• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Highly sensitive colorimetric detection of NH3 based on Au@Ag@AgCl core-shell nanoparticles

    2021-12-27 13:06:16ZhiweiQiuYitongXueJiyongLiYunzhiZhngXinyiLingCongyingWenHoujinGongJinginZeng
    Chinese Chemical Letters 2021年9期

    Zhiwei Qiu,Yitong Xue,Jiyong Li,Yunzhi Zhng,Xinyi Ling,Congying Wen,Houjin Gong,,Jingin Zeng,

    a College of Petroleum Engineering,China University of Petroleum (East China),Qingdao 266580,China

    b College of Science,China University of Petroleum (East China),Qingdao 266580,China

    c Petroleum Engineering Technology Research Institute,Sinopec Shengli Oilfield Company,Dongying 257067,China

    Keywords:NH3 detection Au@Ag@AgCl nanoparticles Localized surface plasmon resonance Etching Colorimetric sensor

    ABSTRACT As an important component of the atmosphere,ammonia (NH3) plays a very important role in maintaining the balance of environment.However,it is also one of the most toxic gases that can cause damage to the human respiratory system and mucous membranes even at low concentrations.As such,development of highly sensitive and selective NH3 sensors is of high significance for environmental monitoring and health maintenance.Herein,we have synthesized Au@Ag@AgCl core-shell nanoparticles(NPs)by oxidative etching and precipitating Au@Ag core-shell NPs using FeCl3 and further used them as optical probes for the colorimetric detection of NH3.The sensing mechanism is based on the fact that the etching of NH3 on AgCl and Ag shell leads to the variations of ingredients and core-to-shell ratio of the Au@Ag@AgCl NPs,thereby inducing noticeable spectral and color changes.By replacing the outmost layer of Ag with AgCl,not only is the stability of the sensor against oxygen significantly enhanced,but also is the sensitivity of the method improved.The method exhibits good linear relationship for the detection of NH3 from 0 to 5000 μmol/L with the limit of detection of 6.4 μmol/L.This method was successfully applied to the detection of simulated air polluted by NH3,indicating its practical applicability for environmental monitoring.This method shows great potential for on-site NH3 detection particularly in remote area,where a simple,fast,low-cost,and easy-to-handle method is highly desirable.

    Ammonia (NH3) is a colorless and highly irritating gas that originates from nature as well as from human activities [1-3].In recent decades,industrialized urbanization has developed rapidly and led to the emission of a large amount of NH3into the atmosphere[4].It is worth noting that NH3will show detrimental effects to humans even at low concentrations by affecting the human oral cavity,skin mucous membranes,upper respiratory tract and so on [5,6].The Occupational Safety and Health Administration (OSHA) has set an acceptable 8-h exposure limit of 25 ppm and a short-term(15 min)exposure level of 35 ppm for human beings[7].But for humans,the olfactory limit of detection of NH3gas is 55 ppm [8],which cannot fulfill the requirement of NH3detection.Thus,rapid and sensitive detection of NH3is of great significance for environmental monitoring and health maintaining.

    To attain this goal,various methods such as gas chromatography [9],semiconductor-based gas sensors [10-12],optical fiber method [13],fluorescence method [14,15]have been developed for NH3detection.Among them,gas sensors based on semiconductive metal oxides are widely used because of their high sensitivity and fast response,but they still suffer from some inherent shortcomings such as high working temperature,susceptibility to humidity and relatively long recovery time[16-18].Colorimetry has been widely used in various fields because of its low cost,simplicity,and easy semi-quantitative detection[19].Traditional colorimetric methods for NH3detection mainly involves the use of organic dyes[20,21],including Nessler's reagent [22],indophenol blue [23],pH-sensitive dyes [24],etc.These colorimetric methods are easy to carry out but their sensitivity is always insufficient for on-site gaseous NH3determination [25].Recently,noble metal nanomaterials (especially gold and silver) that exhibit highly tunable localized surface plasmon resonance (LSPR) properties offer an excellent opportunity to construct sensitive colorimetric sensors[26].These nanoparticles(NPs)have been widely used in the detection of organic pollutants[27],anions[28],cations[29-31]and biomolecules[32-36],etc.A few studies have also been directed to the detection of toxic gases by tailor-making plasmonic NPs with specific structure,composition,morphology and surface functionality [37].For example,silver nanoparticles(AgNPs)have been synthesized to serve as the optical probes for the colorimetric detection of NH3[38,39].The mechanisms are based on the manipulation of the surface plasmon band of AgNPs via the formation of Ag(NH3)2+complex,achieving the detection limit of 200 ppm.However,it is worth noting that Ag NPs suffer from poor stability and easy oxidation,which to some extent decrease its attractiveness in practical application.

    Based on these considerations,we developed a colorimetric method for NH3based on Au@Ag@AgCl NPs.As shown in Fig.1,Au@Ag core-shell NPs were synthesized by depositing a layer of silver onto pre-made AuNPs via an epaxial growth method.Then,a thin layer of AgCl was deposited onto Au@Ag NPs by oxidative etching and precipitating with FeCl3to construct Au@Ag@AgCl NPs.The sensing mechanism is based on the successive etching of AgCl and Ag shell by NH3,which exposed the internal Au NPs,leading to the decrease of absorbance of silver shell and increase of absorbance of Au core,and the color change from orange to pink to red.The introduction of the AgCl shell not only enhances the stability of the Ag shell,but also enables a richer color gradation and higher sensitivity.The colorimetric assay developed was successfully applied to the determination of gaseous NH3in real samples,showing its great potential for rapid detection of NH3in the field.

    Due to their strong LSPR effect,Au NPs were used as cores for the further deposition of Ag and AgCl shells to prepare Au@Ag@AgCl core-shell NPs.13-nm Au NPs were synthesized by the classical citrate method [40]with a uniform morphology and excellent dispersion.These Au NPs were used as seeds for the further deposition of Ag shell by an epitaxial growth method.Typical TEM and the histogram of size distribution of Au NPs and Au@Ag NPs are shown in Fig S1 (Supporting information).The Au@Ag core-shell NPs have a uniform morphology with average size of 15.0±1.2 nm.It can be seen from the UV-vis that the characteristic absorption peak of Ag appears at 380 nm as shown in Fig.S1f.Then,FeCl3was used an etching and precipitating agent to convert Au@Ag NPs into Au@Ag@AgCl NPs.It can be seen from Fig.S2(Supporting information)that after adding FeCl3solution to the Au@Ag core-shell NPs,a new LSPR band appeared at 260 nm,which was regarded as the characteristic peak of AgCl[41].As the concentration of the FeCl3increases,the intensity of the absorption peak of AgCl was significantly increased,accompanied by a decrease in the intensity of the absorption peak of Ag.Typical TEM images in Fig.2a shows a thin layer of shell with shallower contrast was deposited onto the Au@Ag.In addition,there was no free AgCl existing around the NPs.The size distribution chart shows that the average size of Au@Ag@AgCl NPs is 16.5±0.8 nm.High-resolution transmission electron microscopy (HRTEM) was used to characterize the structure which is shown in Fig.2b.The spacings of 2.35,2.04,2.76 ? were attributed to the (111) Au,(200) Ag and (200)AgCl lattice planes.The selected area electron diffraction (SAED)pattern with bright circular rings further confirmed the crystalline nature of the Au@Ag@AgCl(Fig.2c).High-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) and Energy dispersive spectroscopy (EDS)elemental mapping characterization in Figs.2d-h further evidence the formation of coreshell structure,in which the core belongs to Au and the shells belong to Ag and AgCl,respectively.

    Fig.1.Schematic illustration of the colorimetric detection of NH3 based on Au@Ag@AgCl NPs.

    To compare the sensitivity of Au@Ag and Au@Ag@AgCl to NH3detection,different concentrations of NH3·H2O were added to these two probes,respectively.As can be seen from Fig.3a,with the addition of 250 mmol/L NH3·H2O into Au@Ag NPs,the characteristic absorption peak of Au (520 nm) and Ag (370 nm) both decreased significantly.This phenomenon indicates the etching effect of NH3·H2O on the silver shell.In contrast,when NH3·H2O is added to Au@Ag@AgCl,the intensity of the characteristic peaks of both Au and Ag increases(Fig.3b).The reason for this phenomenon is that the outer AgCl shell with little LSPR effect is etched by NH3·H2O to expose the inner Ag shell,thus recovering the LSPR effect of Au and Ag.It is worth noting that the concentration of NH3·H2O used to etch Au@Ag(250 mmol/L)was a thousand times greater than that of Au@Ag@AgCl (250 μmol/L),confirming that the method using Au@Ag@AgCl NPs as the probes have a higher sensitivity for NH3detection.The difference of the sensitivity between these two probes can be explained by the Eqs.1 and 2 shown below.The etching of 1 mol of Ag and AgCl requires 8 mol and 2 mol of NH3·H2O,respectively.In addition,AgCl shell has a more stable chemical property than Ag,which brings further advantages to the practical application of the probe.

    To further confirm the etching mechanism,the morphology and dimension change of Au@Ag@AgCl NPs before and after NH3treatment was characterized by TEM.As shown in Fig.3c,the outer shell of the material was etched by NH3·H2O,and the diameter of the NPs decreased from 16.5 nm to 14.1 nm.

    To maximize the sensing efficiency,the core-to-shell size ratio of the NPs,reaction time,and pH of the solution were optimized.Firstly,the influence of Ag shell thickness on the detection effect was explored by depositing Ag shells at different thickness with different amounts of AgNO3(120,150 and 180 μmol/L).These three sizes of NPs were denoted as Au@Ag-1,Au@Ag-2 and Au@Ag-3(shown in Fig.4).As the concentration of silver nitrate increases,the thickness of the silver shell of Au@Ag core-shell NPs gradually increases from 14.6 nm to 16.4 nm(TEM and the histogram of size distribution were shown in Fig.S3 in Supporting information).Fig.4a shows that the Au@Ag-1 NPs with the thinnest silver shell thickness were sensitive for the detection of NH3,but the tunable color range was narrow.In contrast,Fig.4c indicates that the Au@Ag-3 NPs with the thickest silver shells were beneficial for the detection of NH3in a wide concentration range,but they suffered from low sensitivity and visual resolution.As shown in Fig.4b,Au@Ag-2 NPs exhibit both high sensitivity and obvious color gradation changes.Therefore,the concentration of AgNO3(150 μmol/L) is selected as the best condition for the synthesis of Au@Ag core-shell NPs.

    Fig.2.(a) TEM image and the histogram of particle size distribution of Au@Ag@AgCl NPs (inset).(b) HRTEM image of Au@Ag@AgCl NPs.(c) SAED of Au@Ag@AgCl NPs.(d-h) HAADF-STEM and EDS elemental maps of Au@Ag@AgCl NPs.

    Fig.3.(a) UV-vis of Au@Ag and Au@Ag NPs+NH3·H2O (250 mmol/L).(b) UV-vis of Au@Ag@AgCl and Au@Ag@AgCl NPs+NH3·H2O (250 μmol/L);(c) TEM image and the histogram of particle size distribution of Au@Ag@AgCl NPs+NH3·H2O (250 μmol/L) (inset).

    Fig.4.UV-vis and corresponding photographs of Au@Ag core-shell NPs with different Ag shell thicknesses reacting with NH3·H2O at different concentrations. The concentration of AgNO3:(a) 120 μmol/L;(b) 150 μmol/L;(c) 180 μmol/L.

    The concentrationof FeCl3is anothercrucial factor that needed to be optimized because it determines the efficiency of transformation of Ag into AgCl.Au@Ag@AgCl NPs were synthesized with FeCl3at different concentrations (60,120,180 μmol) and denoted as Au@Ag@AgCl-1,Au@Ag@AgCl-2 and Au@Ag@AgCl-3 (shown in Fig.5).These Au@Ag@AgCl NPs were used for NH3detection.Fig.5ashowsthattheAu@Ag@AgCl-1NPswithathinAgCllayerhave lowersensitivitytoNH3.AsfortheAu@Ag@AgCl-3NPswithathicker AgCl layer in Fig.5c,they have a higher sensitivity for NH3.However,due to the addition of excessive FeCl3solution,the color of the solution changed from orange to orange-red,which is similar to the colorofAuNPssothatcannotproduceobviouscolorgradation.Based on the result in Fig.5b,the Au@Ag@AgCl-2 NPs exhibited both satisfactory sensitivity and obvious color variations.

    Fig.5.UV-vis and corresponding photographs of Au@Ag@AgCl NPs with different AgCl thicknesses reacting with NH3·H2O at different concentrations,the concentration of FeCl3:(a) 60 μmol/L;(b) 120 μmol/L;(c) 180 μmol/L.The effect of reaction time (d) and pH (e) on NH3 detection.

    To further explore the influence of the etching conditions on the detection effect,the reaction time and pH of the solution were investigated.It can be seen from Fig.5d that the etching reaction almost reached equilibrium in 10 min.To ensure complete reaction,the reaction time was fixed at 12 min.Finally,the sensing efficiency was investigated from 8 to 10 because the weak basic property of NH3.By examining the change in the intensity of the characteristic absorption peak of Au at 510 nm(Fig.5e),the sensing efficiency was barely changed in the solution pH ranging from 8 to 10.

    Under the optimized conditions,the linear range,limit of detection,reproducibility and selectivity of the developed method were investigated.Fig.6a shows that with the increase of NH3·H2O concentration,the color of the solution changes gradually from orangetopink,andfinallytored.ItwasfoundthattheUV-visspectra exhibited two different trends with NH3in different concentration ranges.With the increase of NH3concentration in the range of 0-1600 μmol/L,the LSPR peak intensity of Au showed a regular increase trend(shown in Fig.6b),which can be ascribed to the fact that etching of AgCl shell leads to the recovery of strong LSPR effect stemmed from Au and Ag.The variation of the LSPR peak intensity of Au(ΔA510)is plotted as a function of NH3concentration in Fig.6c.A good linear relationship(ΔA(510 nm)=0.000219×c[NH3](μmol/L)+0.07784) was obtained with the determination coefficient R2at 0.997.TheLOD,definedbytheequationofLOD=3σ/k,whereσ isthe standard deviation of the control groups(σ=0.00047,n=5)and k is the slope of the calibration graph,was calculated to be 6.4 μmol/L(14.3 ppm).The comparison of LODs of the proposed method with other colorimetric assays is summarized in Table 1 [38,39,42-44].When the NH3concentration increased further,the LSPR peak of Au declined with a regular red shift (shown in Fig.6d).The phenomenon can be explained as follows:With the increase of NH3·H2O concentration,AgCl shell without LSPR characteristics[45]will be etched and consumed,leading to the increase of LSPR absorption intensity.Then,etching will occur on Ag shell and result in the decrease of LSPR absorption intensity.Further,Ag with a smaller refractive index (0.18) is consumed,and Au with a larger internal refractive index(0.5)[46]is exposed,resulting in a redshift in wavelength[47].The working curve in Fig.6e shows that in the range of 1800-5000 μmol/L,the change of Au LSPR absorptionpeak was linearly related to the concentration of NH3·H2O(ΔA(510 nm)=-0.0000846 × c[NH3](μmol/L)+0.528),and the determination coefficient was 0.991.Moreover,the sensor showed very high selectivity to NH3with negligible crossover responses to formaldehyde,ethanol,acetone,sulfurdioxide,sodiumsulfate,sodiumnitrite,sodium nitrate,acrylamide,hydroxylamine chloride and 4-hydroxyphenethylamine(Fig.S4 in Supporting information).

    Fig.6.The reaction between Au@Ag@AgCl core-shell NPs and a series of different concentrations of NH3:(a)Photographs;(b, d)UV-vis spectra;(c,e)Corresponding linear relationship between absorbance change at 510 nm and NH3 concentration.

    Table 1 Comparison of the LOD of our method with others in detecting NH3.

    Table 2 Recoveries of the colorimetric assay for the detection of gaseous NH3 in ambient air and simulated contaminated air.

    To evaluate its viability for the detection of gaseous NH3in atmosphere,recovery tests were conducted for the detection of ambient air and simulated polluted air by NH3.As summarized in Table 2,the contents of NH3in these two air samples are 0 and 416.5 mg/m3.The recoveries ranged from 111.1% to 115.2% and 108.3% to 122.2% in sample 1 and sample 2 and the standard deviation(RSD)is 3.4%-5.2%,respectively,indicating the proposed method is reliable and suitable for practical applications.The UVvis spectra for the gaseous NH3detection is shown in Fig.S5(Supporting information).

    In summary,Au@Ag@AgCl NPs with thin AgCl shells were synthesized using an etching and precipitating method.The introduction of AgCl shell not only dramatically improves the stability of the Au@Ag NPs,but also provides a higher sensitivity to NH3.In addition,the selectivity towards NH3is also enhanced because AgCl is more resistant than Ag to other interfering compounds.The sensing mechanism is based on the etching NH3on AgCl shell,leading to the recovery of LSPR effect of Ag and Au.which exposed the LSPR effect of internal Au NPs,leading to the increase of absorbance at 510 nm and the color change from orange to pink to red.This work provides a colorimetric method for the detection of NH3gas,which holds great promise for the on-site detection of NH3with low cost,high sensitivity,good stability and ease of operation.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was supported by the Graduate Student Innovation Project of China University of Petroleum(East China)in 2020(No.YCX2020031).We also like to acknowledge the financial support by the National Natural Science Foundation of China (Nos.21876206,21505157),the Fundamental Research Funds for the Central Universities (China University of Petroleum (East China),Nos.18CX02037A,20CX05015A),and the Youth Innovation and Technology project of Universities in Shandong Province (No.2020KJC007).

    Appendix A.Supplementary data

    Supplementary material related to this article can be found,in the online version,at doi:https://doi.org/10.1016/j.cclet.2021.02.029.

    国产精品久久久久久精品电影小说 | 午夜免费男女啪啪视频观看| 婷婷亚洲欧美| 最好的美女福利视频网| 床上黄色一级片| 美女cb高潮喷水在线观看| 精品99又大又爽又粗少妇毛片| 国产伦在线观看视频一区| 国产熟女欧美一区二区| 99久久中文字幕三级久久日本| 久久6这里有精品| 国产麻豆成人av免费视频| 国产色婷婷99| 男的添女的下面高潮视频| 菩萨蛮人人尽说江南好唐韦庄 | 午夜老司机福利剧场| 如何舔出高潮| 国语自产精品视频在线第100页| 18禁黄网站禁片免费观看直播| 色哟哟·www| 日韩亚洲欧美综合| 日韩一区二区视频免费看| 亚洲一区二区三区色噜噜| 国产精品,欧美在线| 嫩草影院入口| 十八禁国产超污无遮挡网站| 国产熟女欧美一区二区| 久久久久久久久久黄片| 亚洲国产色片| 18+在线观看网站| 国产乱人视频| 久久精品综合一区二区三区| 少妇熟女欧美另类| 国产伦理片在线播放av一区 | 亚洲精品国产av成人精品| 99久久人妻综合| 黄色一级大片看看| 久久99热这里只有精品18| 校园人妻丝袜中文字幕| 欧美另类亚洲清纯唯美| 欧美日韩综合久久久久久| 26uuu在线亚洲综合色| 国产黄色小视频在线观看| 久久99热6这里只有精品| 少妇的逼水好多| 日韩人妻高清精品专区| 偷拍熟女少妇极品色| 国产视频内射| 特级一级黄色大片| 日韩中字成人| 97热精品久久久久久| 亚洲精品乱码久久久v下载方式| 岛国毛片在线播放| 99热网站在线观看| 欧美色视频一区免费| 国内精品久久久久精免费| 亚洲中文字幕一区二区三区有码在线看| 日日撸夜夜添| 久久久久网色| 日韩欧美在线乱码| 亚洲精品久久久久久婷婷小说 | 嫩草影院入口| 国产色婷婷99| 国产亚洲5aaaaa淫片| 我要看日韩黄色一级片| 91精品国产九色| 天天一区二区日本电影三级| 色综合亚洲欧美另类图片| videossex国产| 久久久久久久久久久丰满| 黄色日韩在线| 长腿黑丝高跟| 国产日本99.免费观看| 日韩成人伦理影院| 欧美日韩在线观看h| 日本免费a在线| 成人二区视频| 色综合色国产| 免费不卡的大黄色大毛片视频在线观看 | 丰满的人妻完整版| 插阴视频在线观看视频| 免费人成在线观看视频色| 成人毛片a级毛片在线播放| АⅤ资源中文在线天堂| 国产精品久久久久久精品电影小说 | 国产在线男女| 精品久久久久久久久亚洲| 岛国在线免费视频观看| 亚洲美女搞黄在线观看| 99视频精品全部免费 在线| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产伦在线观看视频一区| 深夜a级毛片| 亚洲欧美日韩卡通动漫| 亚洲精品乱码久久久v下载方式| 女同久久另类99精品国产91| 国产精品三级大全| 成人鲁丝片一二三区免费| 搞女人的毛片| 黄片wwwwww| 一个人观看的视频www高清免费观看| 99久久人妻综合| 亚洲中文字幕日韩| 长腿黑丝高跟| 国产一级毛片在线| 亚洲电影在线观看av| 亚洲内射少妇av| 国产精品久久久久久精品电影小说 | 亚洲国产精品合色在线| 国产精品久久久久久精品电影| 日本一二三区视频观看| 啦啦啦观看免费观看视频高清| av女优亚洲男人天堂| 国产精品电影一区二区三区| 亚洲精品亚洲一区二区| 日日摸夜夜添夜夜爱| 久久精品国产鲁丝片午夜精品| 免费观看在线日韩| 97在线视频观看| 亚洲成a人片在线一区二区| 精品少妇黑人巨大在线播放 | 青青草视频在线视频观看| 女的被弄到高潮叫床怎么办| 国语自产精品视频在线第100页| 丰满人妻一区二区三区视频av| 老司机影院成人| 亚洲人成网站在线观看播放| 久久99蜜桃精品久久| 99国产精品一区二区蜜桃av| 日韩视频在线欧美| 日韩中字成人| 美女cb高潮喷水在线观看| 日韩一区二区视频免费看| 自拍偷自拍亚洲精品老妇| 欧美在线一区亚洲| av专区在线播放| 最好的美女福利视频网| 禁无遮挡网站| 亚洲精华国产精华液的使用体验 | 最近最新中文字幕大全电影3| 亚洲一区二区三区色噜噜| 亚洲最大成人av| 人妻久久中文字幕网| 小说图片视频综合网站| АⅤ资源中文在线天堂| 女人被狂操c到高潮| 欧美不卡视频在线免费观看| 国产成人福利小说| 久久精品国产亚洲av天美| 亚洲电影在线观看av| 九九热线精品视视频播放| 久久草成人影院| 在线a可以看的网站| 黑人高潮一二区| 国产中年淑女户外野战色| 国产伦在线观看视频一区| 国产精品av视频在线免费观看| 久久久久九九精品影院| 人人妻人人看人人澡| 日韩中字成人| 三级毛片av免费| 免费看光身美女| 久久久久久伊人网av| 国产精品美女特级片免费视频播放器| 国产黄片美女视频| 日韩强制内射视频| 非洲黑人性xxxx精品又粗又长| 国产精品永久免费网站| 亚洲图色成人| 麻豆精品久久久久久蜜桃| 日韩成人伦理影院| 国产午夜福利久久久久久| 搡女人真爽免费视频火全软件| 国国产精品蜜臀av免费| 午夜激情福利司机影院| 日韩一区二区视频免费看| 精品一区二区三区人妻视频| 精品一区二区免费观看| 夜夜爽天天搞| 校园春色视频在线观看| 精品少妇黑人巨大在线播放 | 亚洲电影在线观看av| 国产蜜桃级精品一区二区三区| 少妇裸体淫交视频免费看高清| 一本一本综合久久| 精品久久久久久久人妻蜜臀av| 久久精品人妻少妇| 哪里可以看免费的av片| 男人的好看免费观看在线视频| 别揉我奶头 嗯啊视频| 不卡视频在线观看欧美| 国产乱人视频| 哪里可以看免费的av片| 高清毛片免费观看视频网站| 亚洲图色成人| www.av在线官网国产| 自拍偷自拍亚洲精品老妇| 天堂√8在线中文| 亚洲va在线va天堂va国产| 成熟少妇高潮喷水视频| 中国美白少妇内射xxxbb| 一区二区三区高清视频在线| 少妇丰满av| 18禁在线播放成人免费| 国产精品久久久久久精品电影小说 | 亚洲精品自拍成人| 99热网站在线观看| 最近中文字幕高清免费大全6| 在线免费观看不下载黄p国产| 亚洲不卡免费看| 看免费成人av毛片| 亚洲真实伦在线观看| 深夜精品福利| 日日摸夜夜添夜夜爱| 久久精品夜色国产| 日本三级黄在线观看| 日韩成人伦理影院| 日本黄色视频三级网站网址| 少妇人妻一区二区三区视频| 亚洲熟妇中文字幕五十中出| 久久综合国产亚洲精品| 日韩高清综合在线| 性欧美人与动物交配| 国产 一区 欧美 日韩| 国产亚洲精品av在线| 你懂的网址亚洲精品在线观看 | 国产女主播在线喷水免费视频网站 | 欧美日韩乱码在线| 国产精品美女特级片免费视频播放器| 午夜福利成人在线免费观看| 国产av一区在线观看免费| 日韩一区二区视频免费看| 婷婷亚洲欧美| 日本-黄色视频高清免费观看| 一边亲一边摸免费视频| 日日干狠狠操夜夜爽| 久久精品久久久久久久性| 中国美白少妇内射xxxbb| 国产黄片美女视频| 99国产极品粉嫩在线观看| 亚洲欧美成人综合另类久久久 | 色哟哟·www| 91久久精品国产一区二区成人| 国产老妇伦熟女老妇高清| 国产精品一二三区在线看| 国产亚洲av片在线观看秒播厂 | 亚洲自拍偷在线| 国产高清视频在线观看网站| 搡老妇女老女人老熟妇| 一区二区三区免费毛片| 嘟嘟电影网在线观看| 亚洲三级黄色毛片| 亚洲国产精品合色在线| 久久热精品热| 亚洲18禁久久av| 嫩草影院入口| 干丝袜人妻中文字幕| 亚洲三级黄色毛片| 99久久九九国产精品国产免费| 亚洲中文字幕日韩| 最好的美女福利视频网| 久久亚洲精品不卡| 一夜夜www| 一级黄片播放器| 久久人妻av系列| 国内精品一区二区在线观看| 亚洲欧洲国产日韩| 狠狠狠狠99中文字幕| 老司机福利观看| 国产精品永久免费网站| 精品久久久久久久人妻蜜臀av| 免费观看在线日韩| 免费观看a级毛片全部| 又粗又硬又长又爽又黄的视频 | 简卡轻食公司| 国产av一区在线观看免费| 国内精品一区二区在线观看| 久久久午夜欧美精品| 九色成人免费人妻av| 男人的好看免费观看在线视频| 成人二区视频| 亚洲成av人片在线播放无| www.av在线官网国产| 2021天堂中文幕一二区在线观| 国产精品三级大全| 91在线精品国自产拍蜜月| 一本一本综合久久| 久久久久久久久久久丰满| 国产免费男女视频| 国产一级毛片七仙女欲春2| 久久亚洲精品不卡| 国产黄色小视频在线观看| 亚洲国产精品成人久久小说 | 少妇被粗大猛烈的视频| АⅤ资源中文在线天堂| 午夜免费激情av| 蜜桃久久精品国产亚洲av| 人人妻人人看人人澡| 不卡一级毛片| 在线观看一区二区三区| 丰满乱子伦码专区| 久久国内精品自在自线图片| 日韩欧美国产在线观看| 99久久九九国产精品国产免费| 男人舔奶头视频| 色综合亚洲欧美另类图片| 免费人成视频x8x8入口观看| 夜夜夜夜夜久久久久| 联通29元200g的流量卡| 欧美最新免费一区二区三区| 少妇人妻一区二区三区视频| 精品免费久久久久久久清纯| 亚洲一区高清亚洲精品| 亚洲精华国产精华液的使用体验 | 一边摸一边抽搐一进一小说| 亚洲国产精品国产精品| 婷婷精品国产亚洲av| 久久久久久久久大av| 给我免费播放毛片高清在线观看| 国产精品永久免费网站| 人人妻人人澡人人爽人人夜夜 | 我要搜黄色片| 麻豆av噜噜一区二区三区| 99精品在免费线老司机午夜| 精品熟女少妇av免费看| 久久久久久国产a免费观看| 男人和女人高潮做爰伦理| 天堂影院成人在线观看| 美女脱内裤让男人舔精品视频 | 噜噜噜噜噜久久久久久91| 给我免费播放毛片高清在线观看| 又爽又黄a免费视频| 久久久久久久久久久免费av| 热99在线观看视频| 久久综合国产亚洲精品| 久久精品久久久久久久性| 日日摸夜夜添夜夜添av毛片| 国产三级中文精品| 九九热线精品视视频播放| 人妻系列 视频| av专区在线播放| av.在线天堂| 看非洲黑人一级黄片| 美女xxoo啪啪120秒动态图| 日韩 亚洲 欧美在线| 久久久久久久久中文| 两个人的视频大全免费| 看非洲黑人一级黄片| 免费黄网站久久成人精品| 亚洲欧美成人精品一区二区| 天天躁夜夜躁狠狠久久av| 中文精品一卡2卡3卡4更新| 亚洲高清免费不卡视频| 尤物成人国产欧美一区二区三区| 亚洲经典国产精华液单| 亚洲综合色惰| 午夜免费激情av| 久久久久久久亚洲中文字幕| 我的老师免费观看完整版| 国产黄a三级三级三级人| 国模一区二区三区四区视频| 国产 一区 欧美 日韩| 国产精品久久久久久久电影| 国产男人的电影天堂91| 18禁裸乳无遮挡免费网站照片| 亚洲三级黄色毛片| 日本免费一区二区三区高清不卡| 国产精品久久久久久精品电影| 久久国内精品自在自线图片| 免费观看精品视频网站| 12—13女人毛片做爰片一| 亚洲熟妇中文字幕五十中出| 好男人在线观看高清免费视频| 成人欧美大片| 日本五十路高清| 深爱激情五月婷婷| 日本三级黄在线观看| 人体艺术视频欧美日本| 长腿黑丝高跟| 老司机影院成人| 久久久欧美国产精品| 久久这里只有精品中国| 国模一区二区三区四区视频| 日韩大尺度精品在线看网址| 日韩av不卡免费在线播放| 校园人妻丝袜中文字幕| 久久精品国产鲁丝片午夜精品| 国产黄片美女视频| 免费av毛片视频| 国产成人aa在线观看| 欧美日本视频| 国产乱人视频| 国产精品女同一区二区软件| 欧美成人免费av一区二区三区| 夜夜看夜夜爽夜夜摸| 精品久久久久久久久av| 嘟嘟电影网在线观看| 欧美日韩综合久久久久久| 狂野欧美激情性xxxx在线观看| 精品99又大又爽又粗少妇毛片| 亚洲国产高清在线一区二区三| 97在线视频观看| 欧美高清性xxxxhd video| h日本视频在线播放| 免费电影在线观看免费观看| 欧美xxxx性猛交bbbb| 熟妇人妻久久中文字幕3abv| 99久久精品热视频| 99在线视频只有这里精品首页| 亚洲,欧美,日韩| 美女黄网站色视频| 麻豆国产av国片精品| 午夜视频国产福利| 亚洲国产精品sss在线观看| 毛片一级片免费看久久久久| 欧美潮喷喷水| 国产午夜精品久久久久久一区二区三区| 好男人视频免费观看在线| 成人综合一区亚洲| 久久欧美精品欧美久久欧美| 亚洲七黄色美女视频| 欧洲精品卡2卡3卡4卡5卡区| 欧美三级亚洲精品| 久久久久久大精品| 日本在线视频免费播放| 日本黄大片高清| 国产黄色小视频在线观看| 级片在线观看| 久久欧美精品欧美久久欧美| 亚洲高清免费不卡视频| 亚洲三级黄色毛片| 精品久久久久久久久亚洲| 日本一二三区视频观看| 亚洲无线观看免费| 精品一区二区免费观看| 亚洲欧美中文字幕日韩二区| 欧美激情国产日韩精品一区| 99久久精品热视频| 国产老妇伦熟女老妇高清| 国产伦一二天堂av在线观看| 久久亚洲精品不卡| 人妻系列 视频| 国产黄片美女视频| or卡值多少钱| 久久久a久久爽久久v久久| 亚洲精品亚洲一区二区| 能在线免费看毛片的网站| 欧美+日韩+精品| 男女边吃奶边做爰视频| 亚洲久久久久久中文字幕| 亚洲av中文av极速乱| 成人无遮挡网站| 成人永久免费在线观看视频| 国产成年人精品一区二区| 国产v大片淫在线免费观看| 看黄色毛片网站| 91aial.com中文字幕在线观看| 亚洲va在线va天堂va国产| 国产成人一区二区在线| 九九久久精品国产亚洲av麻豆| 亚洲av第一区精品v没综合| 超碰av人人做人人爽久久| 日本黄色片子视频| 蜜臀久久99精品久久宅男| 丰满乱子伦码专区| 日韩亚洲欧美综合| 韩国av在线不卡| 国产亚洲精品av在线| 国产在线男女| 男人舔女人下体高潮全视频| 国产精品爽爽va在线观看网站| 亚洲av免费高清在线观看| 蜜桃久久精品国产亚洲av| 国产成人freesex在线| or卡值多少钱| www.av在线官网国产| 国产黄片视频在线免费观看| 国产精品.久久久| 欧美日韩乱码在线| 在线国产一区二区在线| 亚洲一级一片aⅴ在线观看| 国产亚洲精品久久久com| 日韩视频在线欧美| 国产一区二区三区av在线 | 一级毛片我不卡| 国产精品伦人一区二区| 亚洲人成网站在线观看播放| 最好的美女福利视频网| 国产成人影院久久av| 午夜免费男女啪啪视频观看| 免费av毛片视频| 国产中年淑女户外野战色| 少妇熟女aⅴ在线视频| 在线免费观看的www视频| 99久国产av精品| 国产一级毛片七仙女欲春2| 欧美xxxx性猛交bbbb| 亚洲国产精品sss在线观看| 久久精品国产99精品国产亚洲性色| 日本黄大片高清| 丰满乱子伦码专区| 亚洲国产精品国产精品| 男女啪啪激烈高潮av片| 国产亚洲av嫩草精品影院| 色综合色国产| 日本免费a在线| 男女那种视频在线观看| 欧美日韩精品成人综合77777| 亚洲成人久久爱视频| 久久久久久久久久成人| 国产男人的电影天堂91| 尤物成人国产欧美一区二区三区| 自拍偷自拍亚洲精品老妇| 久久久色成人| av天堂中文字幕网| 少妇猛男粗大的猛烈进出视频 | 两性午夜刺激爽爽歪歪视频在线观看| 亚洲欧洲国产日韩| 国产中年淑女户外野战色| 寂寞人妻少妇视频99o| 一边摸一边抽搐一进一小说| 色5月婷婷丁香| 精品一区二区免费观看| 欧美色欧美亚洲另类二区| 在线天堂最新版资源| 超碰av人人做人人爽久久| 日韩成人伦理影院| 波多野结衣高清作品| 精品久久久噜噜| 偷拍熟女少妇极品色| 特级一级黄色大片| 黄色视频,在线免费观看| 免费一级毛片在线播放高清视频| 亚洲av免费在线观看| 国产亚洲欧美98| 国产午夜福利久久久久久| 搡老妇女老女人老熟妇| 精品久久久久久久久久免费视频| 国产精品国产三级国产av玫瑰| 亚洲图色成人| 菩萨蛮人人尽说江南好唐韦庄 | 最近2019中文字幕mv第一页| 久久久久久九九精品二区国产| 久久久国产成人免费| 亚洲av二区三区四区| 亚洲国产欧美人成| 国产 一区 欧美 日韩| 午夜a级毛片| 一级av片app| 日韩精品青青久久久久久| 国产淫片久久久久久久久| 三级国产精品欧美在线观看| 日本一二三区视频观看| 国产老妇女一区| 久久韩国三级中文字幕| 国产白丝娇喘喷水9色精品| 国产精品久久久久久av不卡| 欧美不卡视频在线免费观看| 女人十人毛片免费观看3o分钟| 岛国毛片在线播放| 午夜福利在线观看吧| 黄色日韩在线| 好男人视频免费观看在线| 婷婷精品国产亚洲av| 97热精品久久久久久| 国产精品.久久久| 亚洲国产精品成人综合色| 在线a可以看的网站| 午夜福利在线观看吧| 不卡一级毛片| 人妻少妇偷人精品九色| 欧美精品一区二区大全| 99久国产av精品国产电影| 亚洲成人av在线免费| 国产精品一区二区三区四区免费观看| 国产亚洲91精品色在线| 欧美一级a爱片免费观看看| 色综合亚洲欧美另类图片| 成人亚洲精品av一区二区| 国产午夜精品久久久久久一区二区三区| 在线免费十八禁| 色哟哟哟哟哟哟| 男人的好看免费观看在线视频| 国产毛片a区久久久久| 99九九线精品视频在线观看视频| 天堂av国产一区二区熟女人妻| АⅤ资源中文在线天堂| 99久久精品一区二区三区| 国产一区亚洲一区在线观看| 国产色爽女视频免费观看| 日韩欧美一区二区三区在线观看| 中出人妻视频一区二区| 午夜福利在线在线| 国产日本99.免费观看| 精品人妻视频免费看| 免费看日本二区| 日韩制服骚丝袜av| 高清在线视频一区二区三区 | 小说图片视频综合网站| 一本久久精品| 小说图片视频综合网站| 午夜精品在线福利| 蜜臀久久99精品久久宅男| 国产日本99.免费观看| 久久99精品国语久久久| 亚洲久久久久久中文字幕| 国产精品国产三级国产av玫瑰| 99热精品在线国产| 听说在线观看完整版免费高清| 国产伦一二天堂av在线观看| 免费观看人在逋| 国产毛片a区久久久久| 毛片一级片免费看久久久久| 看十八女毛片水多多多| 亚洲婷婷狠狠爱综合网|