• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Engineering BiOBrxI1-x solid solutions with enhanced singlet oxygen production for photocatalytic benzylic C—H bond activation mediated by N-hydroxyl compounds

    2021-12-27 13:06:18YucuiBianYongpanGuXiaofeiZhangHaijunChenZhongjunLi
    Chinese Chemical Letters 2021年9期

    Yucui Bian,Yongpan Gu,Xiaofei Zhang,Haijun Chen,Zhongjun Li

    Green Catalysis Center,College of Chemistry,Zhengzhou University,Zhengzhou 450001,China

    Keywords:BiOBrxI1-x solid solutions Ethylbenzene oxidation N-Hydroxysuccinimide Photocatalysis Singlet oxygen

    ABSTRACT The aerobic,selective oxidation of hydrocarbons via C--H bond activation is still a challenge.This work shows the achievement of the room temperature visible light driven photocatalytic activation of benzylic C--H bonds with N-hydroxysuccinimide over BiOBrxI1-x(0≤x≤1)solid solutions,whose valance bands were engineered through varying the ratio of bromide to iodide.The optimal BiOBr0.85I0.15 catalyst exhibited over 98% conversion ratio of ethylbenzene,which was about 3.9 and 8.9 times that of pure BiOBr and BiOI,respectively.The excellent photocatalytic activity of BiOBr0.85I0.15 solid solution can be ascribed to the orbital hybridization of the valence band containing both Br 4p and I 5p orbitals,which could promote photo-induced charge carrier separation and improve the generation of singlet oxygen.This work shed some light on the rational design of photocatalysts for targeted organic transformation.

    Selective functionalization of benzylic C(sp3) C--H bonds of hydrocarbons with molecular oxygen (O2) plays a very important role in pharmaceuticals and fine chemicals synthesis [1,2].However,due to the huge resonance stabilization energy in ground triplet state3Σg-O2,it is thermodynamically unfavorable for O2to directly interact with organic molecules [3].Photocatalysts are usually employed to activate O2into various reactive oxygen species[4].Especially,the singlet oxygen1O2,which is an active species with relatively mild oxidizing ability toward high selectivity and generally associated with the synthesis of natural products and drugs[4,5],is beneficial to selectively activating the C--H bonds to form oxygenated products.

    The direct selective activation of C(sp3)--H bonds has attracted enormous attentions[6],to which great efforts have been devoted including the use of transition metal complexes as homogeneous catalysts and the heterogeneous catalysis with rather stringent reaction conditions,such as high temperature and pressure [7,8],while it is still a hot topic to selectively oxidize these inert bonds under mild conditions due to the high bond dissociation energy of C(sp3)--H bonds(70-130 kcal/mol)[9-11].Alternatively,the C--H bonds can readily react with N-oxyl radicals to form carbon radicals via H-abstraction [12,13],which is an efficient route to achieve the hydrocarbon oxidation under mild conditions.However,the production of N-oxyl radicals,which is firstly induced from N-hydroxy compounds,still requires radical initiators such as azo compounds,metal salts,NOx,or quinone[14-16].To tackle this issue,heterogeneous photocatalysis is deemed as one of the most promising way to generate the N-oxyl radicals with energy renewable,environmentally friendly merits,which follows in the scope of the sustainable chemistry.Whereas,up to now,only a few specific visible light-responsive catalysts,such as C3N4,CdS,and FeOx,could produce efficient N-oxyl radicals through oxidation of N-hydroxyphthalimide by photogenerated holes [17-20].Therefore,it would be significant and highly desirable to explore other efficient photocatalytic system to regulate N-oxyl radicals generation for activating C--H bonds.

    Solid solution materials have been intensively investigated in photocatalysis field due to their flexible and effective modulation of the energy band structures [21,22].Among them,bismuth oxyhalide solid solution,as a new type of two dimensional material with open layered structure possessing attractive physicochemical properties,for example,internal electric field [23],low toxicity,adjustable optical absorptions,and enhanced charge separation,was extensively used for photocatalytic degradation of organic pollutants[24],reduction of CO2[25],and elimination of NO[26].Moreover,the regulation of band structure of solid solution could also adjust the activation capacity of reactive oxygen species.

    Inspired by the above investigations,we intended to engineer solid solution to achieve selective benzylic C--H bond activation through regulating specific reactive oxygen species production involved by succinimide-N-oxyl radicals (SINO).Herein,the BiOBrxI1-xsolid solutions with adjustable band structure and redox potentials were used to study their photocatalytic performance for aerobic oxidation of C(sp3)--H bonds to corresponding oxygenated products at room temperature with the assistance of N-hydroxysuccinimide (NHSI).The possible mechanism of synergistic effect of enhanced carrier separation and singlet oxygen production by solid solution toward improved photocatalytic performance was revealed.

    The crystal phase purity of the as-prepared BiOBrxI1-xsolid solutions(denoted as BBI-x,0≤x≤1,hereafter)was identified by X-ray diffraction (XRD) measurements in Fig.1a.The diffraction peaks of the pure BiOBr (BB) and BiOI (BI),which are in keeping with the standard XRD patterns of BiOBr(JCPDS No.09-0393)and BiOI (JCPDS No.10-0445) in the tetragonal phase,respectively,demonstrating the tetragonal structure of the BBI-x.When the value of x decreased,the peaks of BBI-x presented a slight shift toward lower 2θ angles,which was arising from the replacement of bromide ions by iodide ions with a larger radius (Br:1.95 ? vs.I:2.16 ?).In addition,the changes in the lattice parameters of the solid solution further confirm that iodide ions were successfully incorporated into the BB lattice,and the interplanar lattice spacing of BBI-x was calculated by the Bragg's law in Table S1(Supporting information) [27,28].The lattice parameter c exhibited a nearly linear relationship with the Br mole fraction(Fig.1b).Notably,the calculated value of c deviated from Vegard’s law,which may be mainly due to the weakness of anion-anion interactions across the interface between two adjacent halide anion layers [28].These regular movements in XRD peaks position and the variation of the c indicate that the obtained catalysts are solid solutions rather than a mixture of BB and BI [24].

    The morphology and microstructure of the as-synthesized BBI-x catalysts were examined by scanning electron microscope(SEM),N2adsorption,and transmission electron microscope(TEM).As depicted by Fig.2a,when none of iodide ion was doped,the obtained BB catalyst exhibited a bent sheet-like twodimensional morphology,which still presented in BBI-0.85(BiOBr0.85I0.15) catalyst when 15% molar ratio of bromine was replaced by iodine,while BBI-0.6 (BiOBr0.6I0.4),BBI-0.4 (BiOBr0.4I0.6),BBI-0.2 (BiOBr0.2I0.8),and BI catalysts showed spherical structure assembled by the nanosheet,as illustrated in Fig.S1(Supporting information) and Figs.2b and c.These results demonstrate that the content of iodine has a remarkable effect on the assembly mode of the solid solution.Table S2 and Fig.S2(Supporting information) showed that the surface areas of BB,BBI-0.85,and BI were calculated to be 6.04 m2/g,22.40 m2/g,and 29.21 m2/g,respectively.Further,the TEM images in Figs.2d-f clearly showed the similar nanosheet structure of BB,BBI-0.85,and BI,which were in line with the SEM images.The high-resolution TEM (HRTEM) images revealed the high degree of crystallinity and the clear lattice fringes of catalysts in Figs.2g-i.For BBI-0.85 solid solution,the d-spacing of 0.280 nm were coincided with the(110) plane of the tetragonal structure (Fig.2h).Moreover,the interplanar lattice spacing value of BBI-0.85 falls in between that of 0.278 nm of pure BB and 0.285 nm of BI (Figs.2g and i),which further confirms the formation of solid solution containing mixed halides.And the energy-dispersive X-ray spectrometer mapping images showed that the Bi,O,Br,and I elements were evenly distributed in BBI-0.85 nanosheet in Fig.S3 (Supporting information).

    Fig.1.(a) X-ray diffraction patterns of BBI-x catalysts.(b) Variation of the lattice parameter c of the BBI-x solid solutions with Br mole fraction.

    Fig.2.SEM,TEM,and HRTEM images of BB(a,d,g),BBI-0.85(b,e,h),and BI(c,f,i)catalysts,respectively.

    The UV-vis diffuse reflectance spectra analysis was adopted to characterize the optical properties of BBI-x solid solutions(Fig.S4a in Supporting information).With the increasing of the content of iodine,the optical absorption edges of the BBI-x catalysts underwent a red shift from 440 nm of BB to 664 nm of BI.The energy band gap(Eg)of BBI-x(x=0,0.2,0.4,0.6,0.85,and 1.0)were calculated to be 1.68,1.75,1.80,1.96,2.17,and 2.59 eV (Fig.S4b in Supporting information),respectively.Besides,the conduction band (CB) of BBI-x solid solutions can be determined by Mott-Schottky measurements(Fig.S4c in Supporting information)[29],and the valence band(VB)edges of catalysts could be obtained by the formula of EVB=Eg-ECB,which were found to be 1.40,1.46,1.57,1.75,1.93,and 2.38 V vs.NHE for BI,BBI-0.2,BBI-0.4,BBI-0.6,BBI-0.85,and BB,respectively (Fig.S4d in Supporting information).It has been revealed by density functional theory calculations that the CB of BBI-x was mainly composed of Bi 6p orbitals while the VB was consist of Bi 6 s,O 2p,Br 4p,and I 5p orbitals and the doping of iodine into BB gave rise to upshift of the VB potential due to the hybridization of Br and I np orbitals,which resulted in the electrons being photo-excited more easily [24].Accordingly,the light absorption was broadened and the band structures regulated through the solid solution engineering.

    Fig.3.(a) Photocatalytic oxidation of ethylbenzene over different reaction conditions.(b)Dependences of oxidation products yield on the NHSI concentration in the ethylbenzene oxidation over BBI-0.85 catalyst.(c) Time-dependence of oxidation products yield over BBI-0.85.(d)Photocatalytic oxidation of ethylbenzene over diverse catalysts.Conditions:10 mg of catalyst,0.1 mmol of ethylbenzene,3 mg of NHSI,3.0 mL of CH3CN,O2 at 1 atm,room temperature,blue LED light(455 nm,8 W),5 h.

    The aerobic visible light photo-oxidation of ethylbenzene was selected as a model reaction in Scheme 1 to assess the photocatalytic performance of the solid solutions.As shown in Fig.3a,NHSI or BBI-0.85 solid solution alone could not oxidize ethylbenzene under photoirradiation in the presence of O2.A combination of BBI-0.85 and NHSI can catalyze ethylbenzene with 98% conversion in atmospheric O2under 455 nm irradiation.Nevertheless,almost no conversion occurred in the mixture of NHSI and BBI-0.85 photocatalyst in the dark or in the absence of O2.These experiments clearly demonstrate that BBI-0.85,NHSI,and O2were essential to the process of photocatalytic C--H bond activation.Fig.3b exhibited that the ethylbenzene conversion initially increased with the amounts of NHSI arising,when the quantity of NHSI reached to 3 mg,the conversion reached a plateau.As shown in Fig.3c,the total amounts of oxidized products increased sharply in three hours,and the intermediate product phenylethanol was further oxidized to acetophenone with increasing irradiation time.

    Scheme 1.Aerobic oxidation of ethylbenzene.

    To investigate the relationship between the catalytic performances and the variation of iodide concentration,the photocatalytic activity of a range of BBI-x catalysts(x=0,0.2,0.4,0.6,0.8,0.85,0.9,0.95,1)were investigated.As shown in Fig.3d,the catalytic activity initially increased and then decreased with the increasing of the content of iodide,and BBI-0.85 photocatalyst exhibited the highest conversion rate with 98%,which was about 3.9 and 8.9 times that of BB and BI catalysts,respectively.The apparent quantum efficiency(AQE)can reach 0.72% at 445 nm over BBI-0.85 catalyst.These results indicate that the construction of solid solution can significantly improve the photocatalytic activity.

    To explore the origin of the excellent photoactivity of solid solutions,we evaluated the photogenerated electron holes separation efficiency of these catalysts by (photo)electrochemical measurements.Photocurrent-time curves of BBI-0.85 exhibited a higher photocurrent density in contrast to the other four catalysts(BI,BBI-0.4,BBI-0.6,and BB) in Fig.4a.And Fig.S5 (Supporting information)showed that the diameter of the arc radius of BBI-0.85 was clearly much smaller than the other four photocatalysts in electrochemical impedance spectroscopy measurements.The time-resolved photoluminescence spectra was further applied to uncover the detailed information with respect to the carrier kinetics of the solid solutions (Fig.S6 in Supporting information).It can be seen that the calculated average lifetime of the carriers(τavg=(A1τ12+A2τ22)/(A1τ1+A2τ2))were 7.07 μs for the BBI-0.85,which was longer than that of BI (6.12 μs),BBI-0.2 (6.58 μs),BBI-0.4 (6.37 μs),BBI-0.6 (6.29 μs),and BB (6.18 μs),respectively(Table S3 in Supporting information).The longer charge carrier lifetime of solid solutions than that of the monocomponent ones indicates that the hybridization of the halogen orbitals in the valence band contributes to prolonging the lifetime of the photogenerated charge and the BBI-0.85 catalyst has the best photoinduced charge separation efficiency.Due to the hybridization of different halogen np orbitals of solid solutions,the mobility of photon-induced holes is decreased,whereas electron mobility is not affected [24,30].Consequently,the BBI-x solid solution displayed considerably reduced recombination efficiency of photogenerated electron holes and enhanced photocatalytic performances.

    Fig.4.(a)Photocurrent-time curves.(b)FT-IR spectra of NHSI and adsorbed NHSI on BBI-0.85 catalyst.(c) Ethylbenzene conversions over BBI-0.85 catalyst with different scavengers.(d)EPR spectra of 1O2 over different catalysts in the presence of TEMP.

    The oxidation potential of the semiconductor is a key factor that drives the chemical transformation,the more positive of the VB petential,the higher oxidation ability of the photocatalyst.A volcano relationship was obtained between VB potential and photocatalytic performance of BBI-x solid solutions in Fig.S7(Supporting information).Notably the redox potential of NHSI/SINO was determined to be 1.1 V vs.NHE by the cyclic voltammetry in Fig.S8(Supporting information).Therefore,the VB potential in the range of 1.40-2.38 V of the BBI-x solid solutions could all be capable of oxidizing NHSI to produce SINO radical,which was the initially reactive species for C--H bond activation [17,18].In addition,the strong interaction between NHSI and BBI-0.85 surface was clearly demonstrated by Fourier transform infrared spectroscopy(FT-IR)tests(Fig.4b).The clear red-shift of C=O vibration to 1670 cm-1of BBI-0.85 mixing with NHSI,compared with free NHSI at 1708 cm-1,signifies the adsorption of NHSI on BBI-0.85 surface,which would facilitate the charge transfer [17].Although,the oxidation of NHSI to SINO radical could be smoothly proceeded over all the solid solutions,the highest oxidation activity for ethylbenzene over BBI-0.85 indicates the electron holes separation was the rate determining step taking (photo)electrochemical results into account.

    Further,to get insights into the main reactive species during the photocatalytic process,we carried out a series of radical trapping experiments as shown in Fig.4c.Adding 2,6-ditert-butyl-4-methylphenol (BHT) can almost inhibit the reaction completely,indicating a carbon-centered radical was involved,which was firstly generated by the trigger of SINO radicals [17].When O2·-capture reagent of 1,4-benzoquinone (BQ) and·OH capture reagent of isopropanol (IPA) were added separately [31],we obtained a slight decrease in ethylbenzene conversion,indicating that O2·-and·OH were not key intermediates in the reaction.As electron capture reagents of K2S2O8(KPS) as well as hole capture reagents of(NH4)2C2O4(AO)and NaHCO3(SB)were added[32],the ethylbenzene conversion were reduced from 98% to 71%,62%,and 50%,respectively,verifying the more important role of hole.Notably,the hole would directly oxidize the NHSI to produce SINO radical and then promote the cleavage of C--H bonds [17,19].The moderate inhibition role of hole scavenger suggests the SINO radical may also be generated by the other way.

    It is noteworthy that the L-tryptophan(L-Trp) can dramatically suppress the conversion of ethylbenzene,proving that singlet oxygen plays a vital role in the oxidation reaction (Fig.4c).Additionally,electron paramagnetic resonance (EPR) measurements were performed with 2,2,6,6-tetramethylpiperidine(TEMP)as a trapping agent.As shown in Fig.4d,a 1:1:1 triplet signal with g-value of 2.006 appeared in the presence of BBI-0.85 under photoirradiation,in accordance with TEMP-1O2[33,34].The higher singlet oxygen signal intensity over BBI-0.85 nanosheets than those of BB and BI catalysts indicated the prominent production of singlet oxygen.Considering that the reaction can hardly occur without NHSI and the oxidation of NHSI to SINO radical was the initial step in ethylbenzene oxidation,which was traditionally considered to be triggered by holes generated in photocatalyst.While the SINO radical still existed to promote the photo-oxidation of ethylbenzene as evidenced by the hole capture experiments.Therefore,we conclude that besides the oxidation of holes,the1O2would also oxidize NHSI to produce SINO radical with H2O2as the by-product,which was supported by the ultraviolet visible spectroscopy detective experiments in Fig.S9 (Supporting information).

    In view of the above experimental and characteristic results,a plausible reaction pathway for ethylbenzene photooxidation by BBI-x/NHSI (>N--OH) was illustrated in Scheme S1 (Supporting information).Under visible light irradiation,photo-induced electron holes are generated.The photosensitized processes would transfer energy to the triplet state oxygen molecules,which results in the generation of1O2.The photogenerated holes in the VB and1O2can directly oxidize> N--OH to form>N--O·(SINO)radicals and H2O2species.Then,the N-oxyl radicals can abstract the H·of the C--H bond to form 1-phenethyl carbon radical(PhCH·CH3) intermediates.Meanwhile,the> N--O·radical is reduced to> N--OH for the next run.The PhCH·CH3radical reacts with activated oxygen to form the phenylethyl peroxide radical(PhCH(OO·)CH3),which finally decomposed into the corresponding alcohol and ketone.And the alcohol would also be oxidized to ketone.In addition,C--C bonds may be cleaved by phenylethyl hydrogen peroxide(PhCH(OOH)CH3)compound to give benzaldehyde and CO2as the by-products,the latter was determined by gas chromatograph.

    In conclusion,BBI-x solid solution photocatalysts has been successfully constructed for the selective photocatalytic oxidation of C(sp3)--H bonds under mild conditions.The BiOBr0.85I0.15solid solution showed an enhanced photocatalytic activity with promoted charge separation efficiency and enhanced generation of singlet oxygen.This study exposes that a rational regulation of solid solution photocatalysts can modulate the activation of oxygen in more challenging organic transformation reactions.

    Declaration of competing interest

    The authors declare no conflict of interest.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China(No.21671176)and Post-doctoral Foundation of Henan Province.

    Appendix A.Supplementary data

    Supplementary material related to this article can be found,in the online version,at doi:https://doi.org/10.1016/j.cclet.2021.02.006.

    日韩一区二区三区影片| 搡女人真爽免费视频火全软件| 天堂中文最新版在线下载| 男女边摸边吃奶| 亚洲精品日韩av片在线观看| av免费在线看不卡| 国产亚洲最大av| 亚洲av电影在线观看一区二区三区| 少妇猛男粗大的猛烈进出视频| 一本大道久久a久久精品| 免费看av在线观看网站| 欧美成人精品欧美一级黄| 欧美97在线视频| 高清视频免费观看一区二区| 日本免费在线观看一区| 男的添女的下面高潮视频| 日韩中字成人| 一本—道久久a久久精品蜜桃钙片| www.色视频.com| 久久人人爽人人爽人人片va| 精品国产国语对白av| 久久久精品区二区三区| 91成人精品电影| 日韩视频在线欧美| 亚洲国产日韩一区二区| 亚洲第一区二区三区不卡| 国产av码专区亚洲av| a级毛片在线看网站| 3wmmmm亚洲av在线观看| 国产欧美另类精品又又久久亚洲欧美| 久久影院123| 啦啦啦视频在线资源免费观看| 一本大道久久a久久精品| 久久人人爽人人片av| 91精品国产九色| 久久久久久久久久久丰满| 国产色婷婷99| 伊人久久精品亚洲午夜| 成人亚洲欧美一区二区av| 日本-黄色视频高清免费观看| 22中文网久久字幕| 欧美精品一区二区免费开放| 视频区图区小说| 亚洲综合色网址| 国产高清国产精品国产三级| 久久午夜福利片| 亚洲五月色婷婷综合| 日韩欧美一区视频在线观看| 天天躁夜夜躁狠狠久久av| 午夜激情久久久久久久| 国产精品99久久99久久久不卡 | 人妻夜夜爽99麻豆av| 亚州av有码| 日韩免费高清中文字幕av| 新久久久久国产一级毛片| 国产高清不卡午夜福利| 日韩大片免费观看网站| 亚洲国产最新在线播放| 免费黄频网站在线观看国产| 午夜福利在线观看免费完整高清在| av免费在线看不卡| 国产精品嫩草影院av在线观看| 国产高清三级在线| 你懂的网址亚洲精品在线观看| 日韩不卡一区二区三区视频在线| 99九九在线精品视频| 十八禁高潮呻吟视频| 国产精品一区二区在线观看99| 亚洲av成人精品一二三区| 精品少妇内射三级| 新久久久久国产一级毛片| 99视频精品全部免费 在线| 美女国产视频在线观看| 亚洲欧美清纯卡通| 亚洲三级黄色毛片| 成人毛片a级毛片在线播放| 国产精品免费大片| 少妇人妻精品综合一区二区| 99re6热这里在线精品视频| 久久久久久久久久久丰满| 午夜福利视频在线观看免费| 伊人久久精品亚洲午夜| 国产黄色免费在线视频| 国产精品国产三级国产av玫瑰| √禁漫天堂资源中文www| 中文字幕av电影在线播放| 色婷婷久久久亚洲欧美| 韩国高清视频一区二区三区| 亚洲av在线观看美女高潮| 一区二区日韩欧美中文字幕 | 久久久国产欧美日韩av| 日日摸夜夜添夜夜添av毛片| 99国产综合亚洲精品| 在线观看免费日韩欧美大片 | 老熟女久久久| 人妻制服诱惑在线中文字幕| 亚洲av中文av极速乱| 精品久久久久久久久亚洲| 伦理电影大哥的女人| 欧美xxⅹ黑人| 日韩av在线免费看完整版不卡| 欧美日韩成人在线一区二区| 久久久久视频综合| 亚洲婷婷狠狠爱综合网| 18禁观看日本| 精品人妻熟女毛片av久久网站| 母亲3免费完整高清在线观看 | 国产成人免费无遮挡视频| 午夜激情福利司机影院| 日日啪夜夜爽| 国产成人精品在线电影| 五月伊人婷婷丁香| 亚洲情色 制服丝袜| 在线 av 中文字幕| 老女人水多毛片| 黄色配什么色好看| 69精品国产乱码久久久| 国产视频首页在线观看| 狂野欧美激情性xxxx在线观看| 国产精品一区二区在线不卡| 国产在视频线精品| 国产69精品久久久久777片| 久久久久久久亚洲中文字幕| 精品酒店卫生间| 男女啪啪激烈高潮av片| 一区二区av电影网| 制服人妻中文乱码| 精品一区二区三区视频在线| 美女视频免费永久观看网站| 青春草视频在线免费观看| 免费高清在线观看日韩| 亚洲色图 男人天堂 中文字幕 | 欧美日韩精品成人综合77777| 大片免费播放器 马上看| 国产亚洲av片在线观看秒播厂| 久久99一区二区三区| av一本久久久久| 超碰97精品在线观看| videosex国产| 九色成人免费人妻av| 三级国产精品片| 日韩,欧美,国产一区二区三区| 人人妻人人澡人人看| 美女cb高潮喷水在线观看| 精品人妻在线不人妻| 亚洲精品,欧美精品| 国产成人免费无遮挡视频| 免费黄频网站在线观看国产| 欧美亚洲 丝袜 人妻 在线| 最近中文字幕高清免费大全6| 狠狠精品人妻久久久久久综合| 久久鲁丝午夜福利片| 久久av网站| 婷婷色av中文字幕| 99热全是精品| 国产69精品久久久久777片| 狠狠精品人妻久久久久久综合| 夜夜爽夜夜爽视频| 大陆偷拍与自拍| 日本午夜av视频| av一本久久久久| 国产精品一区www在线观看| tube8黄色片| 伦精品一区二区三区| 夜夜爽夜夜爽视频| 国产高清三级在线| 国产成人精品久久久久久| 草草在线视频免费看| 久久久精品94久久精品| 中文乱码字字幕精品一区二区三区| 老女人水多毛片| 大香蕉久久网| 人成视频在线观看免费观看| 日韩不卡一区二区三区视频在线| 青春草亚洲视频在线观看| 国产乱来视频区| 亚洲国产精品国产精品| 人妻制服诱惑在线中文字幕| av在线观看视频网站免费| 2018国产大陆天天弄谢| 一本久久精品| av线在线观看网站| 国产精品99久久久久久久久| 亚洲av中文av极速乱| 午夜久久久在线观看| 亚洲四区av| 少妇精品久久久久久久| 久久女婷五月综合色啪小说| 人人妻人人澡人人看| 午夜免费鲁丝| 精品久久久噜噜| 国产午夜精品久久久久久一区二区三区| 午夜老司机福利剧场| 午夜免费男女啪啪视频观看| www.色视频.com| 国精品久久久久久国模美| 乱人伦中国视频| 视频在线观看一区二区三区| 好男人视频免费观看在线| 日韩精品免费视频一区二区三区 | www.av在线官网国产| 街头女战士在线观看网站| 国产精品三级大全| 最后的刺客免费高清国语| 丝袜喷水一区| 制服丝袜香蕉在线| 国产成人免费观看mmmm| av国产精品久久久久影院| 亚洲精品成人av观看孕妇| 久久毛片免费看一区二区三区| 午夜日本视频在线| 国产精品一区二区在线不卡| 亚洲精品国产av成人精品| 十八禁高潮呻吟视频| 日韩熟女老妇一区二区性免费视频| 国产精品一国产av| 观看美女的网站| 成人二区视频| 在线精品无人区一区二区三| 美女大奶头黄色视频| 少妇的逼好多水| 曰老女人黄片| 美女中出高潮动态图| av网站免费在线观看视频| 少妇的逼好多水| 午夜激情av网站| 久久久精品免费免费高清| 精品人妻偷拍中文字幕| 亚洲av福利一区| 青春草国产在线视频| 欧美激情 高清一区二区三区| .国产精品久久| 久久久久精品久久久久真实原创| 日日摸夜夜添夜夜爱| 少妇精品久久久久久久| 母亲3免费完整高清在线观看 | 婷婷色av中文字幕| 大又大粗又爽又黄少妇毛片口| 高清午夜精品一区二区三区| 美女国产视频在线观看| 国精品久久久久久国模美| 国产无遮挡羞羞视频在线观看| 亚洲经典国产精华液单| 色吧在线观看| 午夜福利影视在线免费观看| 精品亚洲成国产av| 老司机影院毛片| 一本—道久久a久久精品蜜桃钙片| 国产精品熟女久久久久浪| 夜夜爽夜夜爽视频| 亚洲精品自拍成人| 国精品久久久久久国模美| 国产精品久久久久久精品古装| 一级a做视频免费观看| 18禁在线播放成人免费| 内地一区二区视频在线| 国产毛片在线视频| 大香蕉久久成人网| 人人澡人人妻人| 精品少妇一区二区三区视频日本电影| 亚洲成av片中文字幕在线观看| aaaaa片日本免费| 欧美性长视频在线观看| 黄片小视频在线播放| 亚洲色图 男人天堂 中文字幕| 我要看黄色一级片免费的| 免费在线观看完整版高清| 久久这里只有精品19| 国产精品熟女久久久久浪| 宅男免费午夜| 国产精品美女特级片免费视频播放器 | 捣出白浆h1v1| 日韩中文字幕视频在线看片| 手机成人av网站| 久久中文看片网| 国产熟女午夜一区二区三区| 中文字幕高清在线视频| 亚洲国产看品久久| 国产色视频综合| 黑人操中国人逼视频| 男女无遮挡免费网站观看| 亚洲黑人精品在线| 亚洲欧洲精品一区二区精品久久久| 亚洲成人免费电影在线观看| 99在线人妻在线中文字幕 | 十分钟在线观看高清视频www| 欧美精品啪啪一区二区三区| 久久毛片免费看一区二区三区| 桃红色精品国产亚洲av| 窝窝影院91人妻| 欧美av亚洲av综合av国产av| 啪啪无遮挡十八禁网站| 久久人人爽av亚洲精品天堂| 大型黄色视频在线免费观看| 精品免费久久久久久久清纯 | 日本av手机在线免费观看| 国产精品影院久久| 久久久久久久久久久久大奶| 亚洲 欧美一区二区三区| 亚洲国产毛片av蜜桃av| 十八禁人妻一区二区| 一级毛片精品| 欧美精品一区二区免费开放| 亚洲 欧美一区二区三区| 无遮挡黄片免费观看| 一边摸一边抽搐一进一小说 | 十分钟在线观看高清视频www| 曰老女人黄片| 亚洲成av片中文字幕在线观看| av福利片在线| 欧美国产精品va在线观看不卡| 欧美午夜高清在线| 一区在线观看完整版| 一本综合久久免费| 一区二区日韩欧美中文字幕| 如日韩欧美国产精品一区二区三区| 在线观看舔阴道视频| 午夜福利一区二区在线看| 精品熟女少妇八av免费久了| 免费在线观看视频国产中文字幕亚洲| 一进一出好大好爽视频| 国产极品粉嫩免费观看在线| 色老头精品视频在线观看| 男男h啪啪无遮挡| 精品乱码久久久久久99久播| 久久国产精品人妻蜜桃| 亚洲,欧美精品.| 成人18禁在线播放| 考比视频在线观看| 久久久精品94久久精品| 久久久欧美国产精品| 午夜激情久久久久久久| 久久精品熟女亚洲av麻豆精品| 狂野欧美激情性xxxx| 女人高潮潮喷娇喘18禁视频| 国产区一区二久久| 欧美av亚洲av综合av国产av| 欧美一级毛片孕妇| 国产淫语在线视频| 国产激情久久老熟女| 午夜福利视频在线观看免费| 狂野欧美激情性xxxx| 国产亚洲精品第一综合不卡| 亚洲精品乱久久久久久| 亚洲三区欧美一区| 亚洲成av片中文字幕在线观看| 每晚都被弄得嗷嗷叫到高潮| a级片在线免费高清观看视频| 大型av网站在线播放| 久久久精品94久久精品| 丝袜在线中文字幕| 男女之事视频高清在线观看| 亚洲情色 制服丝袜| 日本五十路高清| 又大又爽又粗| 国产亚洲精品一区二区www | 巨乳人妻的诱惑在线观看| 久9热在线精品视频| 不卡av一区二区三区| 十八禁网站免费在线| 色综合欧美亚洲国产小说| 中文字幕制服av| 久久久久久久精品吃奶| 欧美日韩精品网址| 又大又爽又粗| 欧美日韩黄片免| 欧美成狂野欧美在线观看| 亚洲精品在线美女| 最黄视频免费看| 老熟妇仑乱视频hdxx| 美女主播在线视频| av线在线观看网站| 亚洲成国产人片在线观看| 色在线成人网| 国产亚洲欧美精品永久| 两个人免费观看高清视频| svipshipincom国产片| 久久久精品免费免费高清| 色尼玛亚洲综合影院| 国产主播在线观看一区二区| 欧美精品av麻豆av| 99精品欧美一区二区三区四区| 黑人欧美特级aaaaaa片| 精品少妇黑人巨大在线播放| 日日爽夜夜爽网站| 亚洲精品国产精品久久久不卡| 欧美国产精品一级二级三级| 欧美成人午夜精品| 欧美 亚洲 国产 日韩一| 啦啦啦免费观看视频1| 免费看十八禁软件| 真人做人爱边吃奶动态| 精品一区二区三卡| 午夜老司机福利片| 侵犯人妻中文字幕一二三四区| 大陆偷拍与自拍| 丁香六月欧美| 亚洲,欧美精品.| 国产黄色免费在线视频| 丰满少妇做爰视频| 在线天堂中文资源库| 久久国产精品人妻蜜桃| 久久狼人影院| 制服诱惑二区| 国产精品久久久久久精品电影小说| 欧美日韩中文字幕国产精品一区二区三区 | 少妇精品久久久久久久| 在线观看免费午夜福利视频| 亚洲精品一卡2卡三卡4卡5卡| 99精国产麻豆久久婷婷| 久久99热这里只频精品6学生| 一区福利在线观看| 操美女的视频在线观看| 黄色 视频免费看| 午夜福利在线观看吧| 两性午夜刺激爽爽歪歪视频在线观看 | 国产有黄有色有爽视频| 99精品在免费线老司机午夜| 欧美变态另类bdsm刘玥| 精品欧美一区二区三区在线| 天天躁夜夜躁狠狠躁躁| 日韩大码丰满熟妇| a级毛片黄视频| 欧美激情高清一区二区三区| 久久久国产一区二区| 欧美日韩亚洲高清精品| 夜夜爽天天搞| 王馨瑶露胸无遮挡在线观看| 国产伦理片在线播放av一区| 多毛熟女@视频| 国产亚洲一区二区精品| 人人妻人人澡人人爽人人夜夜| 精品第一国产精品| 亚洲第一青青草原| 一级毛片电影观看| h视频一区二区三区| 最新在线观看一区二区三区| 999久久久国产精品视频| 亚洲一卡2卡3卡4卡5卡精品中文| 另类精品久久| 91国产中文字幕| 又紧又爽又黄一区二区| 69av精品久久久久久 | 日韩视频一区二区在线观看| 怎么达到女性高潮| 亚洲av美国av| 最新美女视频免费是黄的| 一个人免费看片子| 亚洲伊人久久精品综合| 999久久久精品免费观看国产| av超薄肉色丝袜交足视频| 亚洲自偷自拍图片 自拍| 美女高潮到喷水免费观看| 两个人看的免费小视频| 亚洲视频免费观看视频| 国产精品免费大片| 天天躁狠狠躁夜夜躁狠狠躁| 久久久精品国产亚洲av高清涩受| 久久国产精品影院| 狠狠婷婷综合久久久久久88av| 久久青草综合色| 人人妻人人爽人人添夜夜欢视频| 亚洲精品国产色婷婷电影| 亚洲国产看品久久| e午夜精品久久久久久久| 桃红色精品国产亚洲av| 久久免费观看电影| 又紧又爽又黄一区二区| 亚洲国产精品一区二区三区在线| 少妇猛男粗大的猛烈进出视频| 国产亚洲精品第一综合不卡| 黄色视频,在线免费观看| 窝窝影院91人妻| 99re6热这里在线精品视频| 黄色a级毛片大全视频| 美女高潮喷水抽搐中文字幕| 亚洲综合色网址| 国产av一区二区精品久久| 丰满人妻熟妇乱又伦精品不卡| 两个人免费观看高清视频| 2018国产大陆天天弄谢| 在线观看一区二区三区激情| 久久久久国产一级毛片高清牌| 精品一区二区三卡| 大码成人一级视频| 国产不卡一卡二| 国产片内射在线| 人妻一区二区av| 丁香六月欧美| 国产一卡二卡三卡精品| 国产在线精品亚洲第一网站| 高清视频免费观看一区二区| 亚洲色图综合在线观看| 亚洲精品粉嫩美女一区| 91老司机精品| 亚洲,欧美精品.| 久久影院123| 黑人巨大精品欧美一区二区蜜桃| 在线永久观看黄色视频| 色综合欧美亚洲国产小说| 国产在线观看jvid| 色婷婷av一区二区三区视频| 丝瓜视频免费看黄片| 精品国产乱码久久久久久小说| 亚洲综合色网址| 欧美av亚洲av综合av国产av| 首页视频小说图片口味搜索| 日本五十路高清| 老司机午夜福利在线观看视频 | 在线永久观看黄色视频| √禁漫天堂资源中文www| 精品一品国产午夜福利视频| 国产激情久久老熟女| 宅男免费午夜| 亚洲情色 制服丝袜| 19禁男女啪啪无遮挡网站| 成人精品一区二区免费| 极品教师在线免费播放| 高清欧美精品videossex| 51午夜福利影视在线观看| 在线 av 中文字幕| 免费看十八禁软件| 一区二区三区激情视频| 精品国产乱码久久久久久小说| 嫩草影视91久久| 一本—道久久a久久精品蜜桃钙片| 丝袜喷水一区| 精品午夜福利视频在线观看一区 | 午夜福利免费观看在线| 国产免费视频播放在线视频| 国产精品自产拍在线观看55亚洲 | 丰满少妇做爰视频| 老司机影院毛片| 一区二区三区乱码不卡18| 满18在线观看网站| 欧美日韩精品网址| 91国产中文字幕| 成人av一区二区三区在线看| 国产成人av教育| 精品亚洲成国产av| 在线av久久热| 日韩成人在线观看一区二区三区| 精品欧美一区二区三区在线| 亚洲精品久久成人aⅴ小说| 欧美大码av| 国产精品二区激情视频| 国产人伦9x9x在线观看| 在线天堂中文资源库| 王馨瑶露胸无遮挡在线观看| 狠狠婷婷综合久久久久久88av| 欧美日韩av久久| a级毛片在线看网站| 一区二区三区激情视频| 久久香蕉激情| 韩国精品一区二区三区| 一区二区av电影网| videos熟女内射| 成人三级做爰电影| av在线播放免费不卡| www.熟女人妻精品国产| 在线永久观看黄色视频| 国产高清国产精品国产三级| 欧美黄色片欧美黄色片| 国产av国产精品国产| 国产精品av久久久久免费| 成年人午夜在线观看视频| 99riav亚洲国产免费| 在线 av 中文字幕| 中文字幕人妻丝袜制服| 国产在视频线精品| 纵有疾风起免费观看全集完整版| 少妇 在线观看| 高清黄色对白视频在线免费看| 1024香蕉在线观看| 国产激情久久老熟女| 他把我摸到了高潮在线观看 | 大片免费播放器 马上看| 91av网站免费观看| 一级黄色大片毛片| 久久香蕉激情| 精品亚洲成a人片在线观看| 国产成人啪精品午夜网站| 国产91精品成人一区二区三区 | 久久久水蜜桃国产精品网| 王馨瑶露胸无遮挡在线观看| videosex国产| 亚洲一区中文字幕在线| 成年人黄色毛片网站| 大型黄色视频在线免费观看| 自拍欧美九色日韩亚洲蝌蚪91| a级片在线免费高清观看视频| 亚洲 欧美一区二区三区| 老司机影院毛片| 美女国产高潮福利片在线看| 国产精品 国内视频| 蜜桃国产av成人99| 日本撒尿小便嘘嘘汇集6| 在线观看人妻少妇| 欧美大码av| 久久国产精品大桥未久av| 国产精品一区二区精品视频观看| 69精品国产乱码久久久| 国产成人系列免费观看| 欧美大码av| 亚洲精品国产精品久久久不卡| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美日韩精品网址| 一区二区三区精品91| 免费在线观看影片大全网站| 美女主播在线视频| 99久久人妻综合| 久久久国产一区二区| 国产一区二区三区综合在线观看| 久久国产精品人妻蜜桃| 国产一区二区三区综合在线观看|