• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Density functional theory investigation on selective adsorption of VOCs on borophene

    2021-12-27 13:06:16WenlngLiQunguoJingDidiLiZhiminAoTichengAn
    Chinese Chemical Letters 2021年9期

    Wenlng Li,Qunguo Jing,Didi Li,Zhimin Ao,*,Ticheng An

    a Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control,Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control,School of Environmental Science and Engineering,Institute of Environmental Health and Pollution Control,Guangdong University of Technology,Guangzhou 510006,China

    b College of Mechanics and Materials,Hohai University,Nanjing 210098,China

    Keywords:Borophene 2D material Volatile organic compounds (VOCs) Selective adsorption Electronic structure

    ABSTRACT In the field of volatile organic compounds(VOCs)pollution control,adsorption is one of the major control methods,and effective adsorbents are desired in this technology.In this work,the density functional theory (DFT) calculations are employed to investigate the adsorption of typical VOCs molecules on the two-dimensional material borophenes.The results demonstrate that both structure of χ3 and β12 borophene can chemically adsorb ethylene and formaldehyde with forming chemical bonds and releasing large energy.However,other VOCs,including ethane,methanol,formic acid,methyl chloride,benzene and toluene,are physically adsorbed with weak interaction.The analysis of density of states(DOS)reveals that the chemical adsorption changes the conductivity of borophenes,while the physical adsorption has no distinct effect on the conductivity.Therefore,both χ3 and β12 borophene are appropriate adsorbents for selective adsorption of ethylene and formaldehyde,and they also have potential in gas sensor applications due to the obvious conductivity change during the adsorption.

    Currently,air pollution is one of the most critical problems for human health and environment [1].One of the main types of air pollutants is volatile organic compounds(VOCs),which comprises a variety of compounds,such as alkanes,alkenes,alkynes,aromatic and halogenated hydrocarbons[2,3].It is reported that long-term exposure to high concentrations of VOCs can cause serious carcinogenic,mutagenic,and teratogenic effects to human beings[4,5].In addition,VOCs are also the precursors for many other atmospheric pollutants,such as ozone,secondary aerosol,and chemical smog [6,7].Therefore,it is urgent to remove VOCs from atmospheric to protect human health and mitigate air pollution.

    At present,the research on VOCs treatment has become one of the hottest topics in the field of environmental protection [8-10].There are various technologies to remove VOCs,such as biodegradation [11],photocatalytic oxidation [12],combustion[13]as well as adsorption [14].Among these technologies,adsorption is a simple and low-cost process,it has high efficiency and wide applications.The adsorbent plays a critical role in the wide use of adsorption.Various adsorbents for VOCs have already been reported,such as zeolites,activated carbon,metal organic frameworks (MOFs) [15,16].

    Recently,the low dimensional materials show the potential to remove pollutants[17].Especially,with high specific surface area,the two-dimensional (2D) materials have very large adsorption capacity as adsorbents [18].For example,by using first-principle calculations,Su et al.demonstrated that the pristine 2D materials show unsatisfactory capacity in adsorbing VOCs,while the doped 2D materials,such as graphene and C2N,are excellent adsorbents for some VOCs [19].Liu et al.also found that the Al-decorated porous graphene shows outstanding selective adsorption capacity for carbonyl-containing volatile organic compounds[20].However,the complex processes for modification limit the application of 2D adsorbents.Therefore,it is desirable to explore pristine and simple 2D materials as VOCs adsorbents.Borophene is a monolayer sheet with single element boron.The research of borophene has been going on for many years [21-26],although it was first synthesized in 2016[27].It was reported that borophenes with χ3and β12structures were synthetized on Ag(111)surface employing molecular beam epitaxy (MBE) by Feng et al.[27].As the first synthesized borophenes in experiment,many characteristics of χ3and β12borophene are observed.The borophene show a certain antioxidant capacity,indicating that the structures can exist stably in natural environment.The metallicity of χ3and β12borophene also reveals the potential application in electronic device[28].As a 2D material,borophene has high specific surface area,which is important for absorbents.Liu et al.have proved that some small gas molecules(CO,NO and NH3)can be adsorbed steady on borophene[29],which confirms the potential as an excellent gas adsorbent.Therefore,it is expected that borophene might be an adsorbent for VOCs.

    Density functional theory(DFT),an important method to study the electron properties of object,is usually used to investigate and understand the nature of chemical behaviors such as photocatalysis[30]and adsorption[31].Therefore,DFT are employed to investigate the adsorption properties of typical VOCs molecules onto χ3and β12borophene in this work.Some simple and typical VOCs molecules,including ethane (C2H6),ethylene (C2H4),formaldehyde (H2CO),methanol (H3COH),formic acid (HCOOH),methyl chloride(H3CCl),benzene(C6H6)and toluene(Ph-CH3),are considered for their adsorption on borophene.The geometric structure and the electron properties are analyzed for the all adsorption configurations to reveal the interactions between borophenes and the VOCs.This work is found to be beneficial to discover new treatment and detection methods for VOCs.

    All DFT calculations are performed by Dmol3modulus in Materials Studio Package [32].The calculations using the local density approximation(LDA)underestimate equilibrium distances and overestimate bond energy.Thus,the structure optimization and energy calculations of the most stable geometries in this study are based on the generalized-gradient approximation (GGA)function with the Perdew-Burke-Ernzerhof (PBE) correction[33].The method proposed by Grimme for DFT-D correction is chosen to elucidate the weak van der Waals interaction [34].The global orbital cutoff for all atoms is set to 4.5 ?.The DFT semi-core pseudopotentials (DSPP) core treatment is implemented for relativistic effects,which replaces core electrons by a single effective potential[35].The k-point is set at 5×5×1 for all slabs,which brings out the convergence tolerance of energy of 1.0×10-6hartree (1 hartree=27.2114 eV),and that of maximum force of 0.002 hartree/?.

    To understand the adsorption properties of VOCs on borophene,the adsorption energy of VOCs molecules adsorbed onto borophene Eadsis calculated and defined as:

    where Etotal,Eadsorbent,and EVOCsare the total energies of the system with the gas molecule adsorbed on the pristine borophene,an isolated pristine borophene,and the VOCs molecule in the ground state,respectively.

    In this study,χ3and β12borophenes are chosen to investigate the performance for adsorbing VOCs.The optimized structures of 3×4×1 χ3borophene and 2×4×1 β12borophene are shown in Figs.S1a and b (Supporting information) respectively,where the borophenes are constructed by repetitive hexagon holes and triangular boron sheet in a plat surface.The hexagonal triangular density is η=1/5 and η=1/6 for χ3and β12borophene,respectively[28,36].The optimized lattice parameters for the unit cell χ3borophene are a=4.47 ?,b=2.90 ? and γ=71.21°,which are in good agreement with previously reported results (a=4.44 ?,b=2.90 ? and γ=70.95°)[28].The unit cell constants of β12borophene are a=2.93 ?,b=5.10 ? and γ=90°,similar as the cell parameters in the previous report of Wu et al.,i.e.,a=2.92 ?,b=5.05 ? and γ=90°[28].

    Furthermore,the electronic structures of borophenes are also considered.The band structure of unit cell χ3and β12borophene are shown in Figs.S1c and d(Supporting information),respectively.In the figures,specific symmetry k-points and path in Brillouin zone for the band structure are tagged out.As show in Fig.S1c,there are many bands crossing the Fermi level along M-G,G-F,F-K,B-G and G-K,indicating the electrons in valence band easily shift to conduction band through these bands.Similarly,the bands crossing Fermi level in Fig.S1d mainly locate at the path G-X,SY,indicating the β12borophene also has the capability of electron conduction.Interestingly,the metallicity of the 2D borophenes are different from the 3D α-rhombohedral boron B12,which is nonmetal with an indirect band gap [37].

    After understanding the atomic structure of χ3and β12borophenes,the adsorption of various typical VOCs molecules(C2H6,C2H4,H2CO,H3COH,HCOOH,H3CCl,C6H6and Ph-CH3) on the two different borophenes is investigated.The most stable configurations of the VOCs molecules adsorbed on χ3and β12borophene are shown in Fig.1 and Fig.S2 (Supporting information),respectively.Compared with the structures of pristine borophenes in Fig.S1,there is no distinct deformation of borophenes after adsorbing VOCs,except for the adsorption of C2H4and H2CO molecules as shown in Figs.1b,c and Figs.S2b,c,where chemical bonds between C2H4or H2CO and borophene are formed.It is obvious that two B atoms of the borophene protrude from the plane due to the chemical adsorption of C2H4and H2CO molecules.Moreover,the borophenes also induce structure deformation of the adsorbed C2H4and H2CO molecules.For C2H4,the length of C=C bond extends from 1.33 ? to 1.55 ? on χ3borophene and to 1.56 ? on β12borophene,as listed in Table S1(Supporting information),indicating the breaking of C=C bond into C--C bond.In addition,the angle formed by the two C--H bonds reduces to 106.513°on χ3borophene and 106.403°on β12borophene from the gas-phase value of 115.673°,indicating that the C atoms of the adsorbed C2H4become sp3hybrids under the interaction with borophenes.Then the C atoms bind with protruded B atoms to form two C--B bonds (bond length=1.74 ?)on χ3borophene and two C--B bonds(bond length=1.68 ?)on β12borophene.For H2CO,the C=O bond breaks into C--O bond with the bond length extending from 1.21 ? to 1.46 ? on χ3borophene and to 1.45 ? on β12borophene.Then the C and O atoms of H2CO bind with the protruded B atoms of borophenes to form a C--B bond(bond length=1.65 ?)and an O--B bond(bond length=1.42 ?)on χ3borophene and a C--B bond(bond length=1.64 ?)and an O--B bond(bond length=1.40 ?)on β12borophene(Table S1).For all the other adsorbed VOCs molecules investigated,the shortest distance between the VOCs molecules and borophenes can be defined by the distance between the bottom H atom in molecule and the B atom of borophene from the adsorption configuration in Fig.1 and Fig.S2,and the corresponding results are listed in Table S2(Supporting information).It can be found that the distance is in the range of 2.53 ?-3.22 ?,which is not short enough for the formation of chemical bond between VOCs and borophenes.Therefore,only weak interaction is present between these VOCs molecules and borophenes.

    Fig.1.The most stable adsorption configurations of C2H6 (a),C2H4 (b),H2CO (c),H3COH (d),HCOOH (e),H3CCl (f),C6H6 (g) and Ph-CH3 (h) on χ3 borophene.

    The adsorption energy is another important parameter for adsorption.As shown in Table 1,the adsorption energy for C2H4adsorbed on χ3and β12borophenes is 1.14 eV and 0.80 eV respectively.For the adsorption of H2CO,the corresponding adsorption energy on χ3and β12borophene are 1.21 eV and 0.79 eV respectively,larger than that of H2CO on other pristine 2D materials,such as graphene(0.29 eV)[38]and MoS2(0.11 eV)[39].Therefore,the strong interaction between borophenes and the C2H4and H2CO can be more confirmed.It should be noted that the adsorption energies for C6H6and Ph-CH3on χ3and β12borophene are between 0.60 eV to 0.77 eV,which is relatively large for physical adsorption.Considering the above analysis of geometric configuration and electron properties below,they still belong to physical adsorption and the large adsorption energy may result from the relatively greater molecular mass of the C6H6and Ph-CH3molecules.For the adsorption of all the other VOCs,the adsorption energy is between 0.23 eV to 0.37 eV,which are in the rage of physical adsorption.Combined with the large distance between boropehens and these VOCs molecule,it can be found that the Van der Waals force plays a main role during the adsorption.

    The analysis of geometric configurations reveals the strong interaction between borophenes and the C2H4or H2CO with the formation of chemical bonds.To further confirm the formation of chemical bonds,the analysis of electron properties is necessary.The deformation of electronic densities for typical VOCs adsorbed on borophenes are calculated and shown in Fig.2 and Fig.S3(Supporting information).In these figures,the red regions represent the areas of electron accumulation,while the blue regions reflect the areas of electron loss.In Fig.2b and Fig.S3b,the two new C--B bonds,formed by C2H4adsorption on borophenes,are covered by red regions,indicating that the new bonds formation due to the overlap of electronic cloud.It can also be found that distinct red regions are on the C--B and O--B bond of borophenes with H2CO adsorption as shown in Fig.2c and Fig.S3c.For all the other VOCs molecules adsorbed on the borophenes,however,there are no distinct regions existed between the molecules and adsorbents,confirming that only physical adsorptions existed.The electron density results agree with the abovementioned conclusion of geometric configuration.

    Electron transfer (Q) in adsorption system is also a common analysis method to understand the adsorption.The electron transfer of the adsorbed molecules and borophenes can be calculated by Mulliken analysis and the results are listed in Table 1.It can be found that the electron transfers are between 0.010 e to 0.088 e in the system of physical adsorptions involving C2H6,H3COH,HCOOH,H3CCl,C6H6and Ph-CH3.Among the physical adsorptions system,the electron transfers for C6H6adsorbed on χ3and β12borophene are relatively large of 0.088 e and 0.079 e,similar as that of its physical adsorption on graphene(0.02 e)[38]and C2N (0.018 e) [19].On the contrary,more electron transfer occurs in chemical adsorption of C2H4and H2CO adsorbed on the borophenes.The electronic charges of about 0.302 e and 0.313 e are respectively transferred from χ3and β12borophene to the C2H4molecule,which are almost one order larger than that in the above physical adsorptions.In addition,the H2CO molecule adsorbed on borophenes induces around 0.323 e and 0.287 e charge transfer from χ3and β12borophene,much larger than that of H2CO adsorbed on graphene (0.019 e) [38],BN (-0.03 e) [40]and C2N(0.031 e) [19].

    Table 1 Adsorption energy and electron transfer number calculated by Mulliken analysis for different VOCs molecules adsorbed on borophenes.

    Fig.2.Deformation of electronic densities of C2H6 (a),C2H4 (b),H2CO (c),H3COH(d),HCOOH(e),H3CCl(f),C6H6(g)and Ph-CH3(h)on χ3 borophene.The red regions represent the areas of electron accumulation,while the blue regions reflect the areas of electron loss.

    To further investigate the formation of the new bonds,the partial density of states (PDOS) of C2H4and H2CO adsorbed on borophenes are shown in Fig.3.With the symmetry of the borophenes and C2H4molecule,one C--B bond for C2H4adsorbed on χ3and β12borophene are considered and the PDOS are shown in Figs.3a and b,respectively.In Fig.3a,the major peaks at about-6.5,-4.5,-2.8 and-2.0 eV are contributed by the 2p orbital of C atom of C2H4,while the peaks at about-6.5,-4.5,-2.8 and-2.0 eV are contributed by the 2p orbital of B atom of χ3borophene,indicating the strong overlap of the 2p orbitals of C and B with the formation of the C--B bond.In addition,considering the geometry analysis that the C atom of adsorbed C2H4is sp3hybrid,the C--B bond for C2H4adsorbed on χ3borophene is stable σ bond.The same conclusion can be made from the analysis of PDOS of C2H4adsorbed on β12borophene as shown in Fig.3b.Analysis of Figs.3c and d can find that the steady C--B bonds of H2CO adsorbed borophenes result from the 2p orbitals of C and B atoms resonate at about-7.0,-4.5 and-2.8 eV for χ3borophene and at about-7.0,-5.0 and-3.1 eV for β12borophene.Figs.3e and f show that the O and B atoms maintain overlap at about-7.0 eV and-2.5 eV for χ3borophene and at about-7.0,-4.0 and-3.2 eV for β12borophene.In other words,H2CO is chemically adsorbed on χ3and β12borophene with the formation of two stable chemical bonds of C--B and O--B.

    Fig.3.PDOS of C--B bond formed by C2H4 adsorption on χ3 borophene(a)and β12 borophene(b),the PDOS of C--B bond formed by H2CO adsorption on χ3 borophene(c)and β12 borophene(d),the PDOS of O--B bond formed by H2CO adsorption on χ3 borophene (e) and β12 borophene (f).

    It is known that not only the surface structure of adsorbents can be influenced by adsorbed molecules,but also the conductivity,which can be demonstrated by density of states (DOS) in DFT calculation.The DOS of the typical VOCs adsorbed on borophenes are shown in Fig.S4 (Supporting information).In Figs.S4a and b,the DOS of physical-adsorbed VOCs and pure borophenes almost overlap near Fermi level,indicating the ignorable conductivity change of borophenes with the adsorption of VOCs molecules.On the contrary,Figs.S4c and d show the DOS of chemical-adsorbed VOCs and pure borophenes.It can be found that both of χ3and β12borophene has a distinct peak near Fermi level,while the value of the peak reduces after adsorbing C2H4and H2CO,indicating the loss of active electron near Fermi.In other words,the conductivity of borophenes reduces obviously after adsorbing C2H4and H2CO molecules.These phenomena are corresponding to the Mulliken analysis results which reveal that the adsorbed C2H4and H2CO can attract electrons from borophenes.

    The typical VOCs adsorbing on both χ3and β12borophene are investigated by using first-principles calculations.The analysis of adsorption configuration reveals that C2H4and H2CO can be chemically adsorbed on the two borophenes stably with the chemical bonds formation,while the other VOCs molecules are just adsorbed on borophenes with weak van der Waals force.Besides,the analysis of electron properties for C2H4and H2CO shows that obvious electron accumulation near the new bonds,obvious electrons transfer from borophenes to the adsorbed VOCs molecules,and apparent orbital overlap occurs between the bonding atoms,indicating that the bonds between the two VOCs molecules and borophenes are steady chemical bond.In addition,the analysis of DOS reveals that the adsorption of C2H4and H2CO can change the conductivity of bororphene,which is an important character for sensors.Therefore,both χ3and β12borophene are able to selective chemical adsorption for C2H4and H2CO from typical VOCs.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China (Nos.21777033 and 41807191),Science and Technology Planning Project of Guangdong Province (No.2017B020216003),Natural Science Foundation of Guangdong Province,China (No.2018A030310524),Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program(No.2017BT01Z032),and the Innovation Team Project of Guangdong Provincial Department of Education (No.2017KCXTD012).

    Appendix A.Supplementary data

    Supplementarymaterialrelatedtothisarticlecanbefound,inthe online version,at doi:https://doi.org/10.1016/j.cclet.2021.01.026.

    欧美激情久久久久久爽电影| 亚洲国产日韩欧美精品在线观看 | 精品久久久久久成人av| 亚洲成人国产一区在线观看| 亚洲专区字幕在线| 色av中文字幕| 99精品久久久久人妻精品| 母亲3免费完整高清在线观看| 久久狼人影院| 嫩草影视91久久| 亚洲一区二区三区不卡视频| www.精华液| 在线看三级毛片| 国产精品自产拍在线观看55亚洲| 久久精品国产亚洲av香蕉五月| 亚洲一区二区三区不卡视频| 成人精品一区二区免费| 啦啦啦韩国在线观看视频| 中文字幕久久专区| 窝窝影院91人妻| 国产亚洲精品综合一区在线观看 | 亚洲七黄色美女视频| 麻豆成人av在线观看| 青草久久国产| 日韩欧美 国产精品| 日本撒尿小便嘘嘘汇集6| 亚洲美女黄片视频| 91国产中文字幕| 热99re8久久精品国产| 精品少妇一区二区三区视频日本电影| 19禁男女啪啪无遮挡网站| 精品一区二区三区av网在线观看| 制服丝袜大香蕉在线| 日韩精品青青久久久久久| 亚洲欧洲精品一区二区精品久久久| 欧美激情极品国产一区二区三区| 欧美精品啪啪一区二区三区| 国产av不卡久久| 日本一本二区三区精品| 亚洲中文av在线| 日本 欧美在线| 久久香蕉精品热| 色播亚洲综合网| 久久国产精品男人的天堂亚洲| 在线播放国产精品三级| 亚洲片人在线观看| 精品一区二区三区av网在线观看| 黄色a级毛片大全视频| 亚洲精品粉嫩美女一区| 国产伦在线观看视频一区| 这个男人来自地球电影免费观看| 日本熟妇午夜| 十八禁人妻一区二区| 精品少妇一区二区三区视频日本电影| a级毛片在线看网站| 美女免费视频网站| 久久香蕉激情| xxxwww97欧美| 国产爱豆传媒在线观看 | 国产成人精品久久二区二区免费| 免费看十八禁软件| 国产精品综合久久久久久久免费| 母亲3免费完整高清在线观看| 久久这里只有精品19| 免费看a级黄色片| 久久久久精品国产欧美久久久| 亚洲精品美女久久av网站| 精品高清国产在线一区| 人成视频在线观看免费观看| 91字幕亚洲| 国产成人啪精品午夜网站| 欧美一区二区精品小视频在线| 国产精品一区二区免费欧美| 精品免费久久久久久久清纯| 夜夜看夜夜爽夜夜摸| 成年免费大片在线观看| а√天堂www在线а√下载| 久久天堂一区二区三区四区| 每晚都被弄得嗷嗷叫到高潮| 国产亚洲欧美精品永久| 51午夜福利影视在线观看| 久久婷婷成人综合色麻豆| 精品欧美国产一区二区三| 国产黄片美女视频| 一级作爱视频免费观看| 男人舔奶头视频| 99精品在免费线老司机午夜| 亚洲七黄色美女视频| 国产三级在线视频| 黄色片一级片一级黄色片| 99久久99久久久精品蜜桃| 久久久久亚洲av毛片大全| √禁漫天堂资源中文www| 搡老妇女老女人老熟妇| 午夜免费成人在线视频| 亚洲成人久久性| 亚洲五月色婷婷综合| 欧美不卡视频在线免费观看 | 1024手机看黄色片| 最近最新免费中文字幕在线| 欧美日韩亚洲综合一区二区三区_| 欧美日韩亚洲综合一区二区三区_| 日韩欧美免费精品| 99国产综合亚洲精品| 成人免费观看视频高清| 免费高清视频大片| 两个人免费观看高清视频| 老熟妇仑乱视频hdxx| 精品少妇一区二区三区视频日本电影| 淫妇啪啪啪对白视频| 国产欧美日韩一区二区三| 曰老女人黄片| 精品国产国语对白av| 18禁美女被吸乳视频| 亚洲久久久国产精品| 一二三四社区在线视频社区8| 国产三级在线视频| www日本黄色视频网| 搡老岳熟女国产| www日本黄色视频网| 精品国产一区二区三区四区第35| 人人妻,人人澡人人爽秒播| 精品不卡国产一区二区三区| 在线观看66精品国产| 日韩精品中文字幕看吧| 超碰成人久久| 国产黄片美女视频| 老司机深夜福利视频在线观看| 岛国在线观看网站| 757午夜福利合集在线观看| 亚洲熟女毛片儿| 少妇 在线观看| 亚洲电影在线观看av| 亚洲中文字幕日韩| 日本成人三级电影网站| 变态另类成人亚洲欧美熟女| 国产高清有码在线观看视频 | 久久久久久久久免费视频了| 黑人欧美特级aaaaaa片| 国产在线精品亚洲第一网站| 成人欧美大片| 免费观看精品视频网站| 色综合婷婷激情| 久久精品国产综合久久久| 亚洲av成人一区二区三| 激情在线观看视频在线高清| 久久精品91蜜桃| 亚洲欧美精品综合一区二区三区| 黄网站色视频无遮挡免费观看| 悠悠久久av| 亚洲精品国产区一区二| 999久久久国产精品视频| 亚洲自拍偷在线| 欧美+亚洲+日韩+国产| 成人国产一区最新在线观看| 亚洲精品一区av在线观看| 国产精品久久久久久亚洲av鲁大| 91成人精品电影| 婷婷精品国产亚洲av在线| 亚洲精品国产区一区二| 悠悠久久av| 好男人电影高清在线观看| 波多野结衣av一区二区av| 一进一出好大好爽视频| 欧美黑人欧美精品刺激| 国产欧美日韩精品亚洲av| 丝袜美腿诱惑在线| 日韩av在线大香蕉| 午夜福利视频1000在线观看| bbb黄色大片| 久久草成人影院| 国产aⅴ精品一区二区三区波| 国产精品野战在线观看| 中文字幕高清在线视频| 国产激情欧美一区二区| 动漫黄色视频在线观看| 波多野结衣巨乳人妻| 亚洲欧美精品综合一区二区三区| av电影中文网址| 色婷婷久久久亚洲欧美| 亚洲一区二区三区色噜噜| 精品不卡国产一区二区三区| 国产黄片美女视频| 18禁观看日本| 国产在线观看jvid| 国产成人系列免费观看| 国产av在哪里看| 久久亚洲精品不卡| 日本五十路高清| 精品久久久久久,| 男人舔女人下体高潮全视频| 中文字幕人妻丝袜一区二区| 国产精品日韩av在线免费观看| 精品免费久久久久久久清纯| 久久精品91无色码中文字幕| 别揉我奶头~嗯~啊~动态视频| 国产v大片淫在线免费观看| 成人永久免费在线观看视频| 午夜福利高清视频| 波多野结衣高清作品| 国产精品久久久久久人妻精品电影| 国产欧美日韩一区二区精品| 在线播放国产精品三级| 美女国产高潮福利片在线看| 国语自产精品视频在线第100页| 欧美一区二区精品小视频在线| 欧美午夜高清在线| 亚洲精品美女久久av网站| 男女视频在线观看网站免费 | 精品国内亚洲2022精品成人| 成年女人毛片免费观看观看9| 日韩国内少妇激情av| 国产精品98久久久久久宅男小说| 免费无遮挡裸体视频| 日韩欧美国产一区二区入口| 午夜免费成人在线视频| 国产野战对白在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 欧美激情极品国产一区二区三区| 这个男人来自地球电影免费观看| 夜夜夜夜夜久久久久| 制服人妻中文乱码| 日本在线视频免费播放| 国产成人精品久久二区二区免费| 欧美又色又爽又黄视频| 波多野结衣高清作品| 国产精品自产拍在线观看55亚洲| 国产精华一区二区三区| 精品欧美一区二区三区在线| 麻豆一二三区av精品| 一级a爱视频在线免费观看| 老汉色∧v一级毛片| 国产一区二区三区视频了| 男人舔奶头视频| 少妇被粗大的猛进出69影院| 免费高清在线观看日韩| 后天国语完整版免费观看| 99久久精品国产亚洲精品| 欧美另类亚洲清纯唯美| 欧美久久黑人一区二区| 不卡av一区二区三区| 最好的美女福利视频网| 他把我摸到了高潮在线观看| 亚洲国产精品成人综合色| 两性夫妻黄色片| 国内久久婷婷六月综合欲色啪| av电影中文网址| 脱女人内裤的视频| 亚洲全国av大片| 在线永久观看黄色视频| 他把我摸到了高潮在线观看| 亚洲,欧美精品.| 啪啪无遮挡十八禁网站| 可以免费在线观看a视频的电影网站| 国产区一区二久久| 精品国内亚洲2022精品成人| 精品久久久久久久人妻蜜臀av| 中文在线观看免费www的网站 | 午夜老司机福利片| 久久久久免费精品人妻一区二区 | 国产午夜福利久久久久久| 老熟妇仑乱视频hdxx| 国产成年人精品一区二区| 18美女黄网站色大片免费观看| 成人三级做爰电影| 亚洲在线自拍视频| 99久久久亚洲精品蜜臀av| 在线观看一区二区三区| 国产黄a三级三级三级人| 亚洲av第一区精品v没综合| 91国产中文字幕| 欧洲精品卡2卡3卡4卡5卡区| 久久精品国产综合久久久| 久久精品人妻少妇| 国产精品精品国产色婷婷| 日本 欧美在线| 特大巨黑吊av在线直播 | 国产亚洲精品综合一区在线观看 | 午夜福利在线观看吧| 成人三级做爰电影| 亚洲中文字幕日韩| 亚洲九九香蕉| x7x7x7水蜜桃| 欧美不卡视频在线免费观看 | 亚洲熟妇熟女久久| 欧美成人一区二区免费高清观看 | 精品久久久久久久末码| 欧美日韩福利视频一区二区| 亚洲成av人片免费观看| 精品久久久久久成人av| 久久久久免费精品人妻一区二区 | 久久国产精品男人的天堂亚洲| 黄色女人牲交| 巨乳人妻的诱惑在线观看| 色综合亚洲欧美另类图片| 99国产综合亚洲精品| 午夜精品在线福利| xxx96com| 日本黄色视频三级网站网址| 日韩欧美国产一区二区入口| 亚洲成人国产一区在线观看| 俄罗斯特黄特色一大片| 国内精品久久久久久久电影| 国产精品永久免费网站| 看免费av毛片| 91成人精品电影| 90打野战视频偷拍视频| 亚洲精品久久国产高清桃花| 久久精品aⅴ一区二区三区四区| 超碰成人久久| 精品不卡国产一区二区三区| 久热爱精品视频在线9| 黄网站色视频无遮挡免费观看| 国产精品久久久久久亚洲av鲁大| 亚洲精品国产精品久久久不卡| 亚洲成av人片免费观看| 日韩欧美国产在线观看| 亚洲三区欧美一区| 亚洲成人国产一区在线观看| 一本久久中文字幕| 天堂影院成人在线观看| 夜夜躁狠狠躁天天躁| 亚洲五月色婷婷综合| 久久天堂一区二区三区四区| 俺也久久电影网| 18禁黄网站禁片午夜丰满| 亚洲欧洲精品一区二区精品久久久| √禁漫天堂资源中文www| 香蕉久久夜色| 人人妻,人人澡人人爽秒播| 亚洲精品国产精品久久久不卡| 久久久久九九精品影院| 黄色片一级片一级黄色片| 老司机午夜福利在线观看视频| 国产1区2区3区精品| 看免费av毛片| 脱女人内裤的视频| 亚洲一区二区三区色噜噜| 亚洲精品美女久久av网站| 精品欧美国产一区二区三| 午夜免费鲁丝| 亚洲午夜理论影院| 精品国产国语对白av| 老熟妇仑乱视频hdxx| 哪里可以看免费的av片| 可以在线观看的亚洲视频| 一区二区三区国产精品乱码| 欧美又色又爽又黄视频| 亚洲中文av在线| 久99久视频精品免费| 国产人伦9x9x在线观看| 韩国av一区二区三区四区| 不卡一级毛片| 日韩三级视频一区二区三区| 视频在线观看一区二区三区| 国产成人欧美在线观看| 中文字幕久久专区| 熟女电影av网| 草草在线视频免费看| 黄色女人牲交| 国产精品久久视频播放| 亚洲国产精品久久男人天堂| 国产精品98久久久久久宅男小说| av在线播放免费不卡| 亚洲av熟女| 法律面前人人平等表现在哪些方面| 又黄又爽又免费观看的视频| 午夜两性在线视频| 日韩欧美一区二区三区在线观看| 大型av网站在线播放| 99久久精品国产亚洲精品| 91九色精品人成在线观看| 日本免费一区二区三区高清不卡| 日本精品一区二区三区蜜桃| 久久天躁狠狠躁夜夜2o2o| 可以在线观看毛片的网站| 国产精品电影一区二区三区| 精品久久久久久久久久免费视频| 12—13女人毛片做爰片一| 亚洲自拍偷在线| 美女大奶头视频| 美女高潮到喷水免费观看| 一本久久中文字幕| 国产av一区在线观看免费| 麻豆久久精品国产亚洲av| 色综合站精品国产| 久久久久久大精品| 久久久精品国产亚洲av高清涩受| 国产熟女xx| 18禁黄网站禁片免费观看直播| 少妇裸体淫交视频免费看高清 | 国产色视频综合| 国产精品久久电影中文字幕| 国产伦一二天堂av在线观看| 精品国产一区二区三区四区第35| 亚洲精品中文字幕一二三四区| 老司机午夜十八禁免费视频| 国产视频内射| www日本在线高清视频| 欧美 亚洲 国产 日韩一| 丁香欧美五月| 在线观看午夜福利视频| 久久伊人香网站| 夜夜看夜夜爽夜夜摸| 亚洲av成人av| 真人一进一出gif抽搐免费| 国产精品永久免费网站| 日本成人三级电影网站| 身体一侧抽搐| 天堂√8在线中文| 久久这里只有精品19| 欧美乱码精品一区二区三区| 亚洲欧美日韩无卡精品| 91av网站免费观看| 看片在线看免费视频| 搡老岳熟女国产| 黄色片一级片一级黄色片| 午夜两性在线视频| 国产成人精品久久二区二区91| 黄色毛片三级朝国网站| 日本 av在线| 99精品久久久久人妻精品| 精品福利观看| 亚洲性夜色夜夜综合| 午夜久久久久精精品| 成人三级黄色视频| 国产成人一区二区三区免费视频网站| av免费在线观看网站| 欧美黑人欧美精品刺激| 欧美色视频一区免费| 午夜久久久久精精品| 色哟哟哟哟哟哟| 国产日本99.免费观看| 亚洲午夜理论影院| 日韩免费av在线播放| 欧美日韩中文字幕国产精品一区二区三区| 十八禁人妻一区二区| 看片在线看免费视频| 97碰自拍视频| 变态另类丝袜制服| 国内精品久久久久久久电影| 超碰成人久久| 成人国产一区最新在线观看| 极品教师在线免费播放| 亚洲欧美精品综合久久99| 国产精品国产高清国产av| 一区二区日韩欧美中文字幕| 国产人伦9x9x在线观看| 女警被强在线播放| www日本在线高清视频| 嫩草影视91久久| 亚洲五月色婷婷综合| 黄色女人牲交| 一区二区三区精品91| 国产在线精品亚洲第一网站| 成人国产综合亚洲| 一级黄色大片毛片| 身体一侧抽搐| 国产精品免费一区二区三区在线| 一夜夜www| 国产日本99.免费观看| 亚洲 欧美一区二区三区| 中文字幕精品免费在线观看视频| 国产精品亚洲美女久久久| 在线观看www视频免费| 久久人人精品亚洲av| 97人妻精品一区二区三区麻豆 | 国产高清videossex| 欧美最黄视频在线播放免费| 最新美女视频免费是黄的| 国产熟女xx| 免费在线观看影片大全网站| 久久婷婷人人爽人人干人人爱| 欧美性猛交╳xxx乱大交人| 亚洲黑人精品在线| 可以免费在线观看a视频的电影网站| 亚洲色图av天堂| 亚洲男人天堂网一区| 精品欧美国产一区二区三| 韩国av一区二区三区四区| 婷婷六月久久综合丁香| 1024视频免费在线观看| 女人被狂操c到高潮| 久久精品91蜜桃| 欧美一区二区精品小视频在线| 久久香蕉国产精品| 精品久久蜜臀av无| 不卡一级毛片| 亚洲精品粉嫩美女一区| xxxwww97欧美| 亚洲成人免费电影在线观看| 国产一区二区在线av高清观看| 中文字幕精品亚洲无线码一区 | 亚洲第一欧美日韩一区二区三区| 激情在线观看视频在线高清| 欧美黄色片欧美黄色片| 久久这里只有精品19| 欧美不卡视频在线免费观看 | 日韩三级视频一区二区三区| 麻豆国产av国片精品| www日本在线高清视频| АⅤ资源中文在线天堂| 少妇的丰满在线观看| 身体一侧抽搐| 成人亚洲精品一区在线观看| 窝窝影院91人妻| 在线天堂中文资源库| 免费在线观看日本一区| 久久久国产成人精品二区| 国产片内射在线| 成人三级黄色视频| 欧美一级毛片孕妇| 国产av在哪里看| 久久性视频一级片| 成人精品一区二区免费| 色综合亚洲欧美另类图片| 欧美色欧美亚洲另类二区| 亚洲成a人片在线一区二区| 亚洲人成网站在线播放欧美日韩| 国产精品精品国产色婷婷| 欧美久久黑人一区二区| 色在线成人网| 在线观看免费日韩欧美大片| 很黄的视频免费| 十八禁人妻一区二区| 美国免费a级毛片| 免费在线观看完整版高清| 99久久精品国产亚洲精品| 欧美成人午夜精品| 制服丝袜大香蕉在线| 精品国产乱子伦一区二区三区| 亚洲国产精品999在线| 麻豆国产av国片精品| 又黄又爽又免费观看的视频| 国产黄a三级三级三级人| 精品日产1卡2卡| 大型黄色视频在线免费观看| 欧美av亚洲av综合av国产av| 午夜福利视频1000在线观看| 又黄又粗又硬又大视频| 19禁男女啪啪无遮挡网站| 久久久久国产一级毛片高清牌| 日韩欧美 国产精品| 国产黄a三级三级三级人| 特大巨黑吊av在线直播 | 免费在线观看影片大全网站| 一级作爱视频免费观看| 99国产极品粉嫩在线观看| 国产精华一区二区三区| 不卡一级毛片| 国产国语露脸激情在线看| 人人妻人人澡欧美一区二区| 国产成人欧美在线观看| 在线观看一区二区三区| 国产高清videossex| 天堂动漫精品| 国产aⅴ精品一区二区三区波| 国产精品二区激情视频| 久久 成人 亚洲| 国产精品av久久久久免费| 两人在一起打扑克的视频| av天堂在线播放| 人妻久久中文字幕网| 国产欧美日韩一区二区三| 国产成人av激情在线播放| 久久香蕉国产精品| 国产伦一二天堂av在线观看| 白带黄色成豆腐渣| 一边摸一边抽搐一进一小说| 999精品在线视频| 很黄的视频免费| 亚洲第一av免费看| 黄色丝袜av网址大全| 十八禁网站免费在线| 色综合婷婷激情| 精品免费久久久久久久清纯| 久久国产精品影院| 国产午夜精品久久久久久| 搡老熟女国产l中国老女人| 久久久久久久精品吃奶| 久久国产精品影院| 别揉我奶头~嗯~啊~动态视频| 婷婷精品国产亚洲av在线| 特大巨黑吊av在线直播 | 香蕉国产在线看| 男人舔女人的私密视频| e午夜精品久久久久久久| 丁香欧美五月| 亚洲精品国产一区二区精华液| 一级a爱视频在线免费观看| 一区二区三区精品91| 自线自在国产av| 狂野欧美激情性xxxx| 亚洲熟女毛片儿| 精品免费久久久久久久清纯| 一二三四在线观看免费中文在| 午夜精品在线福利| 2021天堂中文幕一二区在线观 | avwww免费| 免费观看精品视频网站| 国产99白浆流出| 最近在线观看免费完整版| 午夜免费成人在线视频| 国产精品久久电影中文字幕| 国产精品一区二区三区四区久久 | 国产精品亚洲一级av第二区| 欧美色视频一区免费| 最好的美女福利视频网| 精品日产1卡2卡| 亚洲精品美女久久久久99蜜臀| 国产成人精品久久二区二区免费| 久久人妻福利社区极品人妻图片| 亚洲色图av天堂| 亚洲aⅴ乱码一区二区在线播放 | 999久久久国产精品视频|