• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Substituent position effect of Co porphyrin on oxygen electrocatalysis

    2021-12-27 13:06:18HaoyuanLvHongboGuoKaiGuoHaitaoLeiWeiZhangHaoquanZhengZuozhongLiangRuiCao
    Chinese Chemical Letters 2021年9期

    Haoyuan Lv,Hongbo Guo,Kai Guo,Haitao Lei,Wei Zhang,Haoquan Zheng,Zuozhong Liang,Rui Cao

    Key Laboratory of Applied Surface and Colloid Chemistry,Ministry of Education,School of Chemistry and Chemical Engineering,Shaanxi Normal University,Xi’an 710119,China

    Keywords:Oxygen electrocatalysis Oxygen reduction reaction Oxygen evolution reaction Co porphyrin Substituent effect

    ABSTRACT Substituent effect of metal porphyrin molecular catalysts plays a crucial role in determining the catalytic activity of oxygen electrocatalysis.Herein,substituent position effect of Co porphyrins on oxygen electrocatalysis,including the oxygen reduction reaction(ORR)and the oxygen evolution reaction(OER),was investigated.Two Co porphyrins,namely 2,4,6-OMe-CoP and 3,4,5-OMe-CoP,were selected as the research objects.The ORR and OER performance was evaluated by drop-coating molecular catalysts on carbon nanotubes(CNTs).The resulted 3,4,5-OMe-CoP/CNT exhibited high bifunctional electrocatalytic activities and better long-term stability for both ORR and OER than 2,4,6-OMe-CoP/CNT.Furthermore,when applied in the Zn-air battery,3,4,5-OMe-CoP/CNT exhibited comparable performance to that with precious metal-based materials.The enhanced catalytic activity may be attributed to the improved charge transfer rate,mass transfer and hydrophilicity.This work provides an effective strategy to further enhance catalytic activity by introducing substituent position effect,which is of great importance for developing more efficient energy-related electrocatalysts.

    Electrocatalytic oxygen reduction reaction (ORR) and oxygen evolution reaction (OER),as important reactions in several new energy conversion technologies,such as fuel cells,metal-air batteries,and water electrolysis devices,have attracted increasing interests [1-12].Efficient electrocatalysts for ORR and OER are highly required due to the very slow kinetics of the two reactions[13-24].At present,Pt-based materials [25]and Ru-based oxides[26]exhibited excellent catalytic activity for ORR and OER,respectively.However,the low reserve and high price of these precious metals limit their large-scale applications[27].Therefore,it is important to design low-cost and efficient catalysts for both ORR and OER.

    Inspired from Fe porphyrin of heme in nature,porphyrin-based molecular catalysts have attracted great attention recently for oxygen electrocatalysis [28-36].The catalytic activity of metal porphyrins can be finely tuned through regulating their structures[37].Furthermore,the clear and stable molecular structures of metal porphyrins are beneficial for the study of catalytic reaction mechanisms [38-41].In addition,the resulted structure-function relationships will further guide the design and development of more efficient molecular catalysts [42].Particularly,the mesosubstituent effects have been widely investigated to regulate the catalytic activity of metal porphyrins through tuning electronic structure of metal centers [43].It is suggested that electrondonating substituents[44],such as-OMe,can increase the electron density of metal centers and thus increases the binding and electron transfer with O2[45],which is crucial for determining the activity of ORR.Therefore,fine-tuning the meso-substituent structure of metal porphyrins is an appealing strategy to improve the ORR activity.

    Herein,we designed two Co porphyrin molecular catalysts with three-OMe groups at 2,4,6-and 3,4,5-positions of meso-phenyl substituents,named 2,4,6-OMe-CoP and 3,4,5-OMe-CoP (Figs.1a and b).Molecular structures of these two porphyrins were characterized with nuclear magnetic resonance (NMR),mass spectra (MS),UV-vis,Fourier transform infrared spectrometer(FTIR),and single crystal X-ray diffraction method.Coporphyrin catalysts were drop-coated on carbon nanotubes(CNTs)for oxygen electrocatalysis.The catalytic activity,selectivity,and stability of these two molecular catalysts were evaluated.The 3,4,5-OMe-CoP exhibited better ORR performance than 2,4,6-OMe-CoP likely due to its enhanced mass transfer,improved charge transfer and hydrophilicity.The OER performance of molecular catalysts and Zn-air battery assembled with 3,4,5-OMe-CoP were further evaluated.This work provides a better understanding of the substituent position effect of-OMe groups for Co porphyrin molecular catalysts.

    Fig.1.Molecular structures of (a) 2,4,6-OMe-CoP and (b) 3,4,5-OMe-CoP.(c) Thermal ellipsoid plot of single crystal X-ray structure of 3,4,5-OMe-CoP (50% probability).(d) SEM image and (e,f) TEM images of 3,4,5-OMe-CoP/CNT.XPS spectra of 3,4,5-OMe-CoP/CNT:(g) Co 2p,(h) O 1s and (i) N 1s.

    First,2,4,6-OMe-CoP and 3,4,5-OMe-CoP were synthesized and characterized with high-resolution MS,NMR,FTIR,and UV-vis spectra(Fig.1 and Figs.S1-S5 in Supporting information)[46].UVvis spectra of 2,4,6-OMe-CoP and 3,4,5-OMe-CoP showed Soret and Q bands of Co porphyrins (Fig.S6 in Supporting information),indicating the integrity of the porphyrin structure [47].Under N2conditions,cyclic voltammetry (CV) data of 2,4,6-OMe-CoP and 3,4,5-OMe-CoP were tested in dimethylformamide (Fig.S7 in Supporting information).For 2,4,6-OMe-CoP,there is a reversible redox wave and an irreversible redox wave at-1.50 and-2.32 V vs.ferrocene,respectively,corresponding to the CoII/CoIand CoI/Co0redox couples.In contrast,3,4,5-OMe-CoP has two reversible redox waves at-1.36 and-2.52 V vs.ferrocene,corresponding to the CoII/CoIand CoI/Co0redox couples,respectively.These peaks of 3,4,5-OMe-CoP exhibit anodic shift by about 200 mV comparing to those of 2,4,6-OMe-CoP.The crystal structure of 3,4,5-OMe-CoP was obtained with single crystal X-ray diffraction(Fig.1c).The Co ion is coordinated by the four N atoms of the porphyrin unit,which define an equatorial plane.The 3,4,5-OMe-CoP crystallized in triclinic space groupwith Z=2 (Table S1 in Supporting information).

    To evaluate the catalytic activity of oxygen electrocatalysis,Co porphyrin molecular catalysts were drop-coated on CNTs,named 3,4,5-OMe-CoP/CNT.Scanning electron microscope (SEM) and transmission electron microscope(TEM)images of CNT and 3,4,5-OMe-CoP/CNT were obtained(Figs.1d and f,Fig.S8 in Supporting information).CNT has very good dispersion with a diameter of~15 nm (Fig.S8).The 3,4,5-OMe-CoP/CNT still shows good dispersion (Figs.1d and f).No obvious aggregated particles were observed on the surface of CNTs,indicating the uniform distribution of Co porphyrins.

    In order to verify the central metal valence state of Co porphyrin and the successful loading of molecular catalysts,X-ray photoelectron spectroscopy (XPS) test of 3,4,5-OMe-CoP/CNT was carried out.From the full survey spectrum,obvious peaks of Co,O,N and C were observed,demonstrating the successful loading of Co porphyrins(Fig.S9 in Supporting information).The high resolution XPS spectrum of Co 2p confirms that the valence state of Co is CoII(Fig.1g).From the high resolution XPS spectra of O 1s and N 1s,only one kind of peak was observed in the composite 3,4,5-OMe-CoP/CNT,indicating that 3,4,5-OMe-CoP has been adsorbed on CNTs (Figs.1h and i).

    Electrocatalytic activities of 3,4,5-OMe-CoP/CNT and 2,4,6-OMe-CoP/CNT for ORR were evaluated with rotating disk electrode(RDE) and rotating ring-disk electrode (RRDE) in 0.1 mol/L KOH.The linear sweep voltammetry (LSV) data show that 3,4,5-OMe-CoP/CNT exhibits a half-wave potential E1/2of 0.80 V vs.reversible hydrogen electrode(RHE),which is larger than that of 2,4,6-OMe-CoP/CNT with an E1/2of 0.77 V vs.RHE(Fig.2a).It is worth noting that both 2,4,6-OMe-CoP/CNT and 3,4,5-OMe-CoP/CNT exhibited much better ORR performance than CNTs (E1/2=0.70 V vs.RHE),indicating that 2,4,6-OMe-CoP and 3,4,5-OMe-CoP is the real active site for ORR.In contrast,commercial Pt/C (20 wt%) exhibited an E1/2of 0.86 V vs.RHE.Tafel slopes for CNTs,2,4,6-OMe-CoP/CNT,3,4,5-OMe-CoP/CNT and Pt/C are 73,58,49 and 70 mV/dec,respectively,suggesting fast kinetics and rapid mass transfer of these catalysts (Fig.2b).

    Subsequently,the selectivity of ORR was evaluated by measuring the number of electrons transferred with RRDE (Fig.S10 in Supporting information).According to the current density detected at the disk electrode and the ring electrode,the n value was determined to be 2.37 for 2,4,6-OMe-CoP/CNT,2.33 for 3,4,5-OMe-CoP/CNT,2.31 for CNTs and 3.91 for Pt/C (Fig.2c).These results demonstrated that the ORR of CNTs,2,4,6-OMe-CoP/CNT and 3,4,5-OMe-CoP/CNT follows 2e reduction process with the production of H2O2.The values of n were further confirmed by using Koutecky-Levich (K-L) equations (Fig.S11 in Supporting information).In contrast,Pt/C follows 4e reduction process with the production of H2O.Moreover,we carried out the stability test of two molecular catalysts with controlled potential electrolysis.The relative current of 2,4,6-OMe-CoP/CNT decreased by 31%,while 3,4,5-OMe-CoP/CNT only dropped by 6% after running for 12 h under the applied potential of 0.3 V vs.RHE (Fig.2d).

    Fig.2.(a)LSV data,(b)Tafel slopes and(c)electron transfer number of CNT,2,4,6-OMe-CoP/CNT,3,4,5-OMe-CoP/CNT and commercial Pt/C for ORR.(d) Controlled potential electrolysis of 2,4,6-OMe-CoP/CNT and 3,4,5-OMe-CoP/CNT measured at 0.30 V(vs.RHE) in O2-saturated 0.1 mol/L KOH solution with RDE at 1600 rpm.(e)LSV data and (f) Tafel slopes of CNT,2,4,6-OMe-CoP/CNT,3,4,5-OMe-CoP/CNT and commercial RuO2 for OER measured in 1.0 mol/L KOH with glassy carbon electrode.

    The electrocatalytic activity of OER was studied with glassy carbon electrode in 1.0 mol/L KOH solution.The 3,4,5-OMe-CoP/CNT has an overpotential η of 482 mV to reach j=10 mA/cm2,which is smaller than that of 2,4,6-OMe-CoP/CNT (η=500 mV)(Fig.2e).To obtain the electrochemical surface area (ECSA),the double layer capacitance (Cdl) was calculated first by performing CV data in the Faraday zone with different scan rates(20,40,60,80,100 and 120 mV/s) (Figs.S12a and b in Supporting information).The results demonstrated that the Cdlof 2,4,6-OMe-CoP/CNT is 16 mF,which is larger than that of 3,4,5-OMe-CoP/CNT (4 mF)(Fig.S12c in Supporting information).The following Eq.1 can be applied to calculate the ECSA.

    herein,the specific capacitance Csfor Co-based materials is 2.75 mF/cm2[48].Therefore,the ECSA of 3,4,5-OMe-CoP/CNT and 2,4,6-OMe-CoP/CNT is 1.5 and 5.8 cm2,respectively.The normalized LSV data demonstrated that 3,4,5-OMe-CoP/CNT has higher intrinsic activity that 2,4,6-OMe-CoP/CNT(Fig.S12d in Supporting information).The turnover frequency (TOF) could be calculated with the Eq.2:

    herein,J is the current density at a given potential,S is the surface area of electrode,F is the faraday constant(96485.3 C/mol),and n is the number of active sites.The TOF of 3,4,5-OMe-CoP/CNT and 2,4,6-OMe-CoP/CNT under the overpotential of 550 mV is 20.4 and 12.7 s-1,respectively.In addition,3,4,5-OMe-CoP/CNT displays smaller Tafel slope with a value of 81 mV/dec as compared to the value of 90 mV/dec for 2,4,6-OMe-CoP/CNT,98 mV/dec for CNTs and 67 mV/dec for RuO2(Fig.2f).Therefore,3,4,5-OMe-CoP/CNT exhibits better OER performance than 2,4,6-OMe-CoP/CNT.

    Fig.3.The[Fe(CN)6]3-redox results of(a)2,4,6-OMe-CoP/CNT and(b)3,4,5-OMe-CoP/CNT at different scanning rates(0.01-0.42 V/s)at 0.1 mol/L KCl.(c)The relationship between the position of redox peaks and the logarithm of scan rates.RDE measurements for ORR at RDE electrode loaded with(d)2,4,6-OMe-CoP/CNTand(e)3,4,5-OMe-CoP/CNTat different rotation rates(0,400,625,900,1225,1600 and 2025 rpm).(f)Tafel plots based on the kinetic controlled current density.Contact angle test of(g)CNT,(h)2,4,6-OMe-CoP/CNT and (i) 3,4,5-OMe-CoP/CNT.

    To understand catalytic activity for 3,4,5-OMe-CoP/CNT,the electron transfer efficiency,mass transfer rate and hydrophilicity were investigated(Fig.3).The[Fe(CN)6]3-redox process of 2,4,6-OMe-CoP/CNT and 3,4,5-OMe-CoP/CNT coated glassy carbon electrode at different scan rates (0.01-0.42 V/s) were carried out in 0.1 mol/L KCl (Figs.3a and b).The relationship between the position of redox peaks and the logarithm of scan rates was constructed(Fig.3c).The electron transfer efficiency of the catalyst surface was compared by calculating the surface electron transfer rate constant(ks).The ksvalue of 3,4,5-OMe-CoP/CNT(0.116 s-1)is almost three times larger than that of 2,4,6-OMe-CoP/CNT(0.043 s-1),demonstrating that 3,4,5-OMe-CoP/CNT has better charge transport ability compared to 2,4,6-OMe-CoP/CNT.

    In order to further compare the mass transfer rate of these two catalysts,LSV data of 2,4,6-OMe-CoP/CNT and 3,4,5-OMe-CoP/CNT were measured at different rotation speeds with RDE(Figs.3d and e).The kinetic controlled currents at different potentials were made into Tafel diagrams,and then Tafel slopes excluding mass transfer resistance were obtained (Fig.S11).Kinetic controlled Tafel slope of 2,4,6-OMe-CoP/CNT is 72 mV/dec,while the value of 3,4,5-OMe-CoP/CNT is 45 mV/dec (Fig.3f).This result indicates that 3,4,5-OMe-CoP/CNT has a much higher mass transfer efficiency than that of 2,4,6-OMe-CoP/CNT.In other words,3,4,5-OMe-CoP/CNT has very good mass transfer ability.

    We further studied the hydrophilicity of these two catalysts and CNTs.Contacting angles of CNTs (Fig.3g),2,4,6-OMe-CoP/CNT(Fig.3h) and 3,4,5-OMe-CoP/CNT (Fig.3i) were 137.5°,132.3°and 127.2°,respectively.This result indicates that 3,4,5-OMe-CoP/CNT has relatively good hydrophilic property.

    Based on the good electrocatalytic ORR and OER performance of 3,4,5-OMe-CoP/CNT,a rechargeable Zn-air battery was assembled using this catalyst.The polished Zn foil was used as the anode,and the catalyst-dropped carbon cloth/gas diffusion layer was used as the cathode (Fig.4a).The electrolyte was 6.0 mol/L KOH with 0.2 mol/L Zn acetate,to ensure the reversible reactions when charging.Fig.4b shows the charge and discharge electrochemical polarization data and the corresponding power density data.The 3,4,5-OMe-CoP/CNT has the largest power density with a value of 144.8 mW/cm2compared to that of Pt/C+RuO2(137.1 mW/cm2)and CNT (106.3 mW/cm2).Fig.4c displays the discharge characteristic curve of CNT,3,4,5-OMe-CoP/CNT and Pt/C+RuO2at j=20 mA/cm2.The specific capacitance of 3,4,5-OMe-CoP/CNT is 634.02 mAh/g,which is larger than that of CNT(583.55 mAh/g)and smaller than that of Pt/C+RuO2(668.21 mAh/g).Fig.4d shows the charge/discharge cycle data of CNT,3,4,5-OMe-CoP/CNT and Pt/C+RuO2measured at j=2 mA/cm2.The discharge/charge voltage is 1.19 V and 1.99 V,respectively,for Zn-air battery assembled with 3,4,5-OMe-CoP/CNT.Therefore,the resulted charge/discharge voltage gap is 0.8 V,which is smaller than that of Pt/C+RuO2(0.87 V) and larger than that of CNT (1.01 V) under the same condition,indicating that the 3,4,5-OMe-CoP/CNT exhibits the best charge and discharge performance.

    Fig.4.(a) Schematic illustration of the Zn-air battery.(b) Discharge polarization data and corresponding power density,(c)discharge data at j=20 mA/cm2,and(d)charge-discharge cycle test at j=2 mA/cm2 for Zn-air batteries assembled with CNT,3,4,5-OMe-CoP/CNT and Pt/C+RuO2.

    In summary,we investigated substituent position effect of Co porphyrin molecular catalysts on both ORR and OER.The 3,4,5-OMe-CoP/CNT exhibited an E1/2of 0.80 V vs.RHE for ORR in 0.1 mol/L KOH and an overpotential of 482 mV (at j=10 mA/cm2)for OER measured in 1.0 mol/L KOH,which is superior than that of 2,4,6-OMe-CoP/CNT with an E1/2of 0.77 V vs.RHE for ORR and an overpotential of 500 mV(at j=10 mA/cm2)for OER.The enhanced ORR/OER performance of 3,4,5-OMe-CoP/CNT may be attributed to the fast charge transfer,enhanced mass transfer and hydrophilicity.The Zn-air battery constructed with 3,4,5-OMe-CoP/CNT exhibited comparable performance with precious metal-based material(Pt/C+RuO2).This work provides new ideas for the design of molecular catalysts with different substituent positions,and has new inspiration for the design of high-performance catalysts for clean energy conversion technology.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    We are grateful for support from the National Natural Science Foundation of China(Nos.21808138 and 21773146),Fok Ying-Tong Education Foundation for Outstanding Young Teachers in University,Fundamental Research Funds for the Central Universities(Nos.GK202103029 and GK202103045),Young Talent fund of University Association for Science and Technology in Shaanxi,China,China Postdoctoral Science Foundation(No.2019T120877),and Research Funds of Shaanxi Normal University.

    Appendix A.Supplementary data

    Supplementarymaterialrelatedtothisarticlecanbefound,inthe online version,at doi:https://doi.org/10.1016/j.cclet.2021.02.032.

    18禁裸乳无遮挡免费网站照片| 久久久久久久久久久免费av| 免费少妇av软件| av黄色大香蕉| 国产亚洲av片在线观看秒播厂| 观看免费一级毛片| 国产 一区 欧美 日韩| 亚洲在线观看片| 免费av观看视频| 色综合色国产| 国产午夜福利久久久久久| 午夜福利高清视频| 久久99精品国语久久久| 久久精品久久久久久噜噜老黄| 国产精品av视频在线免费观看| 我的女老师完整版在线观看| 69av精品久久久久久| a级毛色黄片| 久久精品国产亚洲av天美| 国产一区有黄有色的免费视频| .国产精品久久| 欧美bdsm另类| 最后的刺客免费高清国语| 狠狠精品人妻久久久久久综合| 特级一级黄色大片| 国产精品国产三级专区第一集| 麻豆国产97在线/欧美| 日本一二三区视频观看| 精品一区二区三卡| 男人舔奶头视频| a级毛片免费高清观看在线播放| 麻豆成人午夜福利视频| 人妻 亚洲 视频| 麻豆久久精品国产亚洲av| 亚洲自偷自拍三级| 在线免费十八禁| 男人添女人高潮全过程视频| 亚洲一区二区三区欧美精品 | 97精品久久久久久久久久精品| 国产成人精品一,二区| 亚洲国产高清在线一区二区三| 国产成人91sexporn| 超碰av人人做人人爽久久| 99热6这里只有精品| av专区在线播放| 纵有疾风起免费观看全集完整版| 欧美少妇被猛烈插入视频| 乱系列少妇在线播放| 午夜精品一区二区三区免费看| 夜夜看夜夜爽夜夜摸| 久久久久久伊人网av| 18禁在线无遮挡免费观看视频| 中文字幕免费在线视频6| 久久鲁丝午夜福利片| 亚洲天堂av无毛| 天美传媒精品一区二区| 亚洲国产成人一精品久久久| 午夜视频国产福利| 九九在线视频观看精品| 国产成人免费观看mmmm| 亚洲欧美中文字幕日韩二区| 亚洲av中文字字幕乱码综合| 国产 一区精品| 精品少妇久久久久久888优播| 国产精品伦人一区二区| 精品少妇黑人巨大在线播放| 成人国产麻豆网| 久久韩国三级中文字幕| 国产精品麻豆人妻色哟哟久久| 亚洲国产高清在线一区二区三| 国产精品人妻久久久影院| 亚洲综合精品二区| 好男人视频免费观看在线| 中国美白少妇内射xxxbb| 久久亚洲国产成人精品v| av专区在线播放| 亚洲三级黄色毛片| 久久鲁丝午夜福利片| 大话2 男鬼变身卡| 亚洲熟女精品中文字幕| 精品久久久久久电影网| 亚洲最大成人av| 麻豆乱淫一区二区| 白带黄色成豆腐渣| 亚洲国产欧美在线一区| 99热6这里只有精品| 色5月婷婷丁香| 国产一区二区三区av在线| 久久精品久久精品一区二区三区| 国产爽快片一区二区三区| 看十八女毛片水多多多| 我的女老师完整版在线观看| 亚洲人与动物交配视频| 内射极品少妇av片p| 亚洲天堂av无毛| 欧美zozozo另类| 蜜桃久久精品国产亚洲av| 亚洲经典国产精华液单| 在线观看三级黄色| 三级国产精品片| 国产成人一区二区在线| 亚洲欧美成人综合另类久久久| 日韩成人av中文字幕在线观看| 久久久久久久大尺度免费视频| 看十八女毛片水多多多| 最近最新中文字幕免费大全7| 99久国产av精品国产电影| 中文字幕久久专区| 亚洲精品乱码久久久久久按摩| 噜噜噜噜噜久久久久久91| a级毛色黄片| 人妻制服诱惑在线中文字幕| www.色视频.com| 国产亚洲av嫩草精品影院| 国产淫语在线视频| 国产一区二区三区av在线| 国产成人a∨麻豆精品| 国产中年淑女户外野战色| 国产淫片久久久久久久久| 日韩精品有码人妻一区| 国产亚洲最大av| 亚洲精品久久午夜乱码| 亚洲不卡免费看| 一级毛片黄色毛片免费观看视频| 大片电影免费在线观看免费| 免费黄色在线免费观看| 91狼人影院| 哪个播放器可以免费观看大片| av卡一久久| 男女那种视频在线观看| 街头女战士在线观看网站| 一区二区三区四区激情视频| 欧美高清性xxxxhd video| 日本-黄色视频高清免费观看| 一级a做视频免费观看| 最近的中文字幕免费完整| 国产成人一区二区在线| 爱豆传媒免费全集在线观看| 久久99热6这里只有精品| 国产成人精品福利久久| 国产男女内射视频| 欧美丝袜亚洲另类| 亚洲国产日韩一区二区| 菩萨蛮人人尽说江南好唐韦庄| 免费观看的影片在线观看| 久热久热在线精品观看| 亚洲欧美日韩另类电影网站 | 蜜桃久久精品国产亚洲av| 亚洲三级黄色毛片| 你懂的网址亚洲精品在线观看| 男人舔奶头视频| 各种免费的搞黄视频| 超碰av人人做人人爽久久| 国产av国产精品国产| 成人二区视频| 亚洲欧美日韩东京热| 日本午夜av视频| 国产精品爽爽va在线观看网站| 久久久久性生活片| 91精品一卡2卡3卡4卡| 亚洲性久久影院| 波多野结衣巨乳人妻| 伦精品一区二区三区| 深夜a级毛片| 日韩欧美精品免费久久| 精品久久久久久久人妻蜜臀av| 久久99蜜桃精品久久| 亚洲高清免费不卡视频| 另类亚洲欧美激情| 色吧在线观看| 亚洲精品中文字幕在线视频 | 如何舔出高潮| 久久精品人妻少妇| 最后的刺客免费高清国语| 午夜视频国产福利| 免费电影在线观看免费观看| 久久精品夜色国产| 亚洲经典国产精华液单| 欧美性感艳星| 国产日韩欧美在线精品| 欧美bdsm另类| 日韩一区二区三区影片| 制服丝袜香蕉在线| 国产成人免费无遮挡视频| 久久久久久久亚洲中文字幕| 精华霜和精华液先用哪个| 99久国产av精品国产电影| 日日摸夜夜添夜夜添av毛片| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 免费看光身美女| 黄片wwwwww| 亚洲最大成人手机在线| 九草在线视频观看| 搡老乐熟女国产| 国产久久久一区二区三区| 国内少妇人妻偷人精品xxx网站| 成人漫画全彩无遮挡| 亚洲美女搞黄在线观看| 国产亚洲5aaaaa淫片| 亚洲婷婷狠狠爱综合网| 亚洲性久久影院| 色吧在线观看| 在线亚洲精品国产二区图片欧美 | a级毛色黄片| 精品国产一区二区三区久久久樱花 | 91午夜精品亚洲一区二区三区| 深爱激情五月婷婷| 可以在线观看毛片的网站| 日本午夜av视频| 97热精品久久久久久| 亚洲人成网站在线观看播放| 色吧在线观看| 欧美极品一区二区三区四区| 两个人的视频大全免费| 六月丁香七月| 亚洲精品一二三| 亚洲国产精品专区欧美| 成人二区视频| 成人毛片60女人毛片免费| 免费观看性生交大片5| 成人综合一区亚洲| 99久久精品热视频| 如何舔出高潮| 午夜福利在线在线| 亚洲国产精品成人久久小说| 国产高清不卡午夜福利| 色视频在线一区二区三区| 日本一本二区三区精品| 国产精品av视频在线免费观看| 狂野欧美激情性bbbbbb| 国产免费福利视频在线观看| 丰满少妇做爰视频| 国产毛片a区久久久久| 一级片'在线观看视频| 欧美日韩亚洲高清精品| 日韩av不卡免费在线播放| 18禁在线无遮挡免费观看视频| 国产在线男女| 亚洲自偷自拍三级| 色视频www国产| 免费看光身美女| 春色校园在线视频观看| 水蜜桃什么品种好| 成人综合一区亚洲| 人妻夜夜爽99麻豆av| 亚洲一级一片aⅴ在线观看| 亚洲av免费高清在线观看| 男人添女人高潮全过程视频| 国产亚洲5aaaaa淫片| 97热精品久久久久久| 亚洲av中文字字幕乱码综合| 精品熟女少妇av免费看| 一本色道久久久久久精品综合| 最后的刺客免费高清国语| 亚洲av在线观看美女高潮| 国产熟女欧美一区二区| 国产一区亚洲一区在线观看| 在线免费十八禁| 免费看不卡的av| 免费观看a级毛片全部| 2021少妇久久久久久久久久久| 国产成人午夜福利电影在线观看| 亚洲国产av新网站| 国产淫片久久久久久久久| 看免费成人av毛片| 国产成人91sexporn| 五月天丁香电影| av专区在线播放| 中文欧美无线码| 精品少妇久久久久久888优播| 99久久人妻综合| 国产免费福利视频在线观看| a级毛片免费高清观看在线播放| 女人被狂操c到高潮| h日本视频在线播放| 亚洲一级一片aⅴ在线观看| 国产精品99久久99久久久不卡 | 汤姆久久久久久久影院中文字幕| 日韩 亚洲 欧美在线| 最近中文字幕2019免费版| 午夜激情久久久久久久| 亚洲婷婷狠狠爱综合网| 午夜福利在线在线| 久久久精品94久久精品| 少妇 在线观看| 伦精品一区二区三区| 亚洲av成人精品一二三区| 69人妻影院| 中文字幕亚洲精品专区| 99久久九九国产精品国产免费| 久久久久久久久大av| 简卡轻食公司| 国产成人一区二区在线| 少妇人妻 视频| 亚洲欧美清纯卡通| 日韩电影二区| 中文欧美无线码| 欧美成人a在线观看| 老师上课跳d突然被开到最大视频| 欧美精品人与动牲交sv欧美| 18禁在线播放成人免费| 亚洲精品乱码久久久v下载方式| 精品熟女少妇av免费看| 久久ye,这里只有精品| 国产一级毛片在线| 最近中文字幕2019免费版| 国产亚洲午夜精品一区二区久久 | 看非洲黑人一级黄片| 欧美丝袜亚洲另类| 男女啪啪激烈高潮av片| 国产 精品1| 日本黄大片高清| 成人无遮挡网站| 五月开心婷婷网| 国产高清国产精品国产三级 | 边亲边吃奶的免费视频| 亚洲四区av| 国产精品一区二区在线观看99| 69人妻影院| 亚洲,欧美,日韩| 激情五月婷婷亚洲| 亚洲欧美成人精品一区二区| 国产精品三级大全| 国产色婷婷99| 自拍欧美九色日韩亚洲蝌蚪91 | 性色av一级| 日韩av在线免费看完整版不卡| 在现免费观看毛片| 成人毛片60女人毛片免费| 最近手机中文字幕大全| 国产午夜福利久久久久久| 一级毛片我不卡| 老司机影院毛片| 日日摸夜夜添夜夜爱| 人妻一区二区av| 男女国产视频网站| 欧美日本视频| 偷拍熟女少妇极品色| 波多野结衣巨乳人妻| 有码 亚洲区| 国产色婷婷99| 国产男女内射视频| 国产在线男女| 中国国产av一级| 免费看不卡的av| 男女国产视频网站| 尾随美女入室| 日本爱情动作片www.在线观看| 国产伦在线观看视频一区| 狂野欧美激情性xxxx在线观看| 可以在线观看毛片的网站| 大片电影免费在线观看免费| 欧美潮喷喷水| a级毛片免费高清观看在线播放| 久久这里有精品视频免费| 嫩草影院精品99| 国产黄频视频在线观看| 欧美性猛交╳xxx乱大交人| 晚上一个人看的免费电影| 精品国产一区二区三区久久久樱花 | 在线 av 中文字幕| 欧美日本视频| 各种免费的搞黄视频| 91精品国产九色| 亚洲激情五月婷婷啪啪| av卡一久久| av在线亚洲专区| 国产黄色免费在线视频| 久久人人爽人人片av| 久久久色成人| 在现免费观看毛片| 成人综合一区亚洲| 午夜福利高清视频| 深爱激情五月婷婷| 亚洲精品乱码久久久v下载方式| 欧美激情久久久久久爽电影| 精华霜和精华液先用哪个| 搡老乐熟女国产| 少妇裸体淫交视频免费看高清| 热re99久久精品国产66热6| 一级爰片在线观看| 一个人看视频在线观看www免费| 免费观看av网站的网址| 爱豆传媒免费全集在线观看| 国内精品宾馆在线| 看黄色毛片网站| 亚洲欧美日韩无卡精品| 欧美zozozo另类| 久久久a久久爽久久v久久| 亚洲欧美精品自产自拍| 欧美少妇被猛烈插入视频| 久久精品国产亚洲网站| 日韩国内少妇激情av| www.色视频.com| 精品人妻熟女av久视频| 欧美人与善性xxx| 日韩精品有码人妻一区| 美女cb高潮喷水在线观看| 精品视频人人做人人爽| 精品一区二区免费观看| 久久久久久久亚洲中文字幕| 国产成人精品婷婷| 久久久欧美国产精品| 激情五月婷婷亚洲| 尾随美女入室| 国产黄片视频在线免费观看| 国产精品一区二区三区四区免费观看| 69av精品久久久久久| 国产精品一区二区三区四区免费观看| 国产免费一区二区三区四区乱码| 国产熟女欧美一区二区| 亚洲av免费高清在线观看| 天堂中文最新版在线下载 | 久久久久久久久大av| 欧美日韩亚洲高清精品| 亚洲欧美成人综合另类久久久| 国产91av在线免费观看| 99热国产这里只有精品6| 欧美 日韩 精品 国产| 3wmmmm亚洲av在线观看| 中文字幕人妻熟人妻熟丝袜美| 亚洲av免费在线观看| 一级爰片在线观看| av一本久久久久| 亚洲精华国产精华液的使用体验| 搡老乐熟女国产| 久久精品国产亚洲av涩爱| 免费观看性生交大片5| 黄色配什么色好看| 国产免费一区二区三区四区乱码| 亚洲av日韩在线播放| 久久久久精品性色| 日日啪夜夜撸| 嘟嘟电影网在线观看| 国产一区二区在线观看日韩| 日本三级黄在线观看| 久久久久久久久大av| 欧美一级a爱片免费观看看| 国产国拍精品亚洲av在线观看| av专区在线播放| 黑人高潮一二区| 国产亚洲一区二区精品| 色综合色国产| 日本wwww免费看| 狂野欧美激情性bbbbbb| 国产精品.久久久| 看非洲黑人一级黄片| 在线免费十八禁| 人妻一区二区av| 国产成年人精品一区二区| 国产精品一区www在线观看| 男女无遮挡免费网站观看| 男的添女的下面高潮视频| 亚洲综合色惰| 亚洲国产精品成人综合色| 特大巨黑吊av在线直播| 久久精品久久久久久噜噜老黄| 久久精品国产a三级三级三级| 日韩不卡一区二区三区视频在线| 亚洲图色成人| 亚洲国产欧美在线一区| 亚洲av中文字字幕乱码综合| 观看美女的网站| 色综合色国产| 国产精品嫩草影院av在线观看| 久久热精品热| 成人二区视频| 国产精品久久久久久精品电影| 国产日韩欧美在线精品| 亚洲精品国产色婷婷电影| 麻豆成人av视频| 69av精品久久久久久| 欧美三级亚洲精品| 日韩 亚洲 欧美在线| 日本与韩国留学比较| 中文字幕制服av| 亚洲av.av天堂| 午夜免费观看性视频| 99九九线精品视频在线观看视频| 亚洲av免费在线观看| 成人美女网站在线观看视频| 国产精品爽爽va在线观看网站| 一个人看视频在线观看www免费| 欧美xxxx黑人xx丫x性爽| 日本黄大片高清| 亚洲精品成人av观看孕妇| 久久国产乱子免费精品| 又爽又黄a免费视频| 午夜激情久久久久久久| 尾随美女入室| 一级毛片我不卡| 成人毛片a级毛片在线播放| a级毛色黄片| 在线观看一区二区三区| 国产成人精品一,二区| 激情五月婷婷亚洲| 成人亚洲精品一区在线观看 | 午夜爱爱视频在线播放| 日韩中字成人| 亚洲人成网站高清观看| 男女国产视频网站| 岛国毛片在线播放| 99久国产av精品国产电影| 神马国产精品三级电影在线观看| 午夜精品国产一区二区电影 | 国产91av在线免费观看| 少妇的逼好多水| 国产毛片在线视频| 日韩免费高清中文字幕av| 日日啪夜夜撸| 尤物成人国产欧美一区二区三区| 91久久精品国产一区二区三区| 亚洲最大成人中文| 99久久精品国产国产毛片| 三级国产精品欧美在线观看| 国产69精品久久久久777片| 亚洲国产av新网站| 日韩一区二区视频免费看| 天美传媒精品一区二区| 高清午夜精品一区二区三区| 久久久久国产精品人妻一区二区| 99热国产这里只有精品6| 国产淫语在线视频| 天美传媒精品一区二区| 国产午夜福利久久久久久| 久久久久性生活片| 精品一区二区免费观看| 欧美变态另类bdsm刘玥| 成人漫画全彩无遮挡| 免费av不卡在线播放| 久久久色成人| eeuss影院久久| 老女人水多毛片| 国国产精品蜜臀av免费| 欧美人与善性xxx| 国产在视频线精品| 免费看a级黄色片| 国产久久久一区二区三区| 麻豆国产97在线/欧美| 搞女人的毛片| 高清欧美精品videossex| 91aial.com中文字幕在线观看| 国产综合懂色| 一级毛片电影观看| 看十八女毛片水多多多| 熟女人妻精品中文字幕| 又大又黄又爽视频免费| 成人欧美大片| 国产高清有码在线观看视频| 国产精品一区二区性色av| 亚洲精品中文字幕在线视频 | 在线a可以看的网站| 狂野欧美白嫩少妇大欣赏| 免费播放大片免费观看视频在线观看| 成年女人在线观看亚洲视频 | 在线看a的网站| 亚洲精品中文字幕在线视频 | 两个人的视频大全免费| 少妇 在线观看| 久久99蜜桃精品久久| 性色av一级| 成人黄色视频免费在线看| 亚洲欧美一区二区三区国产| 日韩av不卡免费在线播放| 狂野欧美白嫩少妇大欣赏| 亚洲av欧美aⅴ国产| 色婷婷久久久亚洲欧美| 夜夜看夜夜爽夜夜摸| 亚洲精品影视一区二区三区av| www.av在线官网国产| 超碰av人人做人人爽久久| 少妇的逼水好多| 中国国产av一级| 久久精品国产亚洲av涩爱| 美女xxoo啪啪120秒动态图| 尾随美女入室| 午夜免费鲁丝| 特级一级黄色大片| 最近中文字幕高清免费大全6| 成人高潮视频无遮挡免费网站| 久久韩国三级中文字幕| 尾随美女入室| 国产黄片视频在线免费观看| 国产白丝娇喘喷水9色精品| av卡一久久| 人人妻人人澡人人爽人人夜夜| 18禁在线无遮挡免费观看视频| 老司机影院毛片| 亚洲欧美中文字幕日韩二区| 亚洲精品亚洲一区二区| 特大巨黑吊av在线直播| 中国三级夫妇交换| 久久精品熟女亚洲av麻豆精品| 搡老乐熟女国产| 亚洲在线观看片| 国产一区二区亚洲精品在线观看| 亚洲av中文字字幕乱码综合| 在线观看国产h片| 久久亚洲国产成人精品v| 亚洲aⅴ乱码一区二区在线播放| av.在线天堂| 少妇人妻精品综合一区二区| 91aial.com中文字幕在线观看| 久久精品国产鲁丝片午夜精品| 日韩强制内射视频| 日本免费在线观看一区| 婷婷色av中文字幕| 夫妻午夜视频| av.在线天堂| 免费黄网站久久成人精品| 搡老乐熟女国产| 国产免费一级a男人的天堂| 免费黄网站久久成人精品| 一级毛片久久久久久久久女| 男的添女的下面高潮视频|