幕在线| 久久精品夜色国产| 亚洲成色77777| 各种免费的搞黄视频| 人妻系列 视频| 亚洲中文av在线| 大片电影免费在线观看免费| 亚洲成人一二三区av| 亚洲经典国产精华液单| 亚洲一级一片aⅴ在线观看| 午夜激情福利司机影院| 亚洲色图av天堂| 黑人猛操日本美女一级片| 老熟女久久久| 成人毛片a级毛片在线播放| 一级二级三级毛片免费看| 在线观看人妻少妇| 交换朋友夫妻互换小说| 91久久精品国产一区二区成人| 欧美 日韩 精品 国产| 亚洲第一区二区三区不卡| 成人漫画全彩无遮挡| 观看免费一级毛片| 亚洲欧美精品专区久久| 高清欧美精品videossex| 一个人看视频在线观看www免费| 777米奇影视久久| 亚洲精品乱码久久久v下载方式| 国产成人精品久久久久久| 色视频在线一区二区三区| 日本欧美视频一区| 国产真实伦视频高清在线观看| 午夜福利影视在线免费观看| 国产av一区二区精品久久 | 夫妻午夜视频| 亚洲人成网站在线播| 久久久久久九九精品二区国产| 欧美zozozo另类| 大又大粗又爽又黄少妇毛片口| 婷婷色综合大香蕉| 精品一区二区三区视频在线| 91狼人影院| 看非洲黑人一级黄片| 久久久久网色| 五月开心婷婷网| 黑人猛操日本美女一级片| 99热这里只有精品一区| 国产高潮美女av| 91久久精品国产一区二区成人| 中文字幕久久专区| 在线观看一区二区三区| 国产成人aa在线观看| 网址你懂的国产日韩在线| av一本久久久久| 国产日韩欧美亚洲二区| 日产精品乱码卡一卡2卡三| 午夜福利影视在线免费观看| 国产成人一区二区在线| 日韩三级伦理在线观看| 久久久久久久大尺度免费视频| 日韩av在线免费看完整版不卡| 成人无遮挡网站| 80岁老熟妇乱子伦牲交| 日韩制服骚丝袜av| 国产精品伦人一区二区| 亚洲精品自拍成人| 2021少妇久久久久久久久久久| 伦理电影大哥的女人| 国产国拍精品亚洲av在线观看| 亚洲精品国产av蜜桃| 国产永久视频网站| 日韩欧美精品免费久久| 久久av网站| 91久久精品国产一区二区三区| 尤物成人国产欧美一区二区三区| 国产精品福利在线免费观看| 国产老妇伦熟女老妇高清| 色综合色国产| 青春草亚洲视频在线观看| 国产成人精品一,二区| 日韩伦理黄色片| 久久久久性生活片| 身体一侧抽搐| 午夜老司机福利剧场| 免费大片黄手机在线观看| 舔av片在线| 亚洲人成网站在线观看播放| 亚洲欧洲国产日韩| 建设人人有责人人尽责人人享有的 | 啦啦啦啦在线视频资源| 人妻一区二区av| 欧美日韩精品成人综合77777| 啦啦啦视频在线资源免费观看| 国产91av在线免费观看| 全区人妻精品视频| 免费av中文字幕在线| 超碰97精品在线观看| 女性生殖器流出的白浆| 亚州av有码| 99热全是精品| 久久鲁丝午夜福利片| 久久久久久久久大av| 亚洲av免费高清在线观看| 赤兔流量卡办理| 最黄视频免费看| 日韩免费高清中文字幕av| 久久毛片免费看一区二区三区| 免费观看a级毛片全部| 亚洲综合精品二区| 亚洲精品一二三| 亚洲精品乱久久久久久| 在线免费观看不下载黄p国产| 日本黄色日本黄色录像| 各种免费的搞黄视频| 99热这里只有是精品在线观看| 女人久久www免费人成看片| 爱豆传媒免费全集在线观看| 欧美亚洲 丝袜 人妻 在线| 高清欧美精品videossex| 在线看a的网站| 精品一区二区三区视频在线| 亚洲精品aⅴ在线观看| 午夜老司机福利剧场| 色网站视频免费| 一级毛片我不卡| 99视频精品全部免费 在线| 亚洲精品久久午夜乱码| 青春草视频在线免费观看| 久久精品久久久久久噜噜老黄| 麻豆乱淫一区二区| 久久精品人妻少妇| 我要看日韩黄色一级片| a级一级毛片免费在线观看| 少妇的逼好多水| 久久精品熟女亚洲av麻豆精品| 亚洲国产精品专区欧美| 亚洲精品中文字幕在线视频 | 九九在线视频观看精品| 午夜福利视频精品| 免费av不卡在线播放| 六月丁香七月| .国产精品久久| 最近手机中文字幕大全| 日本黄大片高清| 热99国产精品久久久久久7| 欧美精品一区二区大全| 亚洲国产精品成人久久小说| 国产精品一区二区性色av| 在现免费观看毛片| 男女啪啪激烈高潮av片| 国产中年淑女户外野战色| freevideosex欧美| 啦啦啦啦在线视频资源| 亚洲美女黄色视频免费看| 欧美成人精品欧美一级黄| 国内揄拍国产精品人妻在线| 亚洲国产精品国产精品| 成人国产麻豆网| 乱码一卡2卡4卡精品|