• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Sequential separation of Cu(II)/Ni(II)/Fe(II)from strong-acidic pickling wastewater with a two-stage process based on a bi-pyridine chelating resin

    2021-12-27 13:06:14YingzhiLvLinZongZihengLiuJinweiDuFengheWngYnhongZhngChenLingFuqingLiu
    Chinese Chemical Letters 2021年9期

    Yingzhi Lv,Lin Zong,Ziheng Liu,Jinwei Du,Fenghe Wng,Ynhong Zhng,e,Chen Ling,Fuqing Liu,

    a State Key Laboratory of Pollution Control and Resource Reuse,School of the Environment,Nanjing University,Nanjing 210023,China

    b College of Biology and the Environment,Nanjing Forestry University,Nanjing 210037,China

    c South China Institute of Environmental Sciences,Ministry of Ecology and Environment,Guangzhou 510530,China

    d Jiangsu Key Laboratory of Material Cycle and Pollution Control,School of Environment,Nanjing Normal University,Nanjing 210023,China

    e Jiangsu Provincial Key Laboratory of Environmental Engineering,Jiangsu Provincial Academy of Environmental Science,Nanjing 210036,China

    Keywords:Bi-pyridine chelating resin Separation Dense Fe(II) Strong-acidity Pickling wastewater

    ABSTRACT A self-synthesized bi-pyridine chelating resin(PAPY)could separate Cu(II)/Ni(II)/Fe(II)sequentially from strong-acidic pickling wastewater by a two-stage pH-adjusted process,in which Cu(II),Ni(II),and Fe(II)were successively preferred by PAPY.In the first stage(pH 1.0),the separation factor of Cu(II)over Ni(II)reached 61.43 in Cu(II)-Ni(II)-Fe(II)systems.In the second stage(pH 2.0),the separation factor of Ni(II)over Fe(II) reached 92.82 in Ni(II)-Fe(II) systems.Emphasis was placed on the selective separation of Cu(II)and Ni(II)in the first-stage.The adsorption amounts of Cu(II)onto PAPY were 1.2 mmol/g in the first stage,while those of Ni(II)and Fe(II)were lower than 0.3 mmol/g.Cu(II)adsorption was hardly affected by Ni(II)with the presence of dense Fe(II),but Cu(II)inhibited Ni(II)adsorption strongly.Part of preloaded Ni(II)could be replaced by Cu(II)based on the replacement effect.Compared with the absence of Fe(II),dense Fe(II) could obviously enhance the separation of Cu(II)-Ni(II).More than 95.0% of Cu(II) could be removed in the former 240 BV(BV for bed volume of the adsorbent)in the fixed-bed adsorption column process with the flow rate of 2.5 BV/h.As proved by X-ray photoelectron spectrometry(XPS)and density functional theory (DFT) analyses,Cu(II) exerted a much stronger deprotonation and chelation ability toward PAPY than Ni(II) and Fe(II).Thus,the work shows a great potential in the separation and purification of heavy metal resources from strong-acidic pickling wastewaters.

    Pickling wastewater commonly occurs during the descaling and polishing of steel and other basic metal pieces which contains rich heavy metal ions (HMIs,including Cu(II),Ni(II),dense Fe(II),etc.)[1,2].This kind of waste water is highly acidic(pH 1.0-3.0)and can bring serious environmental disasters before effective treatment[3,4].Many big steel plants around the world applied the process of neutralization-precipitation,which led to harmful sludges and waste of resources[5].Recently,the recycling treatment of metals and acids in pickling wastewater has become a hot topic.The selective pre-removal of the coexisting HMIs in pickling wastewater is very important but often overlooked during the resource/water reclamation such as recovering Fe(II)to prepare flocculants[6,7].Thus,separating and recycling HMIs,as scarce resources,are of much significance in environment and economy [8-10].

    Liquid-liquid extraction and solid-phase extraction (including ion exchange and chelating adsorption) are common methods in purification and separation of HMIs [11-13].However,the efficiency mostly decreased significantly at lower pH,which limited their application in dealing with the strong-acidic pickling wastewater [14-17].

    Such commercial resins containing bi-pyridine groups as M4195 and TP220 were reported earlier to be effective even at pH 1.0 [18,19].The preferred HMIs were in the order of Cu(II)>Ni(II)>Co(II)[20,21].The feature is attributed to(1)low pKa value of pyridine N and(2)complexes with stable configuration formed between HMIs and pyridine.In our previous work,a novel chelating resin bearing more imino-bi-pyridine groups(PAPY)was self-synthesized with a relative green and economical route,which exhibited much higher adsorption capacity and selectivity to Ni(II)over Co(II) compared with M4195 and TP220 at a wide pH range(≥ 2.0) [22].However,little is known about the application feasibility of PAPY in HMIs separation from strong-acidic pickling wastewater containing dense Fe(II).Due to its excellent acidresistant ability and distinct chelating affinities to different HMIs,PAPY is expected to separate concurrent HMIs sequentially from pickling wastewater containing dense Fe(II).

    Thus,this work aimed to investigate the separation properties of Cu(II),Ni(II)and Fe(II)by the self-synthesized bi-pyridine resin(PAPY,the synthesis route was detailed in Supporting information)and develop a pH-adjusted two-stage process to separate the HMIs sequentially and efficiently.The separation behaviors and mechanisms of Cu(II) and Ni(II) from strong-acidic and high-ferrous pickling wastewater in the first-stage separation were highlighted with static and kinetic experiments,X-ray photoelectron spectrometry (XPS) characterization and density functional theory(DFT) calculations.

    As shown in Fig.S1 (Supporting information),the appropriate pH range for the sole-solute adsorption of Cu(II)/Ni(II)/Fe(II) by PAPY was obviously different,which created the possibility of their effective separation by adjusting the solution pH.The highly selective and efficient removal of Cu(II)from Cu(II)-Ni(II)-Fe(II)trisolute system,and Ni(II) from Ni(II)-Fe(II) bi-solute system were indeed achieved at pH 1.0 and 2.0,respectively (Fig.1).At pH 1.0,Cu(II) maintained to be highly adsorbed in all mixed-solute systems even when the concentration of Fe(II) was 10 mmol/L.Meanwhile,the adsorption capacity of Ni(II)was inhibited by Cu(II)to a great extent.On the other hand,at pH 2.0,Ni(II) could be further separated from Fe(II) with the high adsorption amount(Qe,Ni(II)=0.94 mmol/g) and the better selectivity () in Ni(II)-Fe(II) bi-solute system without Cu(II).Thus,the trends well suggested that the sequential separation of Cu(II)/Ni(II)/Fe(II)could be achieved by adjusting pH value (Fig.S2 in Supporting information).Moreover,PAPY exhibited superior selective performance for Cu(II) compared with other four commercial chelating resins(whose main structures and features were listed in Table S1 in Supporting information),including two bi-pyridine resins(M4195 and TP220),iminodiacetic resin(IRC748)and amidophosphoric acid resin(S950).Their separation properties and selective parameters were shown in Fig.S3 (Supporting information).Because HMIs were preferred following the order as Cu(II),Ni(II),Fe(II) successively,preferential separation of Cu(II) from Cu(II)-Ni(II)-Fe(II) tri-solute system is the prerequisite and important for sequential separation.Therefore,the following parts would mainly focus on exploring the separation properties and mechanisms of Cu(II) and Ni(II) from strong-acidic and highferrous pickling wastewater by PAPY at pH 1.0.

    Fig.1.Adsorption capacity of PAPY in mixed solutions under different conditions(resin dosage=0.5 g/L;V=50 mL;t=24 h;T=298 K;C0,Cu(II)=1 mmol/L,C0,Ni(II)=1 mmol/L,C0,Fe(II)=10 mmol/L;pH 1.0 in Cu(II)-Ni(II) and Cu(II)-Ni(II)-Fe(II)systems,pH 2.0 in Ni(II)-Fe(II) system).

    The equilibrium isotherms of Cu(II)/Ni(II) were investigated in Cu(II)-Ni(II)-Fe(II) tri-solute system.The three-dimensional isotherm images with the concentration of Cu(II) and Ni(II) as the factors were fitted with extended Langmuir model (ELM) and modified Langmuir model (MLM) (Fig.S4 in Supporting information).The fitted parameters were shown in Table 1.Cu(II)/Ni(II)adsorption amounts increased with its equilibrium concentration at a fixed Cu(II)/Ni(II) concentration until all the available sites were consumed.Cu(II) adsorption was hardly affected by Ni(II)while Ni(II) uptake was much suppressed with the increase of Ce,Cu(II)and showed a concave shape.Qe,Cu(II)decreased by 5.72%-1.51% with the highest C0,Ni(II)at C0,Cu(II)from 0.5 mmol/L to 4 mmol/L.Correspondingly,Qe,Ni(II)decreased by 36.63%-51.22% with the highest C0,Cu(II)at C0,Ni(II)from 0.5 mmol/L to 4 mmol/L.The adsorption data could be better fitted by ELM with a relative lower RSS value (<<1).KELMreflects the binding affinity between adsorbent and adsorbate while η represents the instability of HMIs adsorption affected by the other HMIs.Therefore,the much higher KELM,Cu(II)and much lower ηCuthan those of Ni(II)both confirmed that Cu(II)was the preferred species for binding with PAPY,and to some degree,the binding affinity to Cu(II) was 94.7 times higher than Ni(II).The separation factors of Cu(II) over Ni(II) at different molar ratios were tabulated in Table S2(Supporting information).Thevalues ranged from 10.98 to 140.64 with the increased Ni(II)concentration and the decreased Cu(II)concentration.All the results indicated that Cu(II) could be highly selective removed by PAPY while Ni(II) was retained in the aqueous system containing dense Fe(II) and H+.

    The kinetic adsorption of Cu(II)/Ni(II) in Cu(II)-Ni(II) bi-solute system and Cu(II)-Ni(II)-Fe(II) tri-solute system were shown in Fig.2.The adsorption capacity of Cu(II)increased with time while that of Ni(II) rose at the initial stage but then reduced in both systems.The decreased uptake of Ni(II)was probably resulted from the replacement of Cu(II)for its higher binding affinity with PAPY.Moreover,it was noteworthy that Ni(II) adsorption reached the maximum far earlier (40 min) than that without Fe(II) (about 810 min).Besides,the equilibrium adsorption amount of Ni(II)obviously decreased by 38.2% with the presence of Fe(II).In contrast,both adsorption amount and adsorption rate of Cu(II)were hardly impacted by Fe(II) which can be proved by the superposed curves and approximate parameter values in PFOM and PSOM (Table S3 in Supporting information).It means that Fe(II)could enhance the separation performance of Cu(II)and Ni(II)considering both the increased separation factor and replacement rate.

    The separation properties were further evaluated in a fixed-bed dynamic experiment for simulating the practical operation.The breakthrough curves of Cu(II)/Ni(II) were shown in Fig.3.The breakthrough point volume (BPV,set as Ct/C0=0.05) and the saturation point volume(SPV,set as Ct/C0=0.90)were all listed inTable S4(Supporting information).More than 95.0% of Cu(II)could be removed in the former 240 BV (BV for bed volume of the adsorbent)at the flow rate of 2.5 BV/h.The BPV of Cu(II)obviously increased with the decreased flow rate while that of Ni(II) was almost unchanged.The trend was resulted from the more sufficient interaction between solutes and resins.Unexpectedly,the effluent concentrations of Ni(II)at the later period had exceeded its influent ones,which again reflected the replacement effect of Cu(II) on Ni(II)[23].The replacement seemed to be strengthened at a lower flow rate for more adequate contact time.

    Table 1 Fitting parameters of three-dimensional isotherm models from Cu(II)-Ni(II)-Fe(II)system.

    Fig.2.Adsorption kinetic studies of Cu(II)/Ni(II)in mixed solutions onto PAPY fitted by pseudo-first-order(solid lines) and pseudo-second-order(dashed lines) models(resin dosage=0.5 g/L;V=50 mL;T=298 K;C0,Cu(II)=1 mmol/L,C0,Ni(II)=1 mmol/L,C0,Fe(II)=10 mmol/L;pH 1.0).

    Fig.3.Breakthrough curves for simultaneous adsorption of Cu(II)/Ni(II)onto PAPY in Cu(II)-Ni(II)-Fe(II)system(resin dosage=0.5 g/L;V=50 mL;T=298 K;C0,Cu(II)=1 mmol/L,C0,Ni(II)=1 mmol/L,C0,Fe(II)=10 mmol/L;pH 1.0).

    XPS and DFT analyses were conducted to reveal the mechanisms behind the highly efficient separation of Cu(II)and Ni(II)by PAPY in the presence of dense Fe(II) and H+.The XPS wide scans and N 1s high-resolution spectra of PAPY before and after metal ions adsorption with concentration of 1.0 mmol/L at pH 1.0 were compared in Fig.4.The XPS high resolution spectra of Cu 2p,Ni 2p and Fe 2p indicated that complexation exists between the PAPY chelating groups and heavy metal ions (Fig.S5 in Supporting information).The N 1s spectra of fresh PAPY was disassembled into three branch peaks at around 398.11 eV (N1),399.46 eV (N2),398.73 eV (N3),pointing to the neutral amine (-NH or C-N),protonated amine (-NH2+or-NH+),pyridine moiety (C=N),respectively [24-27].Comparing with PAPY treated with acidic water at pH 1.0,the binding energy(BE)of N1 and N3 shifted to the higher BE by 0.53-0.70 eV after the capture of sole Cu(II),0.47-0.68 eV for the case of Ni(II) and 0.34-0.42 eV for the case of Fe(II),respectively.The changes suggested both neutral amine-N and pyridine-N donated the long pair of electrons to form a coordination bond with the metals,with the extent in the order of Cu(II)> Ni(II)> Fe(II) at the tested condition [28,29].More importantly,the N2 area all decreased after HMIs adsorption,indicating that the secondary amino group was unprotonated in different degree.The N2 area in the sample of PAPY-Cu and PAPYNi were dropped by 18.3% and 11.2%,respectively,while that for PAPY-Fe only reduced by 7.3% .The difference suggested that the majority of H+attracted aside N atom could be more easily squeezed out by Cu(II)than Ni(II)/Fe(II).It was probably attributed to the higher electronegativity of Cu(II) and stronger binding affinity between Cu(II)and PAPY at pH 1.0,which would be further proved by DFT.

    As mentioned above,the interaction affinity of PAPY toward metal ions and the deprotonation abilities of PAPY by HMIs were in the same order of Cu(II)>Ni(II)>Fe(II).It was well consistent with the reported articles[30,31].As the radius of metal ion decreased,the electronegativity of metal ion increased and the stability of the complex increased.Theoretically,as shown in Fig.5,there were three kinds of N atoms in one-unit structure of PAPY,all of which could contribute to the chelating adsorption of HMIs.Under acidic conditions,N in amines and pyridines tended to attract H+from aqueous phase and could also be deprotonated when the pH was higher than its pKa.The pKa values of them in the sulfate solutions(N①:1.5,N②:2.7,N③:3.5) revealed that they were almost all protonated at pH 1.0.Thus,Cu(II) could replace all the three H+while Ni(II) and Fe(II) might only replace the H+in protonated pyridine nitrogen due to their difference in deprotonation ability.

    Therefore,complex structures of three HMIs were proposed in Fig.S6 (Supporting information) and evaluated from energy view by DFT optimization.The main structure parameters were listed in Table S5 (Supporting information).The PAPY-Cu complex,was a tridentate ligand with two five-member ring structure,while PAPY-Ni and PAPY-Fe complex were bidentate ligands with eightmember ring structure.The absolute value of binding energy(ΔE)of PAPY-Cu complex was 809.5 kJ/mol and 1028.7 kJ/mol higher than that of PAPY-Ni and PAPY-Fe complex,respectively.Thus,PAPY had high affinity to Cu(II) and was hard to be interfered by Ni(II) and Fe(II).

    Furthermore,the separation mechanisms of PAPY could be illuminated with two steps including deprotonation and chelation illustrating in Fig.5.In Step I,HMIs replaced the H+to contend for lone pair electrons of nitrogen atoms.In Step II,the deprotonated nitrogen atoms regained the ability to coordinate with HMIs.However,the advantage component Cu(II) owned the strongest affinity and thus could be preferentially adsorbed onto PAPY.Moreover,the presence of dense Fe(II) prevented Ni(II) from approaching the site of PAPY,which led to the effective replacement of Ni(II)(the inferior species)by Cu(II)(the favorable species).

    A real pickling wastewater experiment was conducted to test the practical application ability of PAPY.The result suggests that PAPY has characteristic and feasibility in separating Cu(II)selectively from real pickling wastewater (Table S6 in Supporting information).

    Fig.4.(a)XPS wide scans and(b)N 1s spectra of PAPY before and after loading with Cu(II)/Ni(II)/Fe(II)(N1 for-NH or C-N,N2 for-NH2+or-NH+,N3 for pyridine nitrogen C=N).

    Fig.5.Schematic diagram of the separation mechanisms for Cu(II) and Ni(II) onto PAPY from high-concentration ferrous solution.

    In this work,the sequential separation of Cu(II)/Ni(II)/Fe(II)was achieved through a two-stage adsorption process in which pH was orderly adjusted to 1.0 and 2.0.In the first-stage(pH 1.0)separation of Cu(II) and Ni(II) from dense Fe(II) and H+,PAPY exhibited not only the higher Cu(II) adsorption amount (Qe,Cu(II)=1.2 mmol/g)but also the higher separation factor (=61.43) compared with four commercial resins.The presence of dense Fe(II)could enhance the separation of Cu(II) and Ni(II) as the adsorption amount and adsorption rate of Cu(II)almost kept constant while those of Ni(II)decreased.The dynamic results revealed that the removal efficiency of Cu(II) was more than 95.0% in the former 240 BV at the flow rate of 2.5 BV/h.XPS and DFT analyses proved that the main mechanisms included deprotonation and chelation processes.In summary,PAPY possesses the high potential in separating and recovering HMIs sequentially from the pickling wastewater.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China (Nos.51878334,51522805) and the Natural Science Foundation of Jiangsu Province,China (No.BK20170647).

    Appendix A.Supplementary data

    Supplementary material related to this article can be found,in the online version,at doi:https://doi.org/10.1016/j.cclet.2021.01.038.

    亚洲av第一区精品v没综合| 日韩欧美免费精品| www日本在线高清视频| 18禁黄网站禁片午夜丰满| 欧美午夜高清在线| 三级男女做爰猛烈吃奶摸视频| 91av网站免费观看| 国产黄片美女视频| 久久性视频一级片| 亚洲国产精品sss在线观看| 久久人妻av系列| 露出奶头的视频| 色老头精品视频在线观看| 丝袜人妻中文字幕| 人人妻,人人澡人人爽秒播| 在线播放国产精品三级| 欧美zozozo另类| 久久久久亚洲av毛片大全| 精品一区二区三区视频在线观看免费| 真人做人爱边吃奶动态| 国产单亲对白刺激| 日韩大码丰满熟妇| 亚洲国产欧美一区二区综合| 国产成人精品无人区| 久久精品国产亚洲av高清一级| 欧美zozozo另类| 啪啪无遮挡十八禁网站| 黄频高清免费视频| 日本免费a在线| 欧美日韩亚洲综合一区二区三区_| 露出奶头的视频| 国内毛片毛片毛片毛片毛片| 黄频高清免费视频| 99riav亚洲国产免费| 毛片女人毛片| 两人在一起打扑克的视频| 黑人欧美特级aaaaaa片| 麻豆成人av在线观看| 亚洲国产高清在线一区二区三| 国产亚洲精品久久久久久毛片| 国产一级毛片七仙女欲春2| 午夜影院日韩av| 女生性感内裤真人,穿戴方法视频| 国产精品久久视频播放| 久久久久国产一级毛片高清牌| 久久久久免费精品人妻一区二区| 亚洲精品中文字幕在线视频| 国内揄拍国产精品人妻在线| 叶爱在线成人免费视频播放| 日韩高清综合在线| 狠狠狠狠99中文字幕| 黄色毛片三级朝国网站| 精品一区二区三区av网在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲国产欧美一区二区综合| 久久香蕉激情| 国产精品亚洲av一区麻豆| 国产精品永久免费网站| 亚洲 欧美一区二区三区| 亚洲午夜理论影院| 三级男女做爰猛烈吃奶摸视频| 好男人电影高清在线观看| 亚洲欧美日韩无卡精品| 男女下面进入的视频免费午夜| 精品乱码久久久久久99久播| 天堂√8在线中文| 久久这里只有精品中国| 99热只有精品国产| 久久精品综合一区二区三区| videosex国产| 他把我摸到了高潮在线观看| 哪里可以看免费的av片| 19禁男女啪啪无遮挡网站| 黄色视频,在线免费观看| 久久人妻福利社区极品人妻图片| 日韩欧美 国产精品| 欧美最黄视频在线播放免费| 国产精品亚洲av一区麻豆| 老司机午夜福利在线观看视频| 很黄的视频免费| 欧美国产日韩亚洲一区| 人人妻人人看人人澡| www日本在线高清视频| 日韩免费av在线播放| 在线观看一区二区三区| 搡老岳熟女国产| 成人av一区二区三区在线看| 一级毛片高清免费大全| 伦理电影免费视频| 久久国产乱子伦精品免费另类| 好男人电影高清在线观看| 99re在线观看精品视频| 免费在线观看完整版高清| 国产精品自产拍在线观看55亚洲| 日韩av在线大香蕉| 久久久久九九精品影院| 欧美色欧美亚洲另类二区| 给我免费播放毛片高清在线观看| 香蕉国产在线看| 日本 欧美在线| 亚洲色图 男人天堂 中文字幕| aaaaa片日本免费| 欧洲精品卡2卡3卡4卡5卡区| 两性夫妻黄色片| 免费搜索国产男女视频| 欧美乱妇无乱码| 首页视频小说图片口味搜索| x7x7x7水蜜桃| xxxwww97欧美| 两人在一起打扑克的视频| 国产v大片淫在线免费观看| 一本精品99久久精品77| 亚洲 欧美一区二区三区| 国产熟女xx| 日本黄色视频三级网站网址| 日韩欧美国产一区二区入口| 国内揄拍国产精品人妻在线| 99在线人妻在线中文字幕| 香蕉丝袜av| 亚洲精品久久国产高清桃花| 国产成人影院久久av| 男插女下体视频免费在线播放| 日韩大码丰满熟妇| 一进一出抽搐动态| 国产日本99.免费观看| 国产区一区二久久| 免费在线观看成人毛片| 欧美日韩亚洲国产一区二区在线观看| 91大片在线观看| 日日爽夜夜爽网站| 国产片内射在线| 免费在线观看日本一区| 好看av亚洲va欧美ⅴa在| 国产黄片美女视频| 亚洲精品在线美女| 久久久久久免费高清国产稀缺| 国产精品综合久久久久久久免费| 2021天堂中文幕一二区在线观| 人人妻人人澡欧美一区二区| 国内揄拍国产精品人妻在线| 日本精品一区二区三区蜜桃| 久久久久久大精品| 久久精品国产亚洲av高清一级| 搡老妇女老女人老熟妇| 欧美成人一区二区免费高清观看 | 国内精品一区二区在线观看| 国产高清视频在线播放一区| 亚洲av电影在线进入| bbb黄色大片| 国产99久久九九免费精品| 亚洲中文字幕一区二区三区有码在线看 | 一本精品99久久精品77| 99久久久亚洲精品蜜臀av| 亚洲精品粉嫩美女一区| xxxwww97欧美| 欧美精品亚洲一区二区| 熟女电影av网| 国产精品,欧美在线| 中国美女看黄片| 青草久久国产| 国产精品野战在线观看| 午夜免费成人在线视频| 大型av网站在线播放| 老司机福利观看| 国产精品98久久久久久宅男小说| 岛国视频午夜一区免费看| 亚洲色图 男人天堂 中文字幕| 亚洲欧美日韩高清在线视频| ponron亚洲| 久久亚洲精品不卡| 俄罗斯特黄特色一大片| 一卡2卡三卡四卡精品乱码亚洲| 在线观看免费视频日本深夜| 欧美日韩中文字幕国产精品一区二区三区| 老司机午夜福利在线观看视频| 国内精品一区二区在线观看| 免费av毛片视频| 午夜福利视频1000在线观看| 看片在线看免费视频| 亚洲 国产 在线| 最近视频中文字幕2019在线8| 国产69精品久久久久777片 | 国产精品久久久久久久电影 | 一本综合久久免费| 一区福利在线观看| 18禁裸乳无遮挡免费网站照片| 最近最新中文字幕大全电影3| 精品国产超薄肉色丝袜足j| 老汉色av国产亚洲站长工具| 国产精品亚洲av一区麻豆| 欧美精品啪啪一区二区三区| av在线播放免费不卡| 国产成人精品久久二区二区91| 俺也久久电影网| 国产v大片淫在线免费观看| 成人永久免费在线观看视频| 我的老师免费观看完整版| avwww免费| 久久久水蜜桃国产精品网| 亚洲精品色激情综合| 十八禁人妻一区二区| 少妇的丰满在线观看| 啦啦啦观看免费观看视频高清| 特级一级黄色大片| 99久久久亚洲精品蜜臀av| 国内揄拍国产精品人妻在线| 90打野战视频偷拍视频| 色精品久久人妻99蜜桃| 中文字幕精品亚洲无线码一区| 精品欧美一区二区三区在线| 亚洲成av人片在线播放无| 在线视频色国产色| 最近最新免费中文字幕在线| 国产激情欧美一区二区| 亚洲国产看品久久| 久9热在线精品视频| 两个人看的免费小视频| 999久久久国产精品视频| 国产一区二区在线av高清观看| x7x7x7水蜜桃| 国产精品国产高清国产av| 1024香蕉在线观看| 亚洲人与动物交配视频| 少妇熟女aⅴ在线视频| av中文乱码字幕在线| 五月玫瑰六月丁香| 国产精品久久电影中文字幕| 精品不卡国产一区二区三区| 精品国产美女av久久久久小说| 国产亚洲精品久久久久5区| 久久久国产成人精品二区| 欧美日韩瑟瑟在线播放| 99re在线观看精品视频| 人成视频在线观看免费观看| 亚洲国产精品久久男人天堂| www.精华液| 国产精品1区2区在线观看.| 国产高清激情床上av| 免费观看人在逋| 久久久精品国产亚洲av高清涩受| 人妻丰满熟妇av一区二区三区| 超碰成人久久| 桃红色精品国产亚洲av| 91国产中文字幕| 国产精品亚洲av一区麻豆| 亚洲av电影不卡..在线观看| 老司机午夜福利在线观看视频| 日韩欧美在线乱码| 最好的美女福利视频网| 亚洲熟妇熟女久久| 久99久视频精品免费| 91老司机精品| 色老头精品视频在线观看| 99久久精品热视频| 午夜免费激情av| 精品久久蜜臀av无| 黑人操中国人逼视频| 亚洲国产高清在线一区二区三| 成人av在线播放网站| 免费看日本二区| 成人精品一区二区免费| 成人永久免费在线观看视频| 老熟妇仑乱视频hdxx| 久久久久久国产a免费观看| 毛片女人毛片| 黄色丝袜av网址大全| 曰老女人黄片| www.自偷自拍.com| 床上黄色一级片| 久久性视频一级片| 50天的宝宝边吃奶边哭怎么回事| 久久久久久免费高清国产稀缺| 他把我摸到了高潮在线观看| 18美女黄网站色大片免费观看| 成年女人毛片免费观看观看9| 91麻豆av在线| 亚洲精品av麻豆狂野| 999精品在线视频| 欧美又色又爽又黄视频| 99精品欧美一区二区三区四区| 人成视频在线观看免费观看| 91大片在线观看| 欧美日韩黄片免| 天堂√8在线中文| 中文字幕精品亚洲无线码一区| 曰老女人黄片| 国产欧美日韩精品亚洲av| 久久这里只有精品19| 欧美国产日韩亚洲一区| 日韩国内少妇激情av| av免费在线观看网站| 成人av一区二区三区在线看| 国产主播在线观看一区二区| 久久精品91无色码中文字幕| 人成视频在线观看免费观看| 夜夜夜夜夜久久久久| 特大巨黑吊av在线直播| 可以在线观看毛片的网站| 亚洲熟女毛片儿| 1024香蕉在线观看| 亚洲精品中文字幕一二三四区| 亚洲av熟女| e午夜精品久久久久久久| xxx96com| 国产精品永久免费网站| 亚洲成人免费电影在线观看| 婷婷六月久久综合丁香| 国产亚洲精品久久久久5区| 99热6这里只有精品| 99热这里只有是精品50| 亚洲专区国产一区二区| 99re在线观看精品视频| 久久人妻福利社区极品人妻图片| 精品熟女少妇八av免费久了| 色综合欧美亚洲国产小说| 亚洲真实伦在线观看| 久久精品aⅴ一区二区三区四区| 亚洲一码二码三码区别大吗| 日本一区二区免费在线视频| 亚洲一区二区三区不卡视频| 日韩欧美三级三区| 免费在线观看完整版高清| 这个男人来自地球电影免费观看| 国产蜜桃级精品一区二区三区| 免费搜索国产男女视频| 色av中文字幕| 成人18禁在线播放| 欧美日韩亚洲国产一区二区在线观看| 国产成人精品久久二区二区免费| 动漫黄色视频在线观看| 黄片小视频在线播放| 国产真实乱freesex| 久久人妻av系列| 国产精品久久久久久久电影 | 亚洲成av人片在线播放无| 欧美成人午夜精品| 在线永久观看黄色视频| 淫秽高清视频在线观看| 亚洲欧美日韩高清专用| svipshipincom国产片| 国产乱人伦免费视频| 午夜福利欧美成人| a级毛片在线看网站| 人妻丰满熟妇av一区二区三区| 动漫黄色视频在线观看| 久久中文看片网| 久久午夜亚洲精品久久| 夜夜躁狠狠躁天天躁| 欧美日韩黄片免| 99热只有精品国产| 久久久精品欧美日韩精品| 欧美在线一区亚洲| 欧美3d第一页| 日日爽夜夜爽网站| 白带黄色成豆腐渣| 日本五十路高清| 亚洲国产欧洲综合997久久,| 日本a在线网址| 亚洲五月婷婷丁香| 久久草成人影院| 色综合婷婷激情| 婷婷精品国产亚洲av| 婷婷精品国产亚洲av在线| 欧美黄色片欧美黄色片| 1024视频免费在线观看| 99热6这里只有精品| 中文字幕久久专区| 一二三四在线观看免费中文在| 日本五十路高清| 亚洲国产欧洲综合997久久,| 大型av网站在线播放| 日本撒尿小便嘘嘘汇集6| 欧美久久黑人一区二区| 久久久久国产精品人妻aⅴ院| 男人舔女人的私密视频| 精品乱码久久久久久99久播| 国产精品久久久人人做人人爽| 视频区欧美日本亚洲| 18禁裸乳无遮挡免费网站照片| 1024手机看黄色片| 久久久久精品国产欧美久久久| av免费在线观看网站| 丰满的人妻完整版| 国产精品久久久久久人妻精品电影| 最新美女视频免费是黄的| 国产精品久久久久久久电影 | 亚洲成人中文字幕在线播放| 叶爱在线成人免费视频播放| 精品久久蜜臀av无| 曰老女人黄片| 美女午夜性视频免费| a在线观看视频网站| 亚洲国产中文字幕在线视频| 老汉色∧v一级毛片| 国产伦人伦偷精品视频| 欧美另类亚洲清纯唯美| 亚洲一区中文字幕在线| 亚洲欧美日韩无卡精品| 99国产综合亚洲精品| www国产在线视频色| 白带黄色成豆腐渣| 日本精品一区二区三区蜜桃| 一进一出抽搐动态| 天天一区二区日本电影三级| 久久99热这里只有精品18| 成年女人毛片免费观看观看9| 动漫黄色视频在线观看| 性色av乱码一区二区三区2| 非洲黑人性xxxx精品又粗又长| 亚洲精品美女久久av网站| 伦理电影免费视频| 日韩成人在线观看一区二区三区| 成人手机av| 国产精品98久久久久久宅男小说| 欧美性猛交╳xxx乱大交人| 国产aⅴ精品一区二区三区波| 国产精品久久久久久亚洲av鲁大| 久久精品91无色码中文字幕| 国产成人精品久久二区二区免费| 国产精品一及| 精品熟女少妇八av免费久了| 老熟妇乱子伦视频在线观看| 亚洲av第一区精品v没综合| 亚洲中文日韩欧美视频| 日韩欧美一区二区三区在线观看| 久9热在线精品视频| 欧美成人午夜精品| 最近最新免费中文字幕在线| 不卡av一区二区三区| 久久久水蜜桃国产精品网| 午夜成年电影在线免费观看| 亚洲乱码一区二区免费版| 欧美成狂野欧美在线观看| 国产精品一区二区三区四区免费观看 | 亚洲人成网站在线播放欧美日韩| 99在线人妻在线中文字幕| 国产一区在线观看成人免费| 久久精品综合一区二区三区| 国产成人一区二区三区免费视频网站| 免费一级毛片在线播放高清视频| 国产精品一及| 黄色丝袜av网址大全| 丁香欧美五月| 首页视频小说图片口味搜索| 18禁观看日本| 久久久久性生活片| 日本 av在线| 天堂影院成人在线观看| АⅤ资源中文在线天堂| 欧美乱码精品一区二区三区| 日韩av在线大香蕉| 日韩中文字幕欧美一区二区| 操出白浆在线播放| 一级a爱片免费观看的视频| 日韩欧美在线二视频| 美女高潮喷水抽搐中文字幕| 久久久久久久久中文| 免费看美女性在线毛片视频| 亚洲色图av天堂| 91在线观看av| 女生性感内裤真人,穿戴方法视频| 黄色片一级片一级黄色片| 法律面前人人平等表现在哪些方面| 国产aⅴ精品一区二区三区波| 黄片小视频在线播放| 国产在线精品亚洲第一网站| 亚洲专区中文字幕在线| 99riav亚洲国产免费| 欧美 亚洲 国产 日韩一| 亚洲精品国产精品久久久不卡| 窝窝影院91人妻| 一二三四社区在线视频社区8| 蜜桃久久精品国产亚洲av| 在线视频色国产色| bbb黄色大片| 大型黄色视频在线免费观看| 日本 欧美在线| 狂野欧美白嫩少妇大欣赏| 久久精品人妻少妇| 精品一区二区三区四区五区乱码| 999精品在线视频| 麻豆成人午夜福利视频| 国产亚洲av高清不卡| 亚洲国产精品成人综合色| 日韩欧美在线二视频| av天堂在线播放| 成人av在线播放网站| 免费无遮挡裸体视频| 熟女电影av网| 久久中文字幕人妻熟女| 欧美乱码精品一区二区三区| 久久久久久久午夜电影| 日日爽夜夜爽网站| 国产精品日韩av在线免费观看| 成人精品一区二区免费| 一个人免费在线观看的高清视频| 黄色毛片三级朝国网站| 国产精品九九99| 国产99久久九九免费精品| 长腿黑丝高跟| 九色国产91popny在线| 国产蜜桃级精品一区二区三区| 国产人伦9x9x在线观看| 18禁国产床啪视频网站| 国产av一区在线观看免费| 久久天堂一区二区三区四区| 高清在线国产一区| 国产私拍福利视频在线观看| 欧美大码av| 欧美黄色片欧美黄色片| 欧美一级a爱片免费观看看 | 亚洲免费av在线视频| 亚洲美女黄片视频| 中出人妻视频一区二区| 国产精品香港三级国产av潘金莲| 亚洲男人的天堂狠狠| 精品国产美女av久久久久小说| 精品第一国产精品| 日本精品一区二区三区蜜桃| 啦啦啦观看免费观看视频高清| 国产欧美日韩精品亚洲av| 男女那种视频在线观看| 国产欧美日韩精品亚洲av| 99国产精品99久久久久| 91成年电影在线观看| 亚洲成av人片在线播放无| 听说在线观看完整版免费高清| 国产成人精品久久二区二区免费| 免费电影在线观看免费观看| 两个人看的免费小视频| 啦啦啦免费观看视频1| 国产单亲对白刺激| 日本五十路高清| 国产成人精品久久二区二区91| 国产精品电影一区二区三区| 久久久水蜜桃国产精品网| 亚洲国产欧美网| 亚洲七黄色美女视频| 日本成人三级电影网站| 亚洲av第一区精品v没综合| 特级一级黄色大片| 婷婷六月久久综合丁香| 女人被狂操c到高潮| 欧美一区二区精品小视频在线| 国产成人一区二区三区免费视频网站| 成人特级黄色片久久久久久久| 桃红色精品国产亚洲av| 一二三四在线观看免费中文在| 丝袜人妻中文字幕| 久久久久久免费高清国产稀缺| 久久久国产成人免费| 男人舔奶头视频| 美女 人体艺术 gogo| 国产精品亚洲一级av第二区| 在线观看免费午夜福利视频| 久久这里只有精品中国| 亚洲午夜理论影院| www.www免费av| 亚洲 国产 在线| 黄色丝袜av网址大全| 听说在线观看完整版免费高清| 在线国产一区二区在线| 亚洲黑人精品在线| 老司机靠b影院| 欧美色欧美亚洲另类二区| 国产一区在线观看成人免费| 久久 成人 亚洲| 人成视频在线观看免费观看| 男人舔奶头视频| 91大片在线观看| 黄频高清免费视频| 99久久久亚洲精品蜜臀av| 亚洲男人的天堂狠狠| a级毛片a级免费在线| 全区人妻精品视频| 中出人妻视频一区二区| 久久香蕉国产精品| 日本成人三级电影网站| 性欧美人与动物交配| 亚洲熟妇熟女久久| av福利片在线观看| 久久久久性生活片| 五月玫瑰六月丁香| 欧美日韩精品网址| 亚洲欧美激情综合另类| 99精品欧美一区二区三区四区| 欧美激情久久久久久爽电影| 18禁黄网站禁片午夜丰满| 亚洲激情在线av| 超碰成人久久| 欧美日韩福利视频一区二区| 免费av毛片视频| 国产免费男女视频| 久久久国产成人免费| 黄色女人牲交| 无限看片的www在线观看| 午夜精品久久久久久毛片777| 国产精品香港三级国产av潘金莲| 亚洲av成人一区二区三| 欧美成狂野欧美在线观看| 国内揄拍国产精品人妻在线| 在线观看舔阴道视频| 1024手机看黄色片| 国产av一区二区精品久久| 女人爽到高潮嗷嗷叫在线视频| 精品欧美国产一区二区三| 在线观看一区二区三区| 亚洲av片天天在线观看| 香蕉国产在线看| av欧美777| 好看av亚洲va欧美ⅴa在| 一级作爱视频免费观看| 久久精品国产亚洲av香蕉五月| 欧美乱色亚洲激情| 亚洲人与动物交配视频|