• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Highly elastic cobweb-like SiO/CNF composites with reconstructed heterostructure for high-efficient lithium storage

    2021-12-27 13:06:22JieLiuMioBenAndengLiuJinwenLiuShiqunWngJiujunZhng
    Chinese Chemical Letters 2021年9期

    Jie Liu,Mio Ben,Andeng Liu,Jinwen Liu,,Shiqun Wng,,Jiujun Zhng

    a Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials &Ministry of Educational Key Laboratory for the Synthesis and Application of Organic Functional Molecules &College of Chemistry and Chemical Engineering,Hubei University,Wuhan 430062,China

    b Institute for Sustainable Energy,College of Science,Shanghai University,Shanghai 200444,China

    Keywords:Lithium ion batteries Silicon-based materials SiO/CNF composites Highly elastic composites Reconstructed heterostructure

    ABSTRACT The silicon-based materials are promising candidates for lithium-ion batteries owing to their high energy density.However,achieving long lifespan under realistic conditions remains a challenge because of the volume expansion and low conductivity.In this work,the highly elastic cobweb-like composite materials consisted by SiO and nanofibers are designed and fabricated for high-efficient lithium storage by ballmilling&electrostatic spinning method.The reconstructed heterostructure and highly elastic nanofibers can simultaneously increase the conductivity and inhibit the“expansion effect”of silicon-based materials.The constructed electrode of n-SiO/CNF delivers an initial capacity of 1700 mAh/g,and maintains the capacities over 1000 mAh/g after 100 cycles at the current density of 500 mA/g.Meanwhile,this electrode can give an initial coulombic efficiency over 85% and maintains at 98% in the following charge/discharge processes.Furthermore,it exhibits efficient long-term electrochemical performance,maintaining the capacity at about 1000 mAh/g at a high current density of 1000 mA/g after 1000 cycles.This work could provide a promising strategy for enhancing the performance of siliconbased composite materials for practical application in lithium-ion batteries.

    With the rapid development and commercialization of new energy vehicles powered by lithium-ion batteries (LIBs),their recharge mileage has been considered to one of the concerns.To prolong the recharge mileage of the vehicles,further increasing the energy densities of LIBs is necessary through developing high capacity anode and anode materials [1-5].The currently used anode material is graphite (372 mAh/g),which is insufficient for high energy density requirements[6,7].Therefore,the pursuit for the next generation of high capacity anode materials for LIBs has become a hot topic in the last several years.Among different types of anode materials,silicon with a theoretical specific capacity as high as 3579 mAh/g and lower work voltage(~0.2 V vs.Li/Li+)and its composite materials have drawn a great deal of interest.However,their huge volume expansion effect during lithiation/delithiation processes and insufficient electron conductivities have limited their practical utilization [8-12].

    The volume expansion effect of silicon-based anode materials can be up to 300% (Si>300%,SiO≈150%,SiO2<150%) during lithiation/delithiation processes,so that they would be collapsed and shed from the current collector or directly pulverized[13-15].In addition,the expansion effect would cause significant degradation,decreasing the electrochemical performance and reducing cycle-life of the LIBs [16-20].As a general observation,the initial coulombic efficiencies of the silicon-based anodes are generally low (<80%),which makes them hard to be commercialized [21-23].

    Currently,many efforts have focused on decreasing the expansion effect and improving the low conductivity of the silicon-based materials.The typical approach is to reduce the particle size of silicon-based materials to nanometer size including nanospheres,nanowires,nanotubes,yolk structure,etc.[24-28].For example,Zhang et al.[29]relieved the volume expansion effect of the silicon-based anode by cracking PPP and PVC to coat silicon.Jung et al.[30]improved the cycle-life of silicon-based anode by preparing thin-film amorphous silicon using a low pressure chemical vapor deposition (LPCVD) with Si2H6as the source gas.Cui et al.[31]prepared a carbon-silicon core-shell nanowires as high capacity anode for LIBs,obtaining a high specific capacity of 2000 mAh/g.Table S1 (Supporting information) summarizes the selected researches on synthesis and modification of silicon-based materials in recent years [32-36].

    The other approach for overcoming the negative effect of electrode expansion during lithiation/delithiation processes is to develop new adhesives to reduce the cracking and chalking of the electrode materials particles.As identified,the conventional polymer polyvinylidene fluoride (PVDF) is not good enough in generating sufficient adhesion in the silicon-based electrodes due to its weak Van Der Waals force,which makes it easy for silicon to fall off the current collector.Therefore,various polymer materials such as sodium carboxymethyl cellulose (CMC),polyacrylic acid(PAA),alginic acid (AlG),modified natural polysaccharides have been explored as the adhesives.Other adhesive strategies including self-healing polymers,polyrotaxane with sliding ring movement,polymers with ion conductive groups,and in-situ cross-linked polymer networks have also been proposed to effectively improve the cycling performance of silicon-based LIB anodes [37-39].

    In this work,SiO is explored as the silicon source with much lower expansion effect than Si.Electrostatic spinning technology,as a methode for preparing nanowires,is used to encapsule the silicon source into the carbon fibers (CNF) to form a SiO/CNF composite for the first time.As tested,the carbon fibers can significantly improve the electrical conductivity of the composite materials,and its reconstructed heterostructure with rich elasticity can effectively accommodate the expansion effect of the anode.The electrochemical performance in this paper reveals that the composites obtained by this method can significantly improve the performance of silicon-based anodes,demonstrating their promising in practical applications in lithium-ion batteries.

    In a typical synthesis,5 g of SiO(average particle size=75 μm,marked as u-SiO)and 0.05 g of ascorbic acid were added to 40 mL deionized water for ball milling at 450 r/min for 4 h.After ball milling,the precursor solution was dried at 60℃ for 12 h to obtain a sample as b-SiO.Afterwards,0.2 g of this b-SiO and 0.8 g of polyacrylonitrile were added into 10 mL N,N-dimethyl-formamide under magnetic stirring at 30℃ for 12 h.The resultant colloidal liquid was then transferred to a 5 mL syringe(with 20 G stainless steel needle),and electrospinned at 0.02 mL/min under a 20 kV electric field.The obtained sample was pretreated in a tube furnace at 250℃ for 2 h under flowing argon and then annealed at 650℃ for 4 h to generate a composite of SiO and carbon nanofibers marked as n-SiO/CNF.For comparison,the same experimental method was used to obtain SiO/CNF sample without ball milling(marked as u-SiO/CNF).

    X-ray diffraction (XRD,D8-ADVANCE),X-ray photoelectron spectroscopy (XPS,Escalab 250X,Thermo Fisher Scientific),and thermogravimetric analysis(TGA,PERKIN ELMER,USA)were used to analyze the composition of all the SiO/CNF composites.Meanwhile,scanning electron microscopy (SEM,Tecnai G20)was adopted to investigate the morphologies of the samples.For constructing the batteries,the silicon-based composites of u-SiO,b-SiO,n-SiO/CNF and u-SiO/CNF)were mixed with acetylene black and sodium carboxymethyl cellulose with a mass ratio of 8:1:1 in deionized water to form a slurry.Then,the slurry was coated on copper foil,followed by drying at 80℃ overnight to obtain the silicon-based anode.Subsequently,the button batteries were assembled by the as-prepared silicon-based anode and lithium metal as counter electrode using an in-house electrolyte.The inhouse electrolyte was in-house made by dissolving lithium hexafluorophosphate (LiPF6,1 mol/L) and vinylene carbonate(VC,1.0 wt%) in a mixed solvents of ethylene carbonate (EC),dimethyl carbonate (DMC) and diethyl carbonate (DEC) with a volume ratio of 1:1:1.The battery performance was tested within a voltage window of 0.01-2.5 V by a Land Battery Tester.Cyclic voltammetry (CV) and electrochemical impedance spectroscopy(EIS) were conducted using an electrochemical workstation (CHI 660E).

    Fig.1a presents the X-ray diffraction(XRD)profiles for u-SiO,b-SiO and n-SiO/CNF samples.Among them,the n-SiO/CNF sample display the typical patterns of amorphous carbon with a broad peak centered at around 15°-25°.Compared to un-milled u-SiO powder,SiO sample after ball milling has a relatively sharper silicon monoxide around 28°,indicating the well-crystallized property for the ball-milled SiO.Generally,the well-crystallized SiO can be attributed to the“small size effect”of the wet-milling for nanomaterials [8,9].Similarly,it can also be confirmed from Fig.1b that the particle size of the commercial SiO after ball milling has reached about 200 nm.

    The TG curves of b-SiO and n-SiO/CNF samples are shown in Fig.1c.The pure SiO appears basically no change in the temperature range from 0 ℃ to 700℃,which means that there is no disproportionation reaction of the pure component before 700℃.Moreover,it is obvious that the TG curve of the sample exhibits an increased trend after 700℃ due to the disproportionation reaction of SiO to form SiO2and Si through the reactions:2SiO= SiO2+Si,and Si+O2=SiO2) [14,15].By contrast,it can be seen that the first-stage mass decrease of n-SiO/CNF sample before 100℃ is originated from the evaporation of water.Then as the temperature reaches to 500℃,the carbon component in n-SiO/CNF sample begins to be oxidized until it is finished at 600℃.Therefore,it can be calculated from Fig.1c that the proportion of silicon monoxide in n-SiO/CNF sample is ~20% .

    Fig.1d shows the X-ray photoelectron spectroscopy (XPS)survey for n-SiO/CNF,confirming the presence of C,O and Si elements in the sample.As expected,XPS O 1s spectrum in Fig.1e can be deconvoluted into two peaks,including peak of Si-O and peak of adsorbed oxygen.Meanwhile,the high-resolution XPS Si 2p spectrum in Fig.1f can be deconvoluted into five peaks belongning to Si0,Si+,Si2+,Si3+,Si4+,which is just the manifestation of the valence of the reconstructed heterostructure.

    Fig.1.(a) XRD patterns of u-SiO,b-SiO and n-SiO/CNF samples.(b) Particle size distribution for n-SiO/CNF sample.(c) TG curves of u-SiO and n-SiO/CNF samples.(d)The survey XPS spectrum of n-SiO/CNF.(e)O 1s and(f)Si 2p spectra for u-SiO,b-SiO and n-SiO/CNF samples.

    The morphologies of u-SiO,b-SiO and n-SiO/CNF samples can be all observed in Fig.2 and Figs.S1 and S2 (Supporting information).Obviously,the b-SiO appears more fine and uniform particles compared to u-SiO,which is consistent with the results of Fig.1b.Meanwhile the n-SiO/CNF sample displays a typical cobweb-like morphology,showing a crisscrossing conductive network which can provide a high flexible 3D buffer system during the charge-discharge processes.Moreover Figs.2d-f exhibit uniform Si and O element distributions,indicating that SiO and polyacrylonitrile are evenly mixed during the spinning process. Figs.2g-i show the electrode surface and cross section of the n-SiO/CNF anode before and after 1000 cycles.From the close-up view shown in Fig.2g,the n-SiO/CNF surface presents integrity and regular morphology after 1000 cycles,revealing the superiority of cobweb-like structure.Compared to the original cross section of the anode shown in Figs.2j and k,Fig.2i still displays integrity and slight volume expansion after 1000 cycles.Through calculation,the expansion rate of n-SiO/CNF anode after 1000 cycles is only about 31%,which is much lower than the u-SiO anode (260% through calculation),and even theoretical expansion values.It should be pointed out that the cobweb-like structure has both good toughness and elasticity to alleviate the desorption of SiO,which is greatly beneficial to inhibiting the expansion effect.

    The battery performances including cycling,rate properties and long-term cycling can be observed in Fig.3 and Fig.S3(Supporting information).Both u-SiO and b-SiO samples delivers very high initial capacities over 3200 mAh/g,which are even higher than the n-SiO/CNF and u-SiO/CNF samples.However,their capacities sharply declines after the 1stcycle,and only maintains the capacities lower than 250 mAh/g after 100 cycles.By contrast,the n-SiO/CNF and u-SiO/CNF samples present relatively low initial capacities of 1700 mAh/g,and meanwhile show better cycling performance than both u-SiO and b-SiO.They can maintain the capacities over 1000 mAh/g after 100 cycles at a current density of 500 mA/g,which is mainly due to the reconstructed heterostructure and high elasticity cobweb-like electrode design.As shown in Fig.S4 (Supporting information),the Coulombic efficiency of n-SiO/CNF electrode appears the highest among these samples with an initial coulombic efficiency over 85%,and maintains at 98% on average,revealing that this electrode design can significantly increase the initial charge-discharge properties.It should be pointed out that the“surface effect”allows nano-scale silicon monoxide to have a wider specific surface area,thus having more reactive sites with lithium ions.However,due to the“small size effect”of nanomaterials,the contact between silicon monoxide particles and lithium ions will be more abundant in the subsequent cycling process,which can lead to a faster decay of battery capacity owing to high expansion.

    Fig.2.SEM images of(a)u-SiO,(b)b-SiO and(c)n-SiO/CNF samples.(d)Local SEM image and its(e)O,(f)Si element distributions for the n-SiO/CNF sample.(g)SEM images of the nest-like anode after cycling for 1000 cycles.Cross section images of n-SiO/CNF anode (h) before and (i) after cycling for 1000 cycles.Cross section images of u-SiO electrode (j) before and (k) after cycling for 1000 cycles.

    Fig.3.(a) Charge-discharge profiles of the selected cycles for the u-SiO,b-SiO,n-SiO/CNF,and u-SiO/CNF samples at a current density of 500 mA/g.(b) Chargedischarge profiles of n-SiO/CNF anode at the current density of 2000 mA/g.(c) Cycling performance for u-SiO,b-SiO,n-SiO/CNF,and u-SiO/CNF at the current density of 500 mAh/g.(d)Rate performance and(e)long-term cycling at the current density of 1000 mAh/g for n-SiO/CNF anode.

    As displayed in the Fig.3d,the n-SiO/CNF sample delivers the capacities of 1100,1000,800,550,400 mAh/g at the current densities of 500,1000,2000,3000,5000 mA/g,respectively,revealing excellent rate performance.Additionally,the n-SiO/CNF sample also exhibits long-term charge-discharge cycling.It can maintain the capacity at about 1000 and 780 mAh/g respectively at a high current density of 1000 and 2000 mA/g after 1000 cycles,as shown in Figs.3b and e.

    The cyclic voltammetry (CV) curves of n-SiO/CNF anode at the 1st, 2nd,3rd,4thand 5thcycles are shown in Fig.S5a (Supporting information).The peak of SEI-film formation at the first cycle can be clearly seen,and from the second cycle on,the cycle curves appear highly overlapped,indicating that the SEI film can be rapidly formed on the electrode surface and maintain excellent stability in the subsequent cycles due to the effective function of cobweb-like electrode design and electrolyte additives. Figs.S5b and S6 (Supporting information) reveal that the additive organic vinylene carbonate(VC)is priority to be oxidized to form a film on the electrode surface,thus stabilizing the electrode [32,33].Meanwhile in the EIS curves shown in Figs.S5c and d(Supporting information),the sample of n-SiO/CNF shows the typical impedance characteristics.The impedance of n-SiO/CNF electrode after 100 cycles is only 149.1 Ω,while those of u-SiO,b-SiO and u-SiO/CNF samples are 863.8,343.6 and 223.2 Ω,respectively.This is mainly because the nanoparticles can provide more contacting area,making the electrochemical reaction in the electrode system more sufficient.Moreover,the high elastic structure can effectively accommodate the expansion effect during the battery charging and discharging processes,and the effective carbon source can significantly improve the electrode conductivity,which can all significantly reduce the impedance value.

    Fig.4.Mechanism of the reconstructed heterostructure and high elastic cobweblike electrode design of n-SiO/CNF nanofiber for high-efficient lithium storage.

    In order to understand the excellent electrochemical performance,the enhancement mechanism of n-SiO/CNF electrode was also investigated,as shown as Fig.4.According to the“reconstructed heterostructure”model,amorphous SiO2phase can appear on the outside surface of SiO and amorphous Si phase can appear on the inside surface of SiO.Due to the presence of SiO2phase in the outer layer,lithium oxide and lithium silicate compounds are firstly formed during the initial lithium insertion process,which can be expressed as Reactions 1 and 2[8-10,32,33]:

    Afterwards,the lithium ions reach the SiO boundary layer,and continue to generate lithium oxide and part of the lithium silicon alloy,as expressed by Reactions 3 and 4 [11,12]:

    Finally,when the lithium ions are embedded in the silicon boundary layer,a series of lithium silicon alloys will be generated through Reaction 5 [34-36]:

    Because the generated irreversible lithium oxide and lithium silicate compounds can attach on the electrode surface,the“expansion effect”can be partially relieved during the process of lithium intercalation and de-intercalation.However,in terms of micron-level SiO,part of the lithium ions cannot reach to Si layer,therefore,they will be consumed in the irreversible process,leading to the lower coulombic efficiency.

    In our research,owing to the nanometer-level SiO by ballmilling,the lithium ions can directly and effectively contact with silicon layer to generate lithium-silicon alloy,thus avoiding a large amount of irreversible lithium oxide and lithium silicate generated so as to show excellent coulombic efficiency [17].

    From the point of view of inhibiting expansion effect,the lithium oxide and lithium silicate compounds just mentioned above can be regarded as the first level buffer barrier.In addition,in the designed n-SiO/CNF electrode,the microscopic carbon layer formed by stirring SiO and PAN covering the individual particles and the cobweb-like carbon nanofibers constructed by electrostatic spinning can act as the second and third level buffer barriers simultaneously,which can greatly alleviate the expansion effect during the charging and discharging processes.Meanwhile,by wrapping SiO in the high elastic carbon nanofibers prepared by the electrostatic spinning,the conductivity of the electrode can be significantly increased.Moreover,by adding electrolyte additives,a thin and dense film is easy to form on the electrode surface,which plays a role of protecting the electrode,thus also effectively improves the coulombic efficiency [27,28,40].

    In summary,a highly elastic cobweb-like electrode was successfully designed and fabricated for high-efficient lithium storage in this work through an electrostatic spinning technology.The reconstructed heterostructure of n-SiO/CNF can significantly increase the conductivity and inhibit the“expansion effect”of the silicon-based materials.Through this design and fabrication,the n-SiO/CNF electrode delivers an initial capacity of 1700 mAh/g,and maintains the capacity over 1000 mAh/g after 100 cycles at a current density of 500 mA/g.Meanwhile,this electrode delivers the capacities of 1100,1000,800,550,400 mAh/g at current densities of 500,1000,2000,3000,5000 mA/g,respectively.Furthermore,this electrode exhibits an efficient long-term electrochemical performance,maintaining the capacity at about 1000 mAh/g at a high current density of 1000 mA/g after 1000 cycles.This research would provide a basis for the industrial application of silicon-based composite materials in lithium-ion batteries.

    Declaration of competing interest

    The authors report no declarations of interest.

    Acknowledgments

    This work was financially supported by the National Natural Science Foundation of China (Nos.21706055,21978073 and U1903217).The authors would also like to thank the Analytical and Testing Center of Hubei University for providing the facilities to fulfill the experimental measurements.The technical supports from Hubei Nuobang Chemical Company Co.,Ltd.are also gratefully acknowledged.

    Appendix A.Supplementary data

    Supplementary material related to this article can be found,in the online version,at doi:https://doi.org/10.1016/j.cclet.2021.02.051.

    99热全是精品| 国产黄片美女视频| 亚洲真实伦在线观看| 黑人高潮一二区| 精品久久久久久久末码| 高清毛片免费看| 国产伦理片在线播放av一区| 国产亚洲5aaaaa淫片| 精品久久久久久久久av| 久久久久网色| 国产伦精品一区二区三区四那| 人体艺术视频欧美日本| 亚洲一级一片aⅴ在线观看| 女人十人毛片免费观看3o分钟| 国产黄色视频一区二区在线观看 | 亚洲18禁久久av| 午夜福利在线观看吧| 亚洲欧美精品综合久久99| 国产伦理片在线播放av一区| 97人妻精品一区二区三区麻豆| 亚洲伊人久久精品综合 | 亚洲三级黄色毛片| 国内少妇人妻偷人精品xxx网站| 日韩大片免费观看网站 | 欧美激情国产日韩精品一区| 五月伊人婷婷丁香| 日日摸夜夜添夜夜爱| 久久精品夜色国产| 91狼人影院| 日韩精品青青久久久久久| 久久人人爽人人爽人人片va| 精品人妻熟女av久视频| 少妇的逼水好多| 国产精品综合久久久久久久免费| 高清av免费在线| 久久国内精品自在自线图片| 中文在线观看免费www的网站| 国产白丝娇喘喷水9色精品| 成人三级黄色视频| 卡戴珊不雅视频在线播放| 亚洲精品456在线播放app| 色5月婷婷丁香| 国产女主播在线喷水免费视频网站 | 日本黄色视频三级网站网址| 日本wwww免费看| 我的女老师完整版在线观看| 18禁裸乳无遮挡免费网站照片| 高清毛片免费看| 亚洲经典国产精华液单| 色综合亚洲欧美另类图片| 少妇猛男粗大的猛烈进出视频 | 亚洲成人久久爱视频| 精品国内亚洲2022精品成人| 午夜日本视频在线| 少妇裸体淫交视频免费看高清| 免费在线观看成人毛片| 国产探花极品一区二区| 亚洲欧洲国产日韩| 春色校园在线视频观看| 国产精品野战在线观看| av播播在线观看一区| 一级毛片久久久久久久久女| 一卡2卡三卡四卡精品乱码亚洲| 国产精品乱码一区二三区的特点| 草草在线视频免费看| 精品国内亚洲2022精品成人| 午夜福利网站1000一区二区三区| 青春草亚洲视频在线观看| 国产中年淑女户外野战色| 少妇的逼水好多| 国产三级中文精品| 超碰av人人做人人爽久久| 成年免费大片在线观看| 少妇高潮的动态图| 久久久久久久久大av| 欧美成人一区二区免费高清观看| 午夜免费激情av| 中文在线观看免费www的网站| 99视频精品全部免费 在线| 久久久久久久久大av| 春色校园在线视频观看| 日韩欧美在线乱码| 亚洲成人中文字幕在线播放| 女人十人毛片免费观看3o分钟| 99热这里只有精品一区| av.在线天堂| 在线免费观看的www视频| 亚洲欧美清纯卡通| 久久久久久久亚洲中文字幕| 亚洲精品亚洲一区二区| 最近中文字幕高清免费大全6| 男人狂女人下面高潮的视频| av福利片在线观看| 变态另类丝袜制服| 又爽又黄无遮挡网站| 内射极品少妇av片p| 日本午夜av视频| av在线播放精品| 一卡2卡三卡四卡精品乱码亚洲| 亚洲经典国产精华液单| 亚洲自偷自拍三级| 国产乱来视频区| 国产午夜精品论理片| 哪个播放器可以免费观看大片| av在线播放精品| 99久久人妻综合| 精品国产露脸久久av麻豆 | av又黄又爽大尺度在线免费看 | 在线天堂最新版资源| 亚州av有码| 国产精品一区www在线观看| a级一级毛片免费在线观看| 汤姆久久久久久久影院中文字幕 | 成人无遮挡网站| 国产 一区 欧美 日韩| 日本黄色视频三级网站网址| 舔av片在线| 国产精品伦人一区二区| 亚洲经典国产精华液单| 成年女人永久免费观看视频| 久久久久久久国产电影| 午夜福利在线观看免费完整高清在| 99在线人妻在线中文字幕| 99热6这里只有精品| 人人妻人人看人人澡| 免费看a级黄色片| 久久精品久久精品一区二区三区| 国产成人精品一,二区| 中文天堂在线官网| 最近中文字幕高清免费大全6| 国产久久久一区二区三区| 人体艺术视频欧美日本| 欧美精品国产亚洲| 国产精品一二三区在线看| 两性午夜刺激爽爽歪歪视频在线观看| 久久久久精品久久久久真实原创| 久久国内精品自在自线图片| 国产成人一区二区在线| 国产精品一及| 麻豆乱淫一区二区| 精品国产露脸久久av麻豆 | 嫩草影院新地址| 别揉我奶头 嗯啊视频| 国产极品精品免费视频能看的| 久久久精品94久久精品| 亚洲av不卡在线观看| 夫妻性生交免费视频一级片| 91久久精品国产一区二区三区| 欧美3d第一页| 国产不卡一卡二| 久久午夜福利片| 成人美女网站在线观看视频| 国产真实伦视频高清在线观看| 免费搜索国产男女视频| 免费一级毛片在线播放高清视频| 看非洲黑人一级黄片| 国模一区二区三区四区视频| 可以在线观看毛片的网站| 久久99蜜桃精品久久| 天天躁日日操中文字幕| 免费观看精品视频网站| 精品国产三级普通话版| 国产淫片久久久久久久久| 欧美高清成人免费视频www| 欧美bdsm另类| 国产精品一区www在线观看| 麻豆成人av视频| 日韩制服骚丝袜av| 欧美xxxx性猛交bbbb| 伊人久久精品亚洲午夜| 中文精品一卡2卡3卡4更新| 久久人人爽人人片av| 国产探花极品一区二区| 国产黄a三级三级三级人| 麻豆av噜噜一区二区三区| 亚洲色图av天堂| 中文精品一卡2卡3卡4更新| 99热这里只有是精品在线观看| 搞女人的毛片| 亚洲精品乱久久久久久| 婷婷色av中文字幕| 国产高潮美女av| 亚洲av一区综合| 午夜久久久久精精品| 日韩一本色道免费dvd| 日本爱情动作片www.在线观看| 真实男女啪啪啪动态图| 亚洲欧美日韩无卡精品| 亚洲精品国产av成人精品| 小蜜桃在线观看免费完整版高清| 精品国产三级普通话版| 建设人人有责人人尽责人人享有的 | 久久欧美精品欧美久久欧美| 亚洲精品国产av成人精品| 亚洲成av人片在线播放无| 亚洲欧洲国产日韩| 麻豆乱淫一区二区| 夜夜看夜夜爽夜夜摸| 国产精品精品国产色婷婷| 91精品国产九色| 日本-黄色视频高清免费观看| 欧美性感艳星| 精品久久久噜噜| 国产精品福利在线免费观看| 99久久精品国产国产毛片| 91狼人影院| 99热6这里只有精品| 少妇熟女aⅴ在线视频| 亚洲精品色激情综合| 久久精品久久久久久久性| 小说图片视频综合网站| 久久99热这里只频精品6学生 | 在线观看一区二区三区| a级毛色黄片| 一级黄色大片毛片| 超碰av人人做人人爽久久| 观看免费一级毛片| 麻豆久久精品国产亚洲av| av在线天堂中文字幕| 色尼玛亚洲综合影院| 亚洲激情五月婷婷啪啪| 久久久久九九精品影院| 久久久久国产网址| 91久久精品国产一区二区三区| 色尼玛亚洲综合影院| 日韩精品青青久久久久久| 日韩欧美精品免费久久| 岛国毛片在线播放| 我要看日韩黄色一级片| 观看免费一级毛片| 黄片wwwwww| 乱系列少妇在线播放| 国产精品国产高清国产av| 亚洲av福利一区| 国产精品蜜桃在线观看| 神马国产精品三级电影在线观看| 日韩欧美精品免费久久| 大香蕉久久网| 99九九线精品视频在线观看视频| 国产激情偷乱视频一区二区| 亚洲一级一片aⅴ在线观看| 一级av片app| av在线蜜桃| 亚洲aⅴ乱码一区二区在线播放| 成人一区二区视频在线观看| 免费电影在线观看免费观看| 午夜精品国产一区二区电影 | 秋霞伦理黄片| 亚洲一级一片aⅴ在线观看| 久久精品国产99精品国产亚洲性色| 亚洲欧美精品自产自拍| 亚洲高清免费不卡视频| 搞女人的毛片| 青春草亚洲视频在线观看| 国产成人a区在线观看| 成人三级黄色视频| 久久99热6这里只有精品| 色网站视频免费| 天美传媒精品一区二区| 国产午夜精品一二区理论片| 国产精品一区二区三区四区久久| 蜜桃久久精品国产亚洲av| 日产精品乱码卡一卡2卡三| 亚洲va在线va天堂va国产| 天天一区二区日本电影三级| 九九热线精品视视频播放| 国产又黄又爽又无遮挡在线| 免费播放大片免费观看视频在线观看 | 大又大粗又爽又黄少妇毛片口| 成人国产麻豆网| 久久99热6这里只有精品| 国产免费一级a男人的天堂| av卡一久久| 国产亚洲精品av在线| 欧美日韩精品成人综合77777| 女人十人毛片免费观看3o分钟| 久久久欧美国产精品| 只有这里有精品99| 亚洲五月天丁香| 国产精品99久久久久久久久| 中文字幕熟女人妻在线| 国产探花在线观看一区二区| 国产成年人精品一区二区| 欧美另类亚洲清纯唯美| 精品久久久久久久久亚洲| 最近2019中文字幕mv第一页| 国产精品综合久久久久久久免费| 99在线视频只有这里精品首页| 一个人看的www免费观看视频| 免费大片18禁| 亚洲无线观看免费| 欧美性猛交黑人性爽| 国产日韩欧美在线精品| 久久久久久久久大av| 亚洲欧美精品综合久久99| 久久久午夜欧美精品| 99久国产av精品国产电影| 亚洲色图av天堂| 免费观看人在逋| 赤兔流量卡办理| 爱豆传媒免费全集在线观看| 国产色爽女视频免费观看| 欧美bdsm另类| 亚洲国产成人一精品久久久| 亚洲色图av天堂| 超碰av人人做人人爽久久| 看片在线看免费视频| 丰满人妻一区二区三区视频av| 欧美高清性xxxxhd video| 国产三级在线视频| 久久99热6这里只有精品| 22中文网久久字幕| 亚洲国产精品成人久久小说| 大话2 男鬼变身卡| 2021少妇久久久久久久久久久| 免费av不卡在线播放| 搡老妇女老女人老熟妇| 内射极品少妇av片p| 久久久精品欧美日韩精品| 国产精品野战在线观看| 国产精品三级大全| 看片在线看免费视频| 国产精品一区二区三区四区久久| 亚洲在线自拍视频| 亚洲av福利一区| 国产综合懂色| 国产精品一及| 日本一本二区三区精品| 丰满人妻一区二区三区视频av| 日本三级黄在线观看| 91av网一区二区| 久久久久性生活片| 午夜福利高清视频| 久99久视频精品免费| 免费观看在线日韩| 午夜福利视频1000在线观看| 午夜福利在线观看免费完整高清在| 欧美成人一区二区免费高清观看| 人体艺术视频欧美日本| 亚洲欧美清纯卡通| 国产精品1区2区在线观看.| 99国产精品一区二区蜜桃av| 少妇高潮的动态图| 亚洲高清免费不卡视频| 精品国产一区二区三区久久久樱花 | 亚洲精品456在线播放app| 久久99精品国语久久久| 色视频www国产| 亚洲精品自拍成人| 国产中年淑女户外野战色| 天天躁夜夜躁狠狠久久av| 好男人在线观看高清免费视频| 中文亚洲av片在线观看爽| 天天躁日日操中文字幕| 成人亚洲欧美一区二区av| 亚洲国产精品成人综合色| 两性午夜刺激爽爽歪歪视频在线观看| 国产黄片视频在线免费观看| 日韩,欧美,国产一区二区三区 | 日本免费在线观看一区| 午夜精品在线福利| 国产精品综合久久久久久久免费| 欧美xxxx性猛交bbbb| 精品人妻偷拍中文字幕| 欧美xxxx性猛交bbbb| 又粗又爽又猛毛片免费看| 在线免费十八禁| 边亲边吃奶的免费视频| 亚洲人与动物交配视频| 久久久午夜欧美精品| 精品无人区乱码1区二区| 波多野结衣高清无吗| 最近的中文字幕免费完整| 久久久亚洲精品成人影院| 麻豆成人午夜福利视频| 22中文网久久字幕| 国产精品国产三级国产专区5o | 久久精品国产鲁丝片午夜精品| 在线观看一区二区三区| 国产av一区在线观看免费| 亚洲国产精品专区欧美| 老女人水多毛片| 在线免费观看的www视频| 日本一本二区三区精品| 精品久久久久久久久av| 欧美高清成人免费视频www| 舔av片在线| 久久久久免费精品人妻一区二区| 青青草视频在线视频观看| 免费av观看视频| 日韩强制内射视频| 久久精品国产亚洲av涩爱| 狠狠狠狠99中文字幕| 国产精品国产高清国产av| 国产免费视频播放在线视频 | 亚洲国产精品专区欧美| 一级爰片在线观看| 国国产精品蜜臀av免费| 91精品一卡2卡3卡4卡| 国产精品女同一区二区软件| 天天一区二区日本电影三级| 亚洲高清免费不卡视频| 国产午夜福利久久久久久| 2021少妇久久久久久久久久久| 精品一区二区三区人妻视频| 免费黄色在线免费观看| 亚洲精品日韩av片在线观看| 别揉我奶头 嗯啊视频| 七月丁香在线播放| 国产淫语在线视频| 激情 狠狠 欧美| 免费av观看视频| 综合色丁香网| 白带黄色成豆腐渣| 亚洲精品国产av成人精品| 大话2 男鬼变身卡| 最近的中文字幕免费完整| 久久99精品国语久久久| 亚洲国产成人一精品久久久| 亚洲av男天堂| 国产色婷婷99| 男女国产视频网站| 亚洲,欧美,日韩| 一二三四中文在线观看免费高清| 熟女电影av网| 乱系列少妇在线播放| 国产亚洲5aaaaa淫片| 91精品国产九色| 亚洲美女视频黄频| 久久久精品大字幕| 中文字幕熟女人妻在线| 亚洲国产精品合色在线| 午夜福利在线观看吧| 国产极品精品免费视频能看的| 简卡轻食公司| 自拍偷自拍亚洲精品老妇| 亚洲欧美精品综合久久99| 九九久久精品国产亚洲av麻豆| 午夜久久久久精精品| 又粗又硬又长又爽又黄的视频| 亚洲人成网站在线观看播放| 狠狠狠狠99中文字幕| 三级男女做爰猛烈吃奶摸视频| 大香蕉97超碰在线| 神马国产精品三级电影在线观看| 亚洲国产成人一精品久久久| 日本与韩国留学比较| 最近2019中文字幕mv第一页| 日韩欧美精品v在线| 中文字幕免费在线视频6| 免费电影在线观看免费观看| 国产在线男女| 岛国在线免费视频观看| 欧美日韩一区二区视频在线观看视频在线 | 91午夜精品亚洲一区二区三区| 久久精品国产亚洲网站| www日本黄色视频网| 又爽又黄a免费视频| 国产成人精品婷婷| 91狼人影院| 国产精品久久久久久av不卡| 国产免费一级a男人的天堂| 久久久久性生活片| 热99在线观看视频| 国产免费又黄又爽又色| 深爱激情五月婷婷| 三级经典国产精品| 麻豆成人午夜福利视频| 精品人妻视频免费看| 亚洲国产精品国产精品| 亚洲欧洲日产国产| 看免费成人av毛片| 大香蕉97超碰在线| 人人妻人人澡欧美一区二区| 亚洲不卡免费看| 国产男人的电影天堂91| 麻豆成人av视频| 精品久久久久久久末码| 日本免费一区二区三区高清不卡| 99久国产av精品| 最近最新中文字幕免费大全7| 99久久精品一区二区三区| 日本免费a在线| 精品国产一区二区三区久久久樱花 | 99热这里只有是精品50| 淫秽高清视频在线观看| 成年版毛片免费区| 亚洲国产精品成人久久小说| 美女大奶头视频| 国产大屁股一区二区在线视频| 欧美一区二区国产精品久久精品| 99久久九九国产精品国产免费| 国产亚洲精品久久久com| 日产精品乱码卡一卡2卡三| 内地一区二区视频在线| 精品久久久久久久久av| 国内精品一区二区在线观看| 男人和女人高潮做爰伦理| 又粗又硬又长又爽又黄的视频| 97超碰精品成人国产| 国产精品久久久久久av不卡| 国内少妇人妻偷人精品xxx网站| 久热久热在线精品观看| 五月玫瑰六月丁香| 国产伦在线观看视频一区| 97热精品久久久久久| 又粗又爽又猛毛片免费看| 午夜精品国产一区二区电影 | 国产免费一级a男人的天堂| 美女高潮的动态| 久久婷婷人人爽人人干人人爱| 国产欧美日韩精品一区二区| 99国产精品一区二区蜜桃av| 永久免费av网站大全| 久久久国产成人精品二区| 日韩制服骚丝袜av| 看黄色毛片网站| av卡一久久| 精品人妻偷拍中文字幕| 免费黄网站久久成人精品| 国产亚洲91精品色在线| 亚洲欧美日韩东京热| 国内精品宾馆在线| 成人三级黄色视频| 日韩视频在线欧美| 91在线精品国自产拍蜜月| 国产精品久久久久久久电影| 午夜激情欧美在线| 久久久成人免费电影| 久久久久久久久中文| 日韩av在线大香蕉| 在线观看av片永久免费下载| 女的被弄到高潮叫床怎么办| 国产高清视频在线观看网站| 天天一区二区日本电影三级| 久久久国产成人免费| 3wmmmm亚洲av在线观看| 可以在线观看毛片的网站| 欧美激情在线99| 国产爱豆传媒在线观看| 亚洲精品乱码久久久v下载方式| 亚洲精品乱久久久久久| 久久精品国产亚洲av涩爱| 2021少妇久久久久久久久久久| 国产精品无大码| 日韩欧美国产在线观看| 听说在线观看完整版免费高清| 人体艺术视频欧美日本| 久久精品久久久久久久性| 97超视频在线观看视频| 精品少妇黑人巨大在线播放 | 免费看a级黄色片| 乱码一卡2卡4卡精品| 国产精品女同一区二区软件| 国产极品精品免费视频能看的| 免费看日本二区| 久久人人爽人人爽人人片va| 99久久九九国产精品国产免费| 精品人妻熟女av久视频| 亚洲怡红院男人天堂| kizo精华| 午夜福利视频1000在线观看| 成人三级黄色视频| 国产精品电影一区二区三区| 欧美成人a在线观看| 亚洲精品久久久久久婷婷小说 | 男女下面进入的视频免费午夜| 国产欧美日韩精品一区二区| av卡一久久| 日产精品乱码卡一卡2卡三| 观看免费一级毛片| 69人妻影院| 久久热精品热| 级片在线观看| 日本免费a在线| 1000部很黄的大片| 亚洲国产精品久久男人天堂| 嫩草影院精品99| 亚洲第一区二区三区不卡| 晚上一个人看的免费电影| 国产精品三级大全| 色网站视频免费| 成人鲁丝片一二三区免费| 久久人人爽人人爽人人片va| 国语自产精品视频在线第100页| 中文字幕精品亚洲无线码一区| 亚洲国产精品专区欧美| 久久久久久久久久成人| 国产真实乱freesex| 精品一区二区免费观看| 久久久久久久久久成人| 国产真实乱freesex| 精品久久久久久电影网 | 日韩高清综合在线| 久久99蜜桃精品久久| 青春草视频在线免费观看| 美女内射精品一级片tv| 中文欧美无线码| 欧美潮喷喷水| 能在线免费看毛片的网站| 国产一区二区三区av在线| 美女被艹到高潮喷水动态| 性色avwww在线观看| 精华霜和精华液先用哪个| 国产在线男女| 免费观看的影片在线观看| 在线观看一区二区三区| 中国美白少妇内射xxxbb| 国产老妇伦熟女老妇高清| 在线观看一区二区三区| 中文资源天堂在线| 国产淫片久久久久久久久| 久久久成人免费电影| 国产探花极品一区二区| 热99re8久久精品国产|