• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Amorphous molybdenum sulfide mediated EDTA with multiple active sites to boost heavy metal ions removal

    2021-12-27 13:06:14QiHungYizhongZhngWeiZhouXingHungYilingChenXinTnbToYu
    Chinese Chemical Letters 2021年9期

    Qi Hung,Yizhong Zhng,Wei Zhou,Xing Hung,Yiling Chen,Xin Tnb,,To Yu,

    a School of Chemical Engineering and Technology,Tianjin University,Tianjin 300350,China

    b School of Environmental Science and Engineering,Tianjin University,Tianjin 300350,China

    c School of Science,Tibet University,Lhasa 850000,China

    d School of Science,Tianjin University,Tianjin 300350,China

    e Research Center of Environmental Pollution Control Engineering Technology,Chinese Research Academy of Environmental Sciences,Beijing 100012,China

    Keywords:Amorphous phase MoS2 MoS3 Adsorption Heavy metal ions DFT calculations

    ABSTRACT The rational design of strong affinity adsorbents for heavy metal ions removal remains a critical challenge for water treatment.In this study,amorphous molybdenum sulfide composites (EDTA-MoSx (x=2,3))were fabricated via a facile hydrothermal method mediated by EDTA,which was applied to heavy metal ions(Cu2+,Cd2+,Pb2+,Zn2+and Ni2+)removal from aqueous solutions.A case study for Cu2+ions showed that the adsorption capacity of EDTA-MoSx(x=2,3)was superior to crystalline phase MoS2 at pH 6.0 with an initial concentration of 200 mg/L.Adsorption mechanisms of different sulfide groups and--COOH of EDTA-MoSx (x=2,3) were verified systematically via a series of experiments,characterizations,and density functional theory (DFT) calculations.Both bridging S22- and--COOH covalently bonded with Cu2+ions were ascribed to the critical factors for this enhanced removal efficiency on the surface of EDTAMoSx(x=2,3).This work offers a new method to enhance the adsorption performance of molybdenum sulfide-based materials by controlling crystallinity mediated with an organic complex small molecule.

    High concentration heavy metal ions mostly come from mining,smelting,surface treatment,electroplating,electrolysis,electrical and circuit board/circuit manufacturing,and normally,it is quite difficult to deal with them safely [1-3].At present,various methods,including coagulation-flocculation[4],ion exchange[5-8],membrane separation [9,10],biological treatment [11],and adsorption [12-17],have been adopted to remove heavy metal ions.Among them,adsorption was thought of as the most studied and widely used effective technologies [18-25].

    With the development of adsorption technology for heavy metal ions,a variety of adsorbents have been developed [26-30].However,due to the performance indicators,such as adsorption capacity,cost and stability,which cannot reach our desired treatment efficiency.With the recognition and understanding of the structure of adsorbents,molybdenum disulfide induced researcher’s interest as an emerging adsorbent [7,31-36].Molybdenum disulfide composites possessed special layered structure and active sulfur atom at the edge,in which heavy metal ions were complexed edge S2-based Lewis acids and alkalis theory[37].The representative is Lu et al.’s work,they designed molybdenum disulfide with expanded interlayer spacing and defective active sites to remove Hg2+and Ag+ions that the maximum theoretical adsorption capacity was 2506 and 1348 mg/g for Hg2+and Ag+,respectively,which matched to the actual calculated value,confirmed the importance of exposing the sulfur atoms [31].The surface free energy of amorphous materials is higher because of the abundant hanging bonds.Theoretically,amorphous molybdenum sulfide contains more kinds of active sulphide groups and the random disorder of this structure leads to more active sites.Amorphous molybdenum sulfide has been proposed to be polymeric in which S atoms presented various bonding environments,in which bridging S22-,apical S2-have been implicated as active species [38,39].Unfortunately,amorphous molybdenum sulfide was not wieldy applied in the field of adsorption research [40,41],while being electrocatalyst and cocatalyst applied in the field of (photo)catalysis constantly because of these mentioned properties [42-44].Summarizing the reported works,we found that only Fu et al.synthesized 2D amorphous MoS3nanosheets with porous network structures for toxic metal ions(Cu2+,Cd2+and Hg2+)remediation from a synthetic acid mine drainage solution effectively and prepared amorphous molybdenum sulphide composite uptaked Hg2+from wastewater selectively [40,41].

    In this work,we synthesized amorphous molybdenum sulfide composites mediated by EDTA(EDTA-MoSx(x=2,3))based a facile hydrothermal method (Scheme 1) to adsorb Cu2+ions,which is a common heavy metal in wastewater,and its adsorption performances were systematically investigated via a batch of experiments including contact time,ionic strength and so on.To clarify this mechanism of enhanced adsorption capacity,the adsorption energies,total electron density images,and Mulliken charge changes before and after adsorption was calculated here by using density functional theory (DFT).

    Scheme 1.The synthesis route of EDTA-MoSx (x=2,3) composites.

    In order to determine the amorphous state of the synthesized sample,X-Ray diffraction (XRD),Raman,transmission electron microscopy(TEM),and scanning electron microscopy(SEM)were employed here.In this work,amorphous molybdenum sulfide was achieved via a sulfidation process.Normally,when we synthesized MoS2crystal,there are three states in the process of molybdenum sulfidation:Oxidic state,intermediate MoS3-like,and crystalline MoS2[45].While in our reported sulfidation process,Na2EDTA was selected to retard the transformation of molybdenum from intermediate MoS3to the final MoS2,which are quite critical to formation of amorphous molybdenum sulfide [45].As shown in Fig.1a,compare to crystalline MoS2,the intensity of(002)plane in EDTA-MoSx(x=2,3) gradually weakened until disappeared with Na2EDTA amount increased to 1.5 mmol,indicating that crystallinity can be regulated by the amount of Na2EDTA.This change can be further confirmed via Raman spectra depicted in Fig.1b.Crystalline MoS2possessed two distinct peaks at 375 and 404 cm-1correspond to the in-plane E12gand out-of-plane A1gvibration(S--S) modes of 2H-MoS2,respectively [46],the relevant signal peaks,however,disappeared in EDTA-MoSx(x=2,3).

    TEM is a very effective method to analyze the morphology and crystal state,so we employed TEM to explore crystalline information of synthesized amorphous molybdenum sulfide.Images of EDTA-MoSx(x=2,3) scanned by TEM and high resolution transmission electron microscopy (HRTEM) in Figs.1c and d confirmed the nanoparticles of EDTA-MoSx(x=2,3)with the disordered structure which have rough nature surface and no relatively complete diffraction rings.This phenomenon is completely different from crystalline MoS2with nano-flower-like structures formed by stacking irregular nanosheets with a thickness of ca.2 nm (Figs.S1a and b in Supporting information)and have clear spacing adjacent lattice fringes (d=0.634 nm)matched to (002) plane [47]in Fig.S1c (Supporting information).And from selected area electron diffraction(SAED)patterns inset of Fig.S1c(Supporting information),we found that(100),(002),(105)diffraction rings belonged to crystalline MoS2were indexed.However,the relative abundance of the crystalline domains is greatly decreased in EDTA-MoSx(x=2,3) (Fig.1d).SEM image in Fig.S1d (Supporting information) indicated EDTA-MoSx(x=2,3)with no clear outline of the three-dimensional structure compare to crystalline MoS2.Systematically analyze XRD,Raman,and HRTEM results,the amorphous structure of EDTA-MoSx(x=2,3)was confirmed here.The energy dispersive X-ray spectroscopy(EDS) mapping from SEM in Fig.1e indicates the elemental distribution of EDTA-MoSx(x=2,3) with Mo,S,C,N,and O,confirming that EDTA was distributed homogeneously on EDTAMoSx(x=2,3).EDTA existed in EDTA-MoSx(x=2,3) also verified by results of FTIR in Fig.2a,where the peaks at 1639 cm-1,1403 cm-1,and 3129 cm-1were associated with the stretching vibration peak of C=O,bending vibration peak of--COOH,and stretching vibration peak of the O--H bond in--COOH,respectively [48,49].

    To determine the pore structure of nanoparticle and the specific surface areas of MoS2and EDTA-MoSx(x=2,3),a N2adsorptiondesorption test were conducted and found that the shape of the isotherm is categorized as type IV with H3 type of hysteresis loop in Fig.S2 (Supporting information),indicating that the adsorbent possesses mesoporous [50].Moreover,the specific surface areas and average pore size of MoS2and EDTA-MoSx(x=2,3) were determined to be 66.85 m2/g and 17.39 nm,0.22 m2/g and 30.67 nm,respectively.Lower specific surface area of EDTA-MoSx(x=2,3)was due to its bulk structure(Fig.1e)and another reason may be that slit holes formed by stacking the sheet-like MoS2were blocked by Na2EDTA addition [38,50].

    For a functional material,the chemical configuration is quite important.Through the analysis of chemical configuration,its adsorption performance can be clearly analyzed.Here,X-ray photoelectron spectroscopy (XPS) survey spectra and highresolution XPS spectra of S 2p and Mo 3d were depicted in Figs.2b-d.The XPS survey spectra in Fig.2b presents Mo 3d,S 2p,C 1s,N 1s and O 1s peaks in EDTA-MoSx(x=2,3).High-resolution XPS spectra of S 2p1/2and 2p3/2for the EDTA-MoSx(x=2,3) in Fig.2c shows a broad envelope compare to crystalline MoS2,which can be fit to two doublets.The doublet at lower binding energies,163.0 eV(S 2p1/2)and 162.0 eV(S 2p3/2),corresponded to edge S2-in MoS2,and the doublet at higher binding energies,164.3 eV (S 2p1/2) and 163.2 eV (S 2p3/2),assigned to bridging sulphide S22-and/or apical sulphide S2-in MoS3[51-53].Besides,by integrating the peak area,the ratio of MoS3to MoS2in the EDTA-MoSx(x=2,3)is determined to be 0.28:0.72.For Mo 3d XPS spectra(Fig.2d),the binding energies for 232.3 eV (3d3/2) and 229.1 eV (3d5/2) were assigned to Mo(IV) atom in the MoS2,while higher energies of 233.5 eV(3d3/2)and 230.3 eV(3d5/2)were corresponded to Mo(VI)in MoS3[52,53],indicating that MoS2and MoS3coexisted in the EDTA-MoSx(x=2,3) [39].We also integrated the corresponding peak areas of MoS3and MoS2,and found that the ratio of MoS3to MoS2was 0.29:0.71,which was basically consistent with the above S 2p analysis.And,the atomic ratio of Mo to S is estimated to be 1:2.5 through the element integral area,further theoretically indicating that both MoS2and MoS3exist in the EDTA-MoSx(x=2,3).

    Fig.1.(a) XRD patterns of MoS2 and EDTA-MoSx (x=2,3);(b) Raman spectra of MoS2 and EDTA-MoSx (x=2,3);(c) TEM and (d) HRTEM images of EDTA-MoSx (x=2,3);(e) elemental distribution of EDTA-MoSx (x=2,3).

    Fig.2.(a)FTIR spectra,(b)XPS survey spectra,(c)S 2p,and(d)Mo 3d XPS spectra of MoS2 and EDTA-MoSx (x=2,3).

    Fig.3a shows Cu(II) ions adsorption capacity under different EDTA amounts,the maximum value was realized at the amount of 1.2 mmol.In general,the uptake of Cu(II)in solution is influenced by the species of Cu(II) and the surface charge of the adsorbents,which are determined by pH value.Fig.3b shows this effect of solution initial pH in the range of 2.0-6.0 on the adsorption capacity of EDTA-MoSx(x=2,3).At initial pH 2-3,the competition between H+and Cu(II) and the protonation of--COOH on the EDTA-MoSx(x=2,3) [29],which hindered the surface adsorption process.However,electrostatic attraction between Cu(II)ions and the negatively charged surface of EDTA-MoSx(x=2,3) was enhanced potentially due to the deprotonation effect at high initial pH (3-6) based on zeta potential detection (Fig.S3 in Supporting information),so the removal performance was improved.As we all know,it is quite critical to clarify the competition between coexisting ions (K+,Ca2+,Mg2+,Cl-,NO3-,SO42-,and HCO3-) and Cu(II) ions,because they are likely to occupy the active sites on the surface of EDTA-MoSx(x=2,3).From Fig.S4 (Supporting information),we can verify that all coexisting ions are uncompetitive to the adsorption of Cu(II)ions.For HCO3-ions,with concentration ranging from 0.01 mmol/L to 0.1 mmol/L,the enhanced adsorption capacity may be due to the formation of Cu(OH)2resulted from HCO3-hydrolysis.

    The effect of contact time on the removal of Cu(II)ions showed in Fig.3c.The initial Cu(II) concentration is 200 mg/L,the contact time range was 0-1440 min in this experiment.It is clear that the adsorption capacity increased rapidly and reached 83.58 mg/g at the initial 60 min,which is 72% of the equilibrium adsorption capacity.This is attributed to a higher concentration driving force and the excess available active sites in infancy adsorption.To further analyze the removal process of Cu(II)in detail,we applied the pseudo-first-order and pseudo-second-order models(described in the Text S3 in Supporting information)to analyze the adsorption data.We found that the pseudo-second-kinetic model is more consistent with the adsorption process of EDTA-MoSx(x=2,3)with a higher correlation coefficient (R2=0.99) as shown in Table S1 (Supporting information),indicating that EDTA-MoSx(x=2,3) adsorbs Cu(II) as a chemisorption process [29].

    The adsorption isotherms with the concentration range 50-500 mg/L under 298 K are depicted in Fig.3d.The equilibrium adsorption capacity of EDTA-MoSx(x=2,3) is higher than MoS2(119.58 vs.46.70 mg/g),which was also superior to that of the adsorbents previously reported[30,54,55].And,when the dosage is 5 g/L at the initial concentration of 200 mg/L,the concentration of Cu(II) ions can be reduced to the drinking water limit value(1.0 mg/L) set by WHO (Fig.S5 in Supporting information),suggesting that EDTA-MoSx(x=2,3)possess the greater advantage in practical applications.The related isotherms parameters can be obtained by fitting the experimental data with Langmuir and Freundlich model (Text S4 in Supporting information) and were summarized in Table S2(Supporting information).Compared with the Freundlich model(R2=0.898),the Langmuir model(R2=0.931)is more consistent with the EDTA-MoSx(x=2,3) adsorption equilibrium process.This indicating that the adsorption sites on the surface of the EDTA-MoSx(x=2,3) are uniformly distributed and the adsorption of Cu(II) on EDTA-MoSx(x=2,3) occurs monolayer adsorption process [8].In addition to Cu(II) ions,the EDTA-MoSx(x=2,3) still showed enhanced removal of multiple heavy metal ions with selective sorting of Cu(II)>Pb(II)>Cd(II)>Ni(II)>Zn(II)compared with MoS2(Fig.4a),which is attributed to the stronger affinity with EDTA-MoSx(x=2,3).

    Fig.3.(a)Adsorption capacity under different EDTA amount.(b)Effect of pH on the adsorption of Cu(II)on MoS2 and EDTA-MoSx(x=2,3).(c)Adsorption kinetics of MoS2 and EDTA-MoSx (x=2,3).(d) Adsorption isotherms for Cu(II) removal on MoS2 and EDTA-MoSx (x=2,3).

    Fig.4.(a) Adsorption capacity of different heavy metals by EDTA-MoSx (x=2,3)and MoS2 with C0=200 mg/L at pH 6.0.(b) Reusability of EDTA-MoSx (x=2,3) at different concentrations of desorption agent.

    The temperature-dependent adsorption curve was depicted in Fig.S6 (Supporting information) and thermodynamic parameters of Cu(II)removal on EDTA-MoSx(x=2,3) based on the Van’t Hoff equation(Text S5 in Supporting information)were summarized in Table S3 (Supporting information),ΔG<0 indicating that the adsorption process is spontaneous.With the increase of temperature,the absolute value of ΔG gradually increases,implying that the increase of temperature is beneficial to the Cu(II) ions adsorption by EDTA-MoSx(x=2,3) [56],which is consistent with the result of adsorption isotherms(Table S2).Besides,both ΔH and ΔS values are greater than zero,indicating that adsorption of Cu(II)on EDTA-MoSx(x=2,3) is an enthalpy increase and endothermic process.

    To investigate the reusability of EDTA-MoSx(x=2,3),several cycles of adsorption-desorption experiments were performed with different desorption agents (HCl and citric acid) in Fig.S7a(Supporting information).The 0.5 mol/L HCl was evaluated as the optimal desorption agent for EDTA-MoSx(x=2,3)-Cu(II) (Fig.4b and Fig.S7b in Supporting information).The low eluent concentration could not provide enough hydrogen ions to destroy the strong Cu--S bond,while the destroyed structure of EDTAMoSxoccurred at the high concentration.After five cycles,the adsorption performance does not decrease significantly,indicating that the EDTA-MoSx(x=2,3) has high stability and good cycle regeneration performance.

    Adsorption mechanism analysis is very important to guide the design of adsorbents and in-depth understand of microscopic interfacial interactions.Electrostatic interaction and surface complexation are known as two common adsorption mechanisms.Considering that the surface of the EDTA-MoSx(x=2,3)in the pH range of this study is negatively charged(Fig.S3),as for positively charged Cu(II) ions,the electrostatic attraction may control the adsorption process.So,the adsorption of Cu(II)ions by EDTA-MoSx(x=2,3) under different NaCl concentrations was carried out in Fig.S8(Supporting information).The experimental results showed that the adsorption was not affected by the ionic strength,therefore,the role of electrostatic attraction on the adsorption process was excluded and surface complexation is likely to control the adsorption process.Besides,the amorphous structure of EDTAMoSx(x=2,3) showed excellent stability (Fig.1d and Fig.S9a in Supporting information) and the SEM morphology of the EDTAMoSx(x=2,3) did not change significantly after adsorption of Cu(II) ions (Fig.S9b in Supporting information).

    Fig.5.XPS spectra of O 1s(a) before and (b) after Cu2+ adsorption on EDTA-MoSx(x=2,3).(c)S 2p XPS spectra before and after Cu2+adsorption on EDTA-MoSx(x=2,3).(d)Mo 3d XPS spectra before and after Cu2+adsorption on EDTA-MoSx(x=2,3).

    Fig.2a shows the FTIR spectra of EDTA-MoSx(x=2,3) before and after adsorption of Cu(II) ions.It was worth noting that the absorbed Cu(II) on the surface of EDTA-MoSx(x=2,3) induced a new strong peak at 3129 cm-1came from the stretching vibration peak of the O--H bond in--COOH disappeared,indicating--COOH was involved in the adsorption reaction and it was consumed by complexation with Cu(II)ions[49,57].Fig.2b presents a survey and high resolution XPS spectra of EDTA-MoSxbefore and after the process of Cu(II)ions adsorption.An obvious peak was detected at 934.7 eV after Cu(II) adsorption,and two distinguishable binding energies around at 932.7 and 952.5 eV (Fig.S10 in Supporting information) are attributed to Cu 2p3/2and Cu 2p1/2in the of CuS[41],respectively.From Figs.5a and b,we can see that binding energy of O 1s in C--OH and C=O and bond shifted from 532.8 eV to 533.1 eV and 531.4 eV-531.5 eV,respectively [58].This reveal that during the adsorption process,oxygen in C--OH and/or C=O shares electrons with Cu(II)to form Cu-O bond,decreased electron density of oxygen atoms and thus the binding energy increased.When integrating the peak area,we can see that the area decreased from 27.5% to 25.5% and 46.3% to 37.1%,resulting from C--OH and C=O decreased,respectively.In other words,the role of the carboxyl group in this reported adsorption process was verified via FTIR and XPS analysis.

    Fig.6.DFT calculations analysis:(a) Adsorption energies of active sites for Cu(II)ions on EDTA-MoSx (x=2,3).Total electron density images and Mulliken charge calculations of before and after Cu(II) adsorption on (b) EDTA,(c) MoS3 and (d)MoS2.

    To testify the function of sulfide ligands for Cu(II) ions adsorption in EDTA-MoSx(x=2,3),the shifts of MoS3and MoS2core energy are showed in Fig.5c.The binding energy of bridging sulfide S22-and/or apical sulfide S2-belonged to MoS3shifts from 164.3 eV to 164.5 eV(S 2p1/2)and 163.2 eV-163.4 eV(S 2p3/2).The S 2p1/2and S 2p3/2belong to the edge S2-of MoS2both changed from 163.0 eV to 163.1 eV,162.0 eV-162.1 eV,respectively.The increased binding energy of sulfur after Cu(II) indicated sulfur atoms shares electrons with Cu(II) to form Cu-S bond,inducing decreasing the electron density of sulfur atoms.In addition,the observation movement of Mo 3d3/2and 3d5/2binding energies in MoS3from 233.5 eV to 233.9 eV and 230.0 eV to 230.6 eV,respectively(Fig.5d).This is because sulfur atoms in MoS3shared electrons with Cu(II)and induced the electron density of adjacent molybdenum atoms decreased,thus increased its binding energy.In contrast,this binding energy shift was not observed in MoS2,suggesting that MoS3has a better affinity for Cu(II)ions,which will be confirmed by DFT calculations below.

    Considering apical sulfide S2-cannot participate in adsorption due to chemically inert,thus bridging sulfide S22-of MoS3and the edge S2-of MoS2plays a positive role in the process of adsorbing Cu(II)in the system[40,41].To illustrate the role of--COOH in the EDTA-MoSx(x=2,3),bridging sulfide S22-of MoS3and the edge S2-of MoS2in this adsorption process,we performed DFT calculations to clarify this theoretically.As we all know that the more negative the adsorption energy(Eads)is,the more stable the corresponding structure is[25].The calculated Eadsof EDTA,MoS3,and MoS2with Cu(II)were estimated in Fig.6a,Eadsof EDTA(-3.61 eV)and MoS3(-3.45 eV)were lower than MoS2(-2.73 eV),indicating the EDTA and MoS3possess higher adsorption affinity than that of MoS2.The comparative experiments of adsorption capacity using EDTA-MoSx(x=2,3)and MoS2are presented in Fig.4a,suggesting amorphous molybdenum sulfide mediated EDTA with multiple active sites has more advantages in water treatment of heavy metal ions than crystalline MoS2.

    We further provided total electron density patterns (TED) via DFT calculations to investigate the interaction between Cu(II)ions and EDTA-MoSx(x=2,3).The deformations of TED patterns were observed after the adsorption process (Figs.6b-d),suggesting strong interaction between Cu(II)ions and EDTA,MoS3,and MoS2,respectively.Moreover,electron clouds of Cu(II) ions obviously overlaped with EDTA,MoS3,and MoS2,respectively,indicating the sharing or transfer of electrons induced by surface complexation.Mulliken charge analysis is an effective tool to study electrons transfer for interaction system.Mulliken charge calculations of key active sites before and after Cu(II) adsorption are presented in Figs.6b-d,included--COOH in EDTA,bridging S22-in MoS3,and edge S2-in MoS2.After adsorption,charges of Cu(II) ions bonded moieties increased by 0.072 (--COOH),0.065 (MoS3),and 0.038(MoS2),respectively.The results indicated that the electrons belonged to oxygen in--COOH group,sulfur in MoS3and MoS2were transferred to the Cu(II) ions and then participated in the formation of covalent bonds (Cu-O and Cu-S) during the adsorption process,which is consistent with the above XPS analysis for the shift of binding energy.The electrons transfer amount (QT) of both EDTA and MoS3is larger than that of MoS2,resulted in both stronger interactions with Cu(II)ions than that of MoS2,which was in good agreement with the analysis of adsorption energy.

    In summary,a novel amorphous EDTA-MoSx(x=2,3)composites was successfully synthesized via a facile one-step hydrothermal method,and was used to adsorb heavy metal ions from aqueous solution.The adsorption performance of EDTA-MoSx(x=2,3) was significantly improved compared with that of pure MoS2due to multiple active sites.Characterization techniques and DFT calculations,including adsorption energies,total electron density images,and Mulliken charge analysis,reveal that adsorption mechanism is mainly attributed to two aspects:(1) Bridging S22-of amorphous EDTA-MoSx(x=2,3)combined with Cu(II)ions;(2)Cu(II)ions combined with--COOH of the EDTA-MoSx(x=2,3)surface.This work is of great significance for the development of new amorphous phase adsorbents for heavy metal ions removal.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was supported by the Natural Science Foundation of Tianjin (No.18JCYBJC17700),the National Natural Science Foundation of China (Nos.21406164,21466035 and 22066022),the National Key Basic Research and Development Program of China(973 Program,No.2014CB239300).

    Appendix A.Supplementary data

    Supplementarymaterialrelatedtothisarticlecanbefound,inthe online version,at doi:https://doi.org/10.1016/j.cclet.2020.12.020.

    一卡2卡三卡四卡精品乱码亚洲| 日本五十路高清| 国产精品 国内视频| 欧美精品啪啪一区二区三区| 日本免费a在线| 搡老熟女国产l中国老女人| 亚洲无线在线观看| 色综合婷婷激情| 欧美激情极品国产一区二区三区| 国内精品久久久久精免费| 中文字幕人妻丝袜一区二区| 亚洲天堂国产精品一区在线| 亚洲激情在线av| 黄片播放在线免费| 男女床上黄色一级片免费看| 国产又黄又爽又无遮挡在线| 日韩精品免费视频一区二区三区| 美女扒开内裤让男人捅视频| 国产真人三级小视频在线观看| 一区二区三区激情视频| 国产高清视频在线播放一区| 999久久久国产精品视频| 精品久久久久久久久久久久久 | ponron亚洲| 国产极品粉嫩免费观看在线| 韩国精品一区二区三区| aaaaa片日本免费| 午夜福利18| 国产又色又爽无遮挡免费看| 国产又色又爽无遮挡免费看| 日本 av在线| 国产成人啪精品午夜网站| 久久精品国产亚洲av香蕉五月| 黑人操中国人逼视频| 两性夫妻黄色片| 国内少妇人妻偷人精品xxx网站 | 99在线人妻在线中文字幕| 国产精品影院久久| 啦啦啦韩国在线观看视频| 一边摸一边做爽爽视频免费| 中亚洲国语对白在线视频| 在线观看免费日韩欧美大片| av天堂在线播放| 色av中文字幕| 免费电影在线观看免费观看| 国产蜜桃级精品一区二区三区| 岛国视频午夜一区免费看| 美女高潮喷水抽搐中文字幕| 国产蜜桃级精品一区二区三区| 老司机靠b影院| 日韩国内少妇激情av| 日本一本二区三区精品| 亚洲av电影不卡..在线观看| 一卡2卡三卡四卡精品乱码亚洲| 日本一本二区三区精品| 日韩高清综合在线| 人人妻,人人澡人人爽秒播| 亚洲男人的天堂狠狠| 欧美在线一区亚洲| 国产欧美日韩一区二区精品| 男女午夜视频在线观看| 丰满人妻熟妇乱又伦精品不卡| 黄色视频不卡| www日本在线高清视频| 在线观看免费日韩欧美大片| 亚洲精品国产精品久久久不卡| 国产一区二区三区在线臀色熟女| 国产成年人精品一区二区| 精品国产美女av久久久久小说| 男女午夜视频在线观看| 日本免费一区二区三区高清不卡| 少妇 在线观看| 神马国产精品三级电影在线观看 | 黑人操中国人逼视频| 国产aⅴ精品一区二区三区波| 两人在一起打扑克的视频| 91国产中文字幕| 国产精华一区二区三区| 男人舔女人下体高潮全视频| 看片在线看免费视频| 国产精品 国内视频| 亚洲av成人不卡在线观看播放网| 亚洲国产中文字幕在线视频| 欧美激情极品国产一区二区三区| 欧美不卡视频在线免费观看 | av欧美777| 精品高清国产在线一区| 国产精品久久视频播放| 91字幕亚洲| 亚洲第一电影网av| 欧美性猛交╳xxx乱大交人| 亚洲人成网站在线播放欧美日韩| av片东京热男人的天堂| 国产蜜桃级精品一区二区三区| 国产亚洲精品综合一区在线观看 | 亚洲精品美女久久久久99蜜臀| 亚洲专区字幕在线| 麻豆国产av国片精品| 日本 av在线| 韩国av一区二区三区四区| 国产亚洲av嫩草精品影院| 国产日本99.免费观看| 欧美激情 高清一区二区三区| 国产免费男女视频| 别揉我奶头~嗯~啊~动态视频| 一区二区日韩欧美中文字幕| 91在线观看av| 制服诱惑二区| 美女免费视频网站| 色综合婷婷激情| 制服诱惑二区| 少妇被粗大的猛进出69影院| 韩国av一区二区三区四区| 麻豆国产av国片精品| 亚洲激情在线av| 757午夜福利合集在线观看| 日本免费一区二区三区高清不卡| 日本在线视频免费播放| 91av网站免费观看| 国产精品综合久久久久久久免费| 欧美国产日韩亚洲一区| 男女之事视频高清在线观看| 亚洲全国av大片| 夜夜躁狠狠躁天天躁| 麻豆av在线久日| 亚洲国产精品999在线| 国产成人精品久久二区二区免费| 又大又爽又粗| 99re在线观看精品视频| 国产熟女xx| 非洲黑人性xxxx精品又粗又长| 亚洲成av片中文字幕在线观看| 国产精品1区2区在线观看.| 性欧美人与动物交配| 亚洲中文av在线| 色哟哟哟哟哟哟| 久久久久久久久免费视频了| 久久精品91无色码中文字幕| 97人妻精品一区二区三区麻豆 | 欧美激情久久久久久爽电影| 欧美黄色淫秽网站| 成人免费观看视频高清| 亚洲国产欧美日韩在线播放| 最近最新中文字幕大全电影3 | 国产精品美女特级片免费视频播放器 | 欧美 亚洲 国产 日韩一| 国产成人欧美| 一区二区三区高清视频在线| 欧美一级a爱片免费观看看 | 亚洲免费av在线视频| 久99久视频精品免费| 欧美人与性动交α欧美精品济南到| 一区二区三区精品91| 久久午夜亚洲精品久久| 国产一区二区激情短视频| 男人舔女人的私密视频| 久久国产亚洲av麻豆专区| 女警被强在线播放| 国产一区二区三区在线臀色熟女| 97碰自拍视频| 国产熟女xx| 精品日产1卡2卡| av视频在线观看入口| 一区福利在线观看| 国产精品98久久久久久宅男小说| 午夜福利高清视频| 好男人电影高清在线观看| 婷婷精品国产亚洲av在线| 人人妻人人澡欧美一区二区| 国产精品日韩av在线免费观看| a级毛片在线看网站| 一进一出抽搐动态| 日本一本二区三区精品| 亚洲av成人一区二区三| 国产伦一二天堂av在线观看| 一本综合久久免费| 天天一区二区日本电影三级| 亚洲va日本ⅴa欧美va伊人久久| 两性午夜刺激爽爽歪歪视频在线观看 | 最好的美女福利视频网| 欧美 亚洲 国产 日韩一| www.精华液| 国产精华一区二区三区| 国产黄a三级三级三级人| av天堂在线播放| 久久香蕉国产精品| 亚洲成av人片免费观看| 国内久久婷婷六月综合欲色啪| 国产欧美日韩一区二区精品| 女性生殖器流出的白浆| 国产三级在线视频| 女性被躁到高潮视频| 午夜福利在线在线| 亚洲三区欧美一区| 两性午夜刺激爽爽歪歪视频在线观看 | 人妻丰满熟妇av一区二区三区| 最新在线观看一区二区三区| 看免费av毛片| 身体一侧抽搐| 老司机深夜福利视频在线观看| 亚洲中文字幕日韩| 久久天堂一区二区三区四区| 中亚洲国语对白在线视频| 日韩欧美三级三区| 男人舔女人的私密视频| 不卡av一区二区三区| 高清在线国产一区| 久久精品亚洲精品国产色婷小说| 国产成人欧美| 一本综合久久免费| 亚洲精品中文字幕在线视频| 久久久久免费精品人妻一区二区 | 成人18禁高潮啪啪吃奶动态图| 99精品久久久久人妻精品| 免费看美女性在线毛片视频| 99re在线观看精品视频| 久久精品影院6| 非洲黑人性xxxx精品又粗又长| 精品高清国产在线一区| 亚洲国产日韩欧美精品在线观看 | а√天堂www在线а√下载| 久久久久九九精品影院| 久久香蕉国产精品| 国产一区在线观看成人免费| 欧美三级亚洲精品| 中文资源天堂在线| 亚洲天堂国产精品一区在线| 美女 人体艺术 gogo| 亚洲国产精品成人综合色| 亚洲精品美女久久久久99蜜臀| 村上凉子中文字幕在线| 一区二区三区激情视频| 中文资源天堂在线| 最近最新中文字幕大全电影3 | 欧美另类亚洲清纯唯美| 久久午夜亚洲精品久久| 日日夜夜操网爽| 亚洲精品国产区一区二| 国产精品一区二区精品视频观看| 国产激情欧美一区二区| 一卡2卡三卡四卡精品乱码亚洲| 欧美色视频一区免费| 日本a在线网址| 在线天堂中文资源库| 成在线人永久免费视频| 久久久久国产一级毛片高清牌| 午夜精品在线福利| 狠狠狠狠99中文字幕| 99在线人妻在线中文字幕| 久久狼人影院| 亚洲一区二区三区色噜噜| 色婷婷久久久亚洲欧美| 中文字幕久久专区| 午夜成年电影在线免费观看| 中文字幕精品亚洲无线码一区 | 最近在线观看免费完整版| 亚洲人成77777在线视频| 久久亚洲精品不卡| 久久国产精品影院| 香蕉久久夜色| 50天的宝宝边吃奶边哭怎么回事| 亚洲欧美精品综合久久99| 精品熟女少妇八av免费久了| 最近最新中文字幕大全免费视频| 国产精品九九99| 午夜福利一区二区在线看| 亚洲真实伦在线观看| 亚洲一区二区三区色噜噜| 老熟妇乱子伦视频在线观看| 在线观看舔阴道视频| 国产精品一区二区免费欧美| 亚洲av中文字字幕乱码综合 | 国产又爽黄色视频| 老熟妇仑乱视频hdxx| 一级黄色大片毛片| 91九色精品人成在线观看| 欧美一级a爱片免费观看看 | 国产av又大| 久久精品91无色码中文字幕| 男女之事视频高清在线观看| 成人亚洲精品一区在线观看| 欧美黄色淫秽网站| 麻豆av在线久日| 人人妻人人看人人澡| 国产又爽黄色视频| 一本久久中文字幕| 亚洲av成人一区二区三| 亚洲激情在线av| 最新在线观看一区二区三区| 欧美激情久久久久久爽电影| 国产不卡一卡二| 老鸭窝网址在线观看| 午夜免费鲁丝| 国产精品综合久久久久久久免费| 黑丝袜美女国产一区| 免费在线观看亚洲国产| 亚洲欧美激情综合另类| 国产成人一区二区三区免费视频网站| 欧美日韩一级在线毛片| 国产真实乱freesex| 欧美乱妇无乱码| 国产精华一区二区三区| 桃红色精品国产亚洲av| www.www免费av| 日韩大码丰满熟妇| 中国美女看黄片| 午夜福利在线观看吧| a级毛片在线看网站| 亚洲黑人精品在线| 国产亚洲欧美精品永久| 麻豆成人av在线观看| 19禁男女啪啪无遮挡网站| 一本久久中文字幕| 成人18禁在线播放| 亚洲一区中文字幕在线| 美女大奶头视频| 夜夜爽天天搞| 久久久久久久久免费视频了| 老汉色∧v一级毛片| 国产欧美日韩一区二区三| av视频在线观看入口| av片东京热男人的天堂| 免费一级毛片在线播放高清视频| 一边摸一边做爽爽视频免费| 亚洲片人在线观看| 母亲3免费完整高清在线观看| 中国美女看黄片| 国产色视频综合| 99精品久久久久人妻精品| 国产成人av教育| 夜夜夜夜夜久久久久| 国产v大片淫在线免费观看| 亚洲男人的天堂狠狠| 国产片内射在线| 黄片播放在线免费| 一级毛片精品| 在线观看舔阴道视频| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美午夜高清在线| 亚洲精品色激情综合| 天堂√8在线中文| 露出奶头的视频| 黄频高清免费视频| 一级片免费观看大全| 免费看十八禁软件| 欧美久久黑人一区二区| 国产爱豆传媒在线观看 | 757午夜福利合集在线观看| 国产黄片美女视频| 女同久久另类99精品国产91| 国产一级毛片七仙女欲春2 | 亚洲aⅴ乱码一区二区在线播放 | 亚洲中文av在线| 国内毛片毛片毛片毛片毛片| 国产成人精品无人区| 日本在线视频免费播放| 成人永久免费在线观看视频| 精品福利观看| 老汉色∧v一级毛片| 午夜福利在线在线| 这个男人来自地球电影免费观看| 两人在一起打扑克的视频| 欧美成人免费av一区二区三区| www.熟女人妻精品国产| 日韩大尺度精品在线看网址| 精品卡一卡二卡四卡免费| 中文资源天堂在线| 777久久人妻少妇嫩草av网站| 日韩中文字幕欧美一区二区| 91字幕亚洲| av在线播放免费不卡| 亚洲成人国产一区在线观看| 久久精品影院6| 国产三级黄色录像| а√天堂www在线а√下载| 国产成人影院久久av| 美女 人体艺术 gogo| 亚洲熟女毛片儿| 国产又色又爽无遮挡免费看| 日本精品一区二区三区蜜桃| 日韩视频一区二区在线观看| 99久久无色码亚洲精品果冻| 欧美色视频一区免费| 亚洲自偷自拍图片 自拍| 亚洲男人天堂网一区| 叶爱在线成人免费视频播放| 午夜福利在线观看吧| 成人国语在线视频| 99热只有精品国产| 国产高清激情床上av| 两性夫妻黄色片| 亚洲色图av天堂| 极品教师在线免费播放| 怎么达到女性高潮| 国产高清激情床上av| 亚洲av第一区精品v没综合| 1024香蕉在线观看| 亚洲av电影在线进入| 大型av网站在线播放| 久9热在线精品视频| 欧美黄色淫秽网站| 亚洲在线自拍视频| 精品国产国语对白av| 曰老女人黄片| 90打野战视频偷拍视频| 两个人看的免费小视频| 精品人妻1区二区| 99riav亚洲国产免费| 亚洲专区字幕在线| 国产精品一区二区三区四区久久 | 女生性感内裤真人,穿戴方法视频| 国内毛片毛片毛片毛片毛片| 色av中文字幕| 亚洲成人久久性| 人成视频在线观看免费观看| 看片在线看免费视频| 欧美黑人欧美精品刺激| 午夜福利成人在线免费观看| 韩国精品一区二区三区| 久久久久久人人人人人| 午夜福利免费观看在线| 黄片播放在线免费| 久久精品夜夜夜夜夜久久蜜豆 | 亚洲国产欧洲综合997久久, | 黄色女人牲交| 成年免费大片在线观看| 日本黄色视频三级网站网址| 成人亚洲精品一区在线观看| 成人免费观看视频高清| 亚洲国产精品久久男人天堂| 99国产极品粉嫩在线观看| 最近最新免费中文字幕在线| 日韩国内少妇激情av| 国产三级黄色录像| 午夜久久久久精精品| 无遮挡黄片免费观看| 亚洲国产精品合色在线| 免费在线观看亚洲国产| 国产99久久九九免费精品| 国产真人三级小视频在线观看| 在线观看日韩欧美| 在线十欧美十亚洲十日本专区| 亚洲精品美女久久久久99蜜臀| 国内精品久久久久久久电影| 成人国产综合亚洲| 国产精品二区激情视频| 免费在线观看亚洲国产| 成年版毛片免费区| 日韩视频一区二区在线观看| 午夜老司机福利片| 热re99久久国产66热| 亚洲成人久久性| 十八禁网站免费在线| 一区二区三区精品91| 精品久久久久久久久久久久久 | 精品国产乱子伦一区二区三区| 亚洲熟女毛片儿| 国产欧美日韩一区二区三| 一级片免费观看大全| 亚洲精品国产一区二区精华液| 欧美精品啪啪一区二区三区| 亚洲成人精品中文字幕电影| 国产精品自产拍在线观看55亚洲| 国产国语露脸激情在线看| 脱女人内裤的视频| 午夜免费观看网址| 国产精品 欧美亚洲| 男人舔奶头视频| 男人的好看免费观看在线视频 | 91大片在线观看| 女人高潮潮喷娇喘18禁视频| 国产成人av教育| 亚洲精品在线美女| 欧美性猛交╳xxx乱大交人| 亚洲 欧美一区二区三区| 一级a爱片免费观看的视频| 欧美成狂野欧美在线观看| 丁香六月欧美| 亚洲国产毛片av蜜桃av| 免费在线观看视频国产中文字幕亚洲| 草草在线视频免费看| 午夜激情福利司机影院| 亚洲电影在线观看av| 视频区欧美日本亚洲| 97超级碰碰碰精品色视频在线观看| av电影中文网址| 在线视频色国产色| 大型av网站在线播放| 国内久久婷婷六月综合欲色啪| 又紧又爽又黄一区二区| 亚洲av美国av| 一级作爱视频免费观看| 在线国产一区二区在线| 日本五十路高清| 国内毛片毛片毛片毛片毛片| 精品欧美一区二区三区在线| 亚洲国产精品合色在线| 草草在线视频免费看| 日韩高清综合在线| 午夜免费鲁丝| 成人国产一区最新在线观看| 国产精品精品国产色婷婷| 老司机午夜福利在线观看视频| 白带黄色成豆腐渣| 国产精品免费一区二区三区在线| 制服诱惑二区| 亚洲av片天天在线观看| 久久久国产欧美日韩av| 免费搜索国产男女视频| 成人18禁高潮啪啪吃奶动态图| 国产成人欧美| 俄罗斯特黄特色一大片| 欧美日韩亚洲国产一区二区在线观看| 国产精品免费视频内射| 波多野结衣高清作品| 国产成人一区二区三区免费视频网站| 好看av亚洲va欧美ⅴa在| 一区福利在线观看| 给我免费播放毛片高清在线观看| 丁香六月欧美| 美女大奶头视频| 高清毛片免费观看视频网站| 免费一级毛片在线播放高清视频| 亚洲真实伦在线观看| 亚洲aⅴ乱码一区二区在线播放 | 久久香蕉激情| 无限看片的www在线观看| 少妇被粗大的猛进出69影院| 别揉我奶头~嗯~啊~动态视频| av电影中文网址| 国产精品久久久人人做人人爽| 精品欧美国产一区二区三| 欧美乱码精品一区二区三区| 草草在线视频免费看| 中文字幕人妻熟女乱码| 国产精品综合久久久久久久免费| 别揉我奶头~嗯~啊~动态视频| av电影中文网址| 亚洲激情在线av| 久久久精品国产亚洲av高清涩受| 欧美激情久久久久久爽电影| www.999成人在线观看| 日本撒尿小便嘘嘘汇集6| 色老头精品视频在线观看| 国产精品一区二区三区四区久久 | 国产片内射在线| 男人舔奶头视频| 最近最新免费中文字幕在线| 丁香六月欧美| 久热这里只有精品99| 18禁黄网站禁片午夜丰满| 手机成人av网站| 色综合站精品国产| 亚洲国产精品久久男人天堂| 亚洲 国产 在线| 免费搜索国产男女视频| 久久国产亚洲av麻豆专区| 亚洲精品久久成人aⅴ小说| 99精品久久久久人妻精品| 美女国产高潮福利片在线看| 在线天堂中文资源库| 精品久久久久久成人av| 亚洲 国产 在线| 又大又爽又粗| 中文字幕精品免费在线观看视频| 欧美黄色片欧美黄色片| 国产v大片淫在线免费观看| 亚洲成人久久性| 一级片免费观看大全| 99久久99久久久精品蜜桃| 亚洲第一青青草原| 免费看日本二区| ponron亚洲| 久久天躁狠狠躁夜夜2o2o| 在线观看舔阴道视频| 十八禁网站免费在线| 日韩欧美在线二视频| 午夜免费成人在线视频| 男人的好看免费观看在线视频 | 欧美大码av| 啦啦啦免费观看视频1| 美女扒开内裤让男人捅视频| 精品国产一区二区三区四区第35| 黄色片一级片一级黄色片| 午夜两性在线视频| 最近最新中文字幕大全免费视频| 中文字幕av电影在线播放| 色综合亚洲欧美另类图片| 亚洲成国产人片在线观看| 午夜视频精品福利| 俺也久久电影网| 色老头精品视频在线观看| 天天添夜夜摸| 可以在线观看毛片的网站| 亚洲激情在线av| 亚洲avbb在线观看| 久久久国产欧美日韩av| 国产极品粉嫩免费观看在线| 亚洲三区欧美一区| 夜夜爽天天搞| 女性被躁到高潮视频| 俄罗斯特黄特色一大片| 黄色毛片三级朝国网站| 88av欧美| 最近最新中文字幕大全电影3 | 啦啦啦 在线观看视频| 久久人妻av系列| 午夜福利一区二区在线看| 亚洲欧美精品综合久久99| 最好的美女福利视频网| 人人妻人人澡人人看| 亚洲成人久久性| 亚洲成av人片免费观看| 熟女电影av网| 欧美黑人巨大hd|