• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A COMPACTNESS THEOREM FOR STABLE FLAT SL (2,C) CONNECTIONS ON 3-FOLDS*

    2022-06-25 02:13:16TengHUANG黃騰

    Teng HUANG (黃騰)

    School of Mathematical Sciences,University of Science and Technology of China;CAS Key Laboratory of Wu Wen-Tsun Mathematics,University of Science and Technology of China,Hefei 230026,China

    E-mail:htmath@ustc.edu.cn;htustc@gmail.com

    Abstract Let Y be a closed 3-manifold such that all flat SU (2)-connections on Y are non-degenerate.In this article,we prove a Uhlenbeck-type compactness theorem on Y for stable flat SL (2,C) connections satisfying an L2-bound for the real curvature.Combining the compactness theorem and a result from[7],we prove that the moduli space of the stable flat SL (2,C) connections is disconnected under certain technical assumptions.

    Key words Stable flat SL (2,C) connections;Vafa-Witten equations;compactness theorem

    1 Introduction

    LetXbe an oriented,closed,smoothn-dimensional manifold with a smooth Riemannian metricg,and letPbe a principalG-bundle overX,withGbeing a compact Lie group.We denote by APthe set of all connections onP,and by Ωk(X,gP) the set of gP-valuledk-forms,where gPis the adjoint bundle ofP.Suppose thatAis a connection onPand its curvature is denoted byFA∈Ω2(X,gP).For any connectionAonP,we have the covariant exterior derivativesdA:Ωk(X,gP)→Ωk+1(X,gP).The curvature

    of the complex connection A:=A+iφis a 2-form with values in.We say that A=A+iφis a complex flat connection with the moment map condition,if the pair (A,φ) satisfies

    The system of the pairs (A,φ) is elliptic[4].For convenience,we call the solutions of the elliptic system stable flat connections (see[1]).These equations are not only invariant under the actions of the real gauge group GP=C∞(P×GG),but also invariant under the actions of the complex gauge groupThe solution of stable flat connections on the compact Riemannian surface Σ is also a solution of Hitchin’s equation[6].The moduli space of the solutions of Hitchin’s equation which satisfyis compact;see[4,Theorem 4.1].Following[3,Proposition 2.2.3]or[10,Proposition 1.2.6],we know that the gauge-equivalence classes of flat connections over a connected manifold,X,are in one-to-one correspondence with the conjugacy classes of representationsπ1(X)→G.

    The Uhlenbeck compactness theorem[17,20]on the moduli space of the connections withLp-bounds on curvature is one of the most fundamental theorems in the analytical part of gauge theory.In[13],Taubes studied the Uhlenbeck style compactness problem forSL(2,C) connections,including solutions to the above equations,for the three-and four-manifolds[13–15].

    We denote by

    the moduli space of the stable flatSL(2,C) connections.In particular,the moduli space of gauge-equivalence classes[Γ]of flat connections Γ onP,

    can be embedded into M (P,g) via the mapA(A,0).The Uhlenbeck compactness theorem[17]shows that the moduli spaceM(P,g) is compact.

    One can see that the pair (A,φ) has the a priori estimate (see[4])

    wherec0is a positive constant dependent on the metricg.Then the Uhlenbeck compactness theorem implies that the moduli space of solutions of stable flatSL(2,C) connections satisfying (1.1) withis compact for every given positive constantK.On the other hand,there are examples of sequences of solutions (Ai,φi) to (1.1) such that ‖φi‖L2(X)diverges to infinity,therefore the moduli space of solutions to (1.1) is not always compact.An interesting question to ask is the following:

    LetKbe a positive constant number,and consider the subset of M (P,g) consisting of (A,φ) such that ‖F(xiàn)A‖L2(X)≤K,is this subset always compact?

    In this article,we consider the case for the stable flatSL(2,C) connections on a closed,smooth,oriented three-manifoldY.We will give a positive answer to the question above ifY,GandPsatisfy certain conditions.

    We denote by

    the self-dual operator with respect to a flat connection Γ.We recall the definition of nondegenerate flat connections as follows (see[2,Definition 2.4]):

    Definition 1.1LetGbe a compact Lie group,and letPbe aG-bundle over a closed,smooth manifoldXof dimensionn≥2,endowed with a smooth Riemannian metricg.The flat connection Γ is called non-degenerate if

    The main observation of this article can be stated as follows:

    Theorem 1.2(A compactness theorem for stable flatSL(2,C) connections with bounded real curvatures) LetYbe a closed,oriented,smooth Riemannian three-manifold,and letPbe a principalSU(2) orSO(3)-bundle overY.Let{(Ai,φi)}i∈Nbe a sequence ofC∞-solutions of Equations (1.1).Suppose that all flat connections on the principal bundlePare non-degenerate.If theL2-norms of the curvatures ‖F(xiàn)Ai‖L2(Y)are bounded,then there is a subsequence of Ξ?N and a sequence of gauge transformations{ui}i∈Ξsuch thatconverges to a pair (A∞,φ∞) obeying Equations (1.1) onPin theC∞-topology.In particular,the moduli space of solutions of stable flatSL(2,C) connections,which obeysRY|FA|2≤K,is compact,for every positive constantK.

    Remark 1.3Taubes[13]considered a sequence of complex connections Ai:=Ai+iφisuch that theL2-norms ofFAiare bounded (in this article,the complex curvature is just zero).There are two possible cases:(1) if ‖φi‖L2(X)has a bounded sequence,then Taubes provesin theC∞-topology;(2) if ‖φi‖L2(X)has no bounded sequence,then Taubes makes sense of the limit as a Z2harmonic spinor.In particular,if the sequence ‖F(xiàn)Ai‖L2(Y)is divergent to infinity,then following inequality (1.2),one can see that the sequence ‖φi‖L2(Y)is also divergent to infinity.

    As a particular case of Theorem 1.2,we have anL2-bound on the extra fields in the fibre direction at a connectionA0.Namely,we have

    Corollary 1.4LetYbe a closed,oriented,smooth Riemannian three-manifold,and letPbe a principalSU(2) orSO(3)-bundle overY.Suppose that all flat connections on the principal bundlePare non-degenerate.Then for any sequence of solutions{(A0,φi)}i∈Nof Equations (1.1),there exists a subsequence Ξ?N and a positive constantC>0 such thatfor alli?Ξ.

    Corollary 1.4 is similar to the Vafa-Witten equations case;see[12,Corllary 1.4].

    Following the notation of[3,Section 4.2.1],we denote by ([A,φ]) the equivalence class of a pair (A,φ),that is,a point in M (P,g).We denote

    We can define a distance function on M (P,g) as follows:

    We can use the compactness theorem 1.2 to study the topology of the moduli space of stable flatSL(2,C) connections.

    Theorem 1.5Assume the hypotheses of Theorem 1.2.Suppose that all flat connections on the principalG-bundlePare non-degenerate.If (A,φ) is aC∞-solution of Equations (1.1),then there is a positive constantsuch that

    unlessAis a flat connection.

    Remark 1.6There are many combinations of conditions onG,P,Yandg,which imply that the flat connection is non-degenerate.For example,ifYis a closed,oriented Riemannian three-manifold with the homology ofS3andPis a principalSU(2)-bundle overY,then every flat connection Γ onPis non-degenerate.

    Corollary 1.7LetYbe a closed,oriented,smooth Riemannian three-manifold with the homology ofS3,and letPbe a principalSU(2)-bundle.Let{(Ai,φi)}i∈Nbe a sequence ofC∞-solutions of Equations (1.1).If theL2-norms of the curvatures ‖F(xiàn)Ai‖L2(Y)have a bound,then there is a subsequence of Ξ?N and a sequence of gauge transformations{ui}i∈Ξsuch thatconverges to a pair (A∞,φ∞) obeying Equations (1.1) onPin theC∞-topology.Furthermore,there is a positive constant(P,g)∈(0,1]such that

    unlessAis a flat connection.

    The organization of this paper is as follows:in Section 2,we first recall the compactness theorem of the Vafa-Witten equations,which was proved by Tanaka[12].We also observe that the set of stable flatSL(2,C) connections on a compact 3-foldYis in one-to-one correspondence with solutions toS1-invariant Vafa-Witten equations onY×S1.Then,by Tanaka’s compactness theorem,we can prove a compactness theorem for stable flatSL(2,C) connections.In Section 3,we obtain,by our compactness theorem,a topological property of the moduli space of stable flatSL(2,C) connections.

    2 Compactness Theorem for Stable SL (2,C) Flat Connections

    2.1 Vafa-Witten equations and stable SL(2,C) flat connections

    In this section,we recall the compactness theorem of Vafa-Witten equations,which was proved by Tanaka[12].For an oriented 4-dimensional Riemannian manifoldXwith metricg,the Hodge star operator*:Ω2(X)→Ω2(X) induces the following splitting:

    Accordingly,the space of gP-valued two-forms Ω2(X,gP) splits as

    We begin by defining the Vafa-Witten equations[19].One also can see Equations (2.4)–(2.5) in[12].We call the pair (A,B)∈AP×Ω2,+(X,gP) a solution of Vafa-Witten equations if (A,B) satisfies

    where[B.B]∈Ω2,+(X,gP) is defined as in[11,Appendix A].Vafa-Witten equations were introduced by Vafa and Witten to studyS-duality in a twist of the N=4 supersymmetric Yang-Mills theory[19].By appropriately counting the number of points of the moduli space of Vafa-Witten equations,we hope to obtain a numberV W(P),called the Vafa-Witten invariant for the principal bundleP→X[11,Section 1.3].These equations were also considered by Haydys[5]and Witten[21]from a different point of view.

    LetGbe a Lie group and letPbe a principalG-bundle over a smooth Riemannian manifoldX.We recall the equivalent characterizations of flat bundles[10,Section 1.2],that is,bundles admitting a flat connection.

    Proposition 2.1([10,Proposition 1.2.6]) For a principalG-bundlePoverX,the following three conditions are equivalent:

    (1)Padmits a flat structure;

    (2)Padmits a flat connection;

    (3)Pis defined by a representationρ:π1(X)→G.

    Proposition 2.2If (A,φ) is aC∞-solution of (1.1) over a closedn-manifoldX,then

    We now return to the setting of this article.LetYbe an oriented,smooth,Riemannian three-manifold,and letPbe aG-principal bundle overYwithGbeing a compact Lie group.We denote byX:=Y×S1the product manifold with the product metric.We pull back a connectionAonP→Ytop*1(P)→Xvia the canonical projection

    where*Y(resp.*X) is the Hodge star operator with respect to metricgY(resp.gX).We then have

    Proposition 2.3The canonical projection gives a one-to-one correspondence between stable flat connections onPandS1-invariant Vafa-Witten equations on the pullback bundle(P).

    ProofThe proof is similar to that of[11,Lemma 8.2.2].In a local coordinate{e1,e2,e3}ofT*Y,we can denote

    Note that

    Then,by the definition ofB,we get

    We also observe that

    Therefore,we have

    We also have another equation:

    2.2 Compactness theorem for Vafa-Witten equations

    Mares studied the analytic aspects of Vafa-Witten equations in[11].We do not have anyL2-bounded on the curvatureFAof a connectionAwhich satisfies the Vafa-Witten equations as in the case of Hitchin-Simpson equations[6].Mares observed that if (A,B) is a solution of Vafa-Witten equations and theL2-norm ofBhas a uniform bound,then the curvatureFAalso has a uniform bound in theL2-norm by the identity

    where ⊙ denotes some bilinear on Ω2,+(X,gP)?Ω2,+(X,gP),sis the scalar curvature of the metric,andW+is the self-dual part of the Weyl curvature of the metric (see[12,Page 1204]or[11,Section B.4]for more details).Following the Uhlenbeck compactness theorem,Mares obtained a compactness theorem of Vafa-Witten equations under the extra fieldsBthat have a bound in theL2-norm[11].

    For a sequence of connections{Ai}onP,Tanaka defined a setS({Ai}) as follows:

    Hereε0is a positive constant which is defined as in[12].This setS({Ai}) describes the singular set of a sequence of connections{Ai}.In[12],Tanaka observed that under the particular circumstance where the connections are non-concentrating and the limiting connection is nonlocally reducible,one obtains anL2-bound on the extra fields.Here,we say that a connectionAon a principalSU(2) orSO(3) bundlePis locally reducible if the vector bundle gPhas a one-dimensional subbundle that isA-covariantly constant (see[12,Definition 2.1]).Note that a connection on a principalSU(2) orSO(3) bundlePbeing locally reducible is the same as being honestly reducible ifXis simply connected.The following is an analogue of the second part of[16,Theorem 1.1],but under the assumption thatS({Ai}) is empty:

    Theorem 2.4([16,Theorem 1.2]and[12,Proposition 4.4]) Let{(Ai,Bi)}be a sequence of solutions of Vafa-Witten equations,and setri:=‖φi‖L2(X).Letδdenote the injectivity radius ofX.Suppose that there existr∈(0,δ) and a sequence Ξ?N such that

    for everyi∈Ξ andx∈X.Assume that the sequence{ri}i∈Nhas no bounded subsequence.Then there exist a closed,nowhere dense setZ?X,a real line bundle I→X-Z,a sectionν∈Γ(X-Z,I?Ω2,+),a connectionAΔonP|X-Z,and an isometric bundle homomorphismσΔ:I→gP.Their properties are as follows:

    (a)Zis the zero locus of|ν|;

    (b) the function|ν|is Hlder continuousC0,1/κonX;

    (c) the sectionvis harmonic in the sense of dν=0;

    (d)|?ν|is anL2-function onX-Zthat extends as anL2-function onX;

    (e) the curvature tensor ofAΔis anti-self-dual;

    (f) the homomorphismσΔisAΔ-covariantly constant.

    In addition,there exist a subsequence Λ?Ξ and a sequenceuiof automorphisms fromPsuch that

    2.3 Proof of our results

    In this section,we give the proof of our main result.First,we observe

    Proposition 2.5LetYbe a closed,oriented,smooth Riemannian three-manifold,and letPbe a principalG-bundle withGbeing a compact Lie group.Let{Ai}i∈Nbe a sequence ofC∞-connections onPwith theL2-norms of the curvatures ‖F(xiàn)Ai‖L2(X)having a uniform bound.We denote by{Ai}the pullbackS1-invariant connections.Then the setS({Ai}) is empty,whereS(·) is defined in Equation (2.1).

    ProofFor a point (y0,θ0)∈Y×S1,we denote by

    the geodesic ball onY×S1.Hence,we have

    We can choosersufficiently small such that

    whereκis the constant on Theorem 2.4.This complete proof. □

    Following the idea in the proof of[15,Theorem 1.2],we can obtain a compactness theorem for the stable flatSL(2,C) connections on the three-manifold.

    Theorem 2.6LetYbe a closed,oriented,smooth Riemannian three-manifold,and letPbe a principalG-bundle withGbeingSU(2) orSO(3).Let{(Ai,φi)}i∈Nbe a sequence ofC∞-solutions of Equations (1.1),and setri:=‖φi‖L2(X).Suppose that theL2-norms of the curvatures ‖F(xiàn)Ai‖L2(Y)have a uniform bound and that the sequence{ri}i∈Nhas no bounded subsequence.Then there exist a closed,nowhere dense setZY?Y,a real line bundle IY→Y-ZY,a sectionν∈Γ(Y-ZY,IY?Ω1),a connectionAΔonP|Y-ZY,and an isometric bundle homomorphismσΔ:IY→gP.Their properties are as follows:

    (a)ZYis the zero locus of|ν|;

    (b) the sectionvis harmonic in the sense ofdν=d*ν=0;

    (c) the curvature tensor ofAΔis flat;

    (d) the homomorphismσΔisAΔ-covariantly constant.

    In addition,there exist a subsequence Λ?Ξ and a sequenceuiof automorphisms fromPsuch that

    ProofAs explained momentarily,this theorem constitutes a special case of Theorem 2.4.To obtain Theorem 2.6 from Theorem 2.4,we takeXin Theorem 2.6 to be the productY×S1with the metric being the product metric.The pull-back of the principalG-bundlePonYtoXvia the projection map toYdefines a principalG-bundle overX;the latter is denoted also byP.Let{(Ai,φi)}be a sequence of solutions of stable flatSL(2,C) connections overY.For simplicity,we keep the same notations for objects onYand their pullbacks toX.We denote thatBi=(1+*X)*Yφi.If we suppose that the sequence{ri:=‖φi‖L2(Y)}i∈Nhas no bounded subsequence,then ‖Bi‖L2(X)also has no bounded subsequence.A similar sort of argument can be used to prove that Theorem 2.4’s setZis the product ofS1and a closed setZY?Y,and that Theorem 2.4’s real line bundle I is isomorphic to the pull-back via the projection map of a real line bundle defined on the complement inYofZY;this denoted for now by IY.Moreover,such an isomorphism identifies Theorem 2.4’s version ofνwith the pull-back of a harmonic,IYvalued 1-form onY-ZY,withZYdenoting the locus where its norm is zero. □

    Remark 2.7Taubes considered a sequence of complex connections{Ai:=Ai+iφi}such that theL2-norms of{FAi}are bounded.If{‖φi‖L2(X)}has no bounded sequence,then Taubes makes sense of the limit as a Z2harmonic spinor[15].In our result,we add the conditions that all connections{Ai}are stable flatSL(2,C) connections and the real curvatures{FAi}areL2-bounded,so we prove the limit as a decoupled stable flatSL(2,C) connection.

    The next theorem is a special case of Theorem 1.1b in[15],and implies,among other things,thatZYhas a measure of zero.To set the notation for this upcoming theorem,we note that a pointp∈ZYis a point of discontinuity for IYif IYis not isomorphic to the product bundle on the complement ofZYin any neighborhood ofp[15].

    Theorem 2.8([15,Theorem 1.1b]) LetZYand IYbe as described in Theorem 2.6.The setZYhas a Hausdorffdimension of at most 1,and moreover,the set of the points of discontinuity for IY(defined in the preceding paragraph) are the points in the closure of an open subset ofZYthat is an embeddedC1curve inYdenoted by Σ.

    Uhlenbeck’s[17]theorem applies to the connections onPand,in particular,makes the following assertion:

    Uhlenbeck’s TheoremLet{Ai}i∈Nbe a sequence of connections onPover a closed,oriented,3-manifold.If theL2-norms of the curvaturesFAiof the connections{Ai}have a uniform bound,then there is a subsequence Ξ?N and a sequence of gauge transformations{ui}i∈Ξsuch thatconverges weakly in the-topology to a connectionA∞onP.

    By the a priori estimate (1.2),we then have

    Theorem 2.9([15,Theoreom 1.1a]) LetYbe a closed,oriented,smooth Riemannian three-manifold,and letPbe a principalSU(2) orSO(3)-bundle overY.Let{(Ai,φi)}i∈Nbe a sequence ofC∞-solutions of Equations (1.1).Suppose that the sequence{‖φi‖L2(Y)}has a bounded subsequence.Then there is a subsequence of Ξ?N and a sequence of gauge transformations{ui}i∈Ξsuch thatconverges to a pair (A∞,φ∞) obeying Equations (1.1) onPinC∞-topology.

    We are finally ready to use the above results in the following proposition:

    Proposition 2.10LetZYand IYbe as described in Theorem 2.6,so thatσΔandAΔare defined overY-ZY.Then we have that

    (1) There exists a smooth flat connectionA∞defined over all ofY,and a Sobolev classgauge transformationu∞defined overY-ZYsuch thatis restricted toY-ZYofA∞.DefiningoverY-ZY,we then have that?A∞σ∞=0.

    (2) The bundle IYoverY-ZYextends to a bundle defined over all ofY,which we again denote by IY.

    (3) There exist extensions of bothv∈Γ(IY?Ω1) andσ∞:IY→gPto all ofY.We again denote these byvandσ∞.The extensions satisfy dv=0 and?A∞σ∞=0.

    ProofThe idea of our proof is similar to that of[12,Proposition 4.6].

    We first prove item 1.Following the weak Uhlenbeck compactness theorem (see[20,Theorem A]),for any sequence{Ai}i∈Nwith boundedL2-curvature{FAi}i∈Non a principalGbundle over a closed three-manifold,there exists a subsequence (again denote{Ai}i∈N) and a sequence of gauge transformations{ui}i∈Nsuch that(Ai) converges weakly to a limit connectionA∞over all ofYinRecall from Theorem 2.6 thatAΔis thelimit over compact subsetY-ZYof gauge equivalent connections.Since weaklylimits preservegauge equivalence,it follows that there exists a Sobolev-classgauge transformationu∞such that

    Note thatAΔis flat and gauge-equivalent over the complement ofZYtoA∞.Thus,A∞is anconnection whose curvature isL2,and vanishes on the completion ofZY,which,by Theorem 2.8,is a set of measure zero.Hence the curvature ofA∞is flat and so a standard elliptic regularity argument can be used to prove that there is anand aC0automorphism ofPthat transformsA∞into a smooth flat connection.After possibly composingu∞with such an automorphism,we may assume,without loss of generality,thatA∞is smooth and thatu∞is continuous.We also have that?A∞σ∞=0 follows from Theorem 2.6,sinceσΔisAΔ-covariantly constant.This establishes item 1.

    We next prove item 2,by which IYextends overZY.Let Σ?ZYdenote theC1submanifold that is described by Theorem 2.8.It is enough to prove that Σ is empty.For this purpose,assume to the contrary that Σ? and letS?Σ be a component.This is aC1embedded curve.Fix a pointp∈S.SinceSisC1,there is an embedded diskD?Yclosure intersects thatStransversally at a single point which isp.This is also its only intersection point withZY,sinceSis an open subset ofZY.Sincepis a point of discontinuity for the bundle IY,the restriction of IYtoD-{p}is not isomorphic to the product line bundle.In particular,parallel transport byAΔofσΔalong any circle inD-{p}which wraps once aroundpgives-σΔ.However,AΔis gauge-equivalent to a connection which is smooth over all ofD.This parallel transport around a sufficiently small bounded interval will be arbitrarily close to+σΔ,which is a contradiction.

    Finally,we prove item 3 by showing that bothvandσ∞extend to all ofYassections.Granted this extension,we may argue as in item 1 that both dvand?A∞σ∞areL2sections which vanish almost everywhere,and hence,by elliptic regularity,vandσ∞are smooth and satisfy dv=0 and?A∞σ∞=0 over all ofY. □

    Following the above results,we can prove a Uhlenbeck-type compactness theorem onYfor stable flatSL(2,C) connections satisfying anL2-bound for the real curvature.

    Proof of Theorem 1.2We setri:=‖φi‖L2(Y).First,we can prove that there exists a subsequence Ξ?N such that{ri}i∈Ξhas a uniform bound.If not,then the sequence{ri}i∈Nhas no bounded subsequence.We denoteA∞,νandσ∞as described in Proposition 2.10.Hence,following Proposition 2.10,we have

    Sinceν?σ∞∈Ω1(Y,gP),the hypothesis of the flat connectionA∞implies that

    Following item 1 in Proposition 2.10,there exists a continuous Sobolev-classgauge transformationu∞defined overY-ZYsuch that

    onY-ZY.The zero locus of the extension of|ν|is the setZY,and we can set thatσΔis a unit length,AΔ-covariantly constant homomorphism overY-ZY.Hence,we can say that|ν|=0 onY.

    On the other hand,following the last item in Theorem 2.6,there exist a subsequence Ξ?N and a sequence{ui}i∈Ξof automorphisms fromPsuch thatconverges toν?σΔin the-topology on compact subset inY-ZYand theC0-topology onY.Meanwhile,converges to|ν|in the weakly-topology and theC0-topology on the whole ofY.Hence

    That contradicts the fact that,?i∈N.In particular,the preceding argument shows that there exists a subsequence Ξ?N such that{ri}i∈Ξhas a uniform bound.Thus following Theorem 2.9,there is a subsequence (again denote by{(Ai,φi)}i∈Ξ) and a sequence of the gauge transformation{ui}i∈Ξsuch thatconverges to a pair (A∞,φ∞) onPin theC∞-topology. □

    Corollary 2.11LetYbe a closed,oriented Riemannian three-manifold with the homology ofS3,and letPbe a principalSU(2)-bundle.Let{(Ai,φi)}i∈Nbe a sequence ofC∞solutions of Equations (1.1).If theL2-norms of the curvatures ‖F(xiàn)Ai‖L2(Y)have a uniform bound,then there is a subsequence of Ξ?N and a sequence of gauge transformations{ui}i∈Nsuch thatconverges to a pair (A∞,φ∞) obeying Equations (1.1) onPin theC∞-topology.

    3 Disconnectedness of the Moduli Space M (P,g)

    3.1 A lower positive bound of extra fields

    We call a stable flat connection A:=A+iφdecoupled if the real connectionAis flat and the extra fieldφis a harmonic gP-1-form with respect to,i.e,

    Using a result of Uhlenbeck[18],we observe that if we have the stable flat connection A over a closed,smooth,Riemannian three-manifoldY,then theL2-norm of extra fields has a uniform positive lower bound unless the real connection is flat.

    Theorem 3.1([7]) LetYbe a closed,oriented,Riemannian three-manifold and endowed with a smooth Riemannian metricg,and letPbe a principalG-bundle withGbeing a compact Lie group.If (A,φ) is aC∞-solution of equations (1.1),then there is a positive constantC=C(X,g,G) such that ‖φ‖L2(Y)≥C,unlessAis a flat connection.

    Suppose that all flat connections onPare non-degenerate.Then the extra fields vanish if the stable flat connectionA+iφis decoupled over a closed Riemannian manifold.Following Theorem 3.1,we then have

    Corollary 3.2Assume the hypothesis of Theorem 3.1.Suppose that all flat connections on the principal bundlePare non-degenerate.If (A,φ) is aC∞-solution of equations (1.1),then either there exists a positive constantC=C(X,g,G) such that ‖φ‖L2(Y)≥Corφvanishes.

    3.2 A lower positive bound of curvatures

    One can see thatM(P,g) is the space of real flat connections and that M′(P,g):=M (P,g)M(P,g) is the space of real connections that are non-flat.Hence we can denote by

    the distance betweenM(P,g) and M′(P,g).Following Theorem 3.1,we can obtain a topological property of the moduli space M (P,g).

    Proposition 3.3(Disconnectedness of the moduli space M (P,g)) LetYbe a closed,oriented,smooth,Riemannian three-manifold,and letPbe a principalG-bundle withGbeing a compact Lie group.Suppose that all flat connections on the principal bundlePare nondegenerate.If the moduli spacesM(P,g) and M′(P,g):=M (P,g)M(P,g) are all non-empty,then the moduli space M (P,g) is disconnected.

    ProofUnder the hypothesis of the flat connection,following the Corollary 3.2,theL2-norm of the extra field ‖φ‖L2(X)has a lower bound unlessφvanishes.If the moduli spacesM(P,g) and M (P,g)M(P,g) are all non-empty,then

    whereC=C(Y,g) is the positive constant in Corollary 3.2,i.e.,the moduli space M (P,g) is disconnected. □

    We extend the idea in[9]to a stable flatSL(2,C) connection case,and we prove a gap result of the real curvature following the compactness theorem 1.2.

    Proposition 3.4LetYbe a closed,oriented,smooth,Riemannian three-manifold,and letPbe a principalG-bundle withGbeingSU(2) orSO(3).Suppose that all flat connections on the principal bundlePare non-degenerate.If the pair (A,φ) is aC∞-solution of equations (1.1),then there is a positive constantC=C(Y,g,P) such that ‖F(xiàn)A‖L2(Y)≥C,unless the real connectionAis flat.

    ProofSuppose that the constantCdoes not exist.We may then choose a sequence{(Ai,φi)}i∈Nsuch that ‖F(xiàn)Ai‖L2(Y)→0 asi→∞,and that{Ai}i∈Nare all non-flat.Thus the compactness Theorem 1.2 implies that there exists a pair (A∞,φ∞) that obeys equations (1.1),and that there is a sequence of gauge transformations{ui}i∈Ξsuch that (u*i(Ai),u*i(φi))→(A∞,φ∞) inC∞overY.Following Theorem 3.1,theL2-norm of extra field ‖φ∞‖L2Xhas a positive lower bound.Therefore,we have

    whereC=C(Y,g) is a positive constant.

    On the other hand,since ‖F(xiàn)Ai‖L2(Y)→0,the weak Uhlenbeck compactness theorem implies that the connectionA∞onPis flat.HenceA∞is non-degenerate,by the hypothesis on this proposition,which implies the extra fieldφ∞≡0.This is in contradiction to the fact that ‖φ∞‖L2(Y)has a uniform positive lower bound. □

    Remark 3.5The solutions of stable flat connections also satisfy the complex Yang-Mills equations[4].The author proved that if the pair (A,φ) is a smooth solution of a stable flat connection over a closed,smooth,Riemanniann-manifoldX,the curvatureFAof a non-flat connectionAhas a uniform positive lowerLp-bound under the condition that all flat connections are all non-degenerate;see[8,Theorem 1.2].

    Proof of Theorem 1.5First,we give the a priori estimate for the curvature of a connection.Since

    In the last inequality,we used the Sobolev embeddingfor 2≤p≤6 with the embedding constantCS.Here

    due to the fact that

    for allU,V∈Ty(Y).Combining the preceding inequalities yields that

    wherec=c(Y,g) is a positive constant.

    Therefore,we have

    whereCis the positive constant in Proposition 3.4.We set,and thus

    This complete the proof. □

    AcknowledgementsI would like to thank the anonymous referees for careful reading of the manuscript and for helpful comments.I would like to thank Y.Tanaka for kind comments regarding this and the companion article[12].

    男人的好看免费观看在线视频| 欧美性猛交╳xxx乱大交人| 国产成人精品久久二区二区91| 久99久视频精品免费| 少妇的丰满在线观看| 级片在线观看| 一二三四在线观看免费中文在| 免费看a级黄色片| 99在线人妻在线中文字幕| 欧美激情在线99| 在线免费观看不下载黄p国产 | 国产真人三级小视频在线观看| 国产免费av片在线观看野外av| 噜噜噜噜噜久久久久久91| 视频区欧美日本亚洲| 国产精品女同一区二区软件 | 国产乱人视频| 婷婷六月久久综合丁香| 亚洲国产欧美一区二区综合| 蜜桃久久精品国产亚洲av| 91九色精品人成在线观看| 在线观看舔阴道视频| 亚洲在线自拍视频| 亚洲精品美女久久久久99蜜臀| 成人国产一区最新在线观看| 身体一侧抽搐| 久久香蕉精品热| 国产精品国产高清国产av| 9191精品国产免费久久| 91在线观看av| h日本视频在线播放| 精品福利观看| 欧美激情久久久久久爽电影| 在线观看免费午夜福利视频| 欧美中文日本在线观看视频| 两人在一起打扑克的视频| 亚洲第一电影网av| 中文字幕最新亚洲高清| 亚洲欧洲精品一区二区精品久久久| 看黄色毛片网站| 一区二区三区激情视频| 亚洲国产精品999在线| 国产精品免费一区二区三区在线| 久久久水蜜桃国产精品网| 99久久无色码亚洲精品果冻| 久久这里只有精品19| 久久伊人香网站| 国产成人av激情在线播放| 亚洲无线观看免费| 我的老师免费观看完整版| www日本黄色视频网| 天堂动漫精品| 亚洲av日韩精品久久久久久密| 国产亚洲欧美在线一区二区| 久久天躁狠狠躁夜夜2o2o| 无人区码免费观看不卡| 免费看日本二区| 可以在线观看的亚洲视频| 日本 欧美在线| 一个人观看的视频www高清免费观看 | 欧美最黄视频在线播放免费| 成人三级做爰电影| 日本免费一区二区三区高清不卡| 日韩成人在线观看一区二区三区| 久久婷婷人人爽人人干人人爱| 国产三级黄色录像| 青草久久国产| 中出人妻视频一区二区| 欧美国产日韩亚洲一区| 观看免费一级毛片| 国产成人精品久久二区二区免费| 99国产精品99久久久久| 一本综合久久免费| 国产亚洲精品一区二区www| 亚洲中文字幕一区二区三区有码在线看 | 成人高潮视频无遮挡免费网站| 亚洲无线观看免费| 免费av不卡在线播放| 亚洲中文字幕一区二区三区有码在线看 | 久久久久久久久久黄片| 久久精品综合一区二区三区| 精品国产乱码久久久久久男人| 亚洲精华国产精华精| 亚洲国产色片| 国产成人欧美在线观看| xxx96com| 欧美激情久久久久久爽电影| 亚洲中文字幕日韩| 国产成年人精品一区二区| 男人的好看免费观看在线视频| 国产综合懂色| 久久香蕉精品热| 97超视频在线观看视频| 久久久色成人| 欧美高清成人免费视频www| 久久欧美精品欧美久久欧美| 一个人免费在线观看的高清视频| 亚洲一区高清亚洲精品| 国产精品乱码一区二三区的特点| 国产精品av视频在线免费观看| 久久亚洲真实| 一级毛片女人18水好多| 日韩欧美国产一区二区入口| 成人午夜高清在线视频| 久久午夜综合久久蜜桃| 久久香蕉精品热| 久久久久久久久久黄片| 99热6这里只有精品| 一区福利在线观看| 国产一区二区激情短视频| 男人和女人高潮做爰伦理| 欧美一级a爱片免费观看看| 色哟哟哟哟哟哟| 亚洲av成人av| 国产麻豆成人av免费视频| 波多野结衣巨乳人妻| 日韩人妻高清精品专区| 日本免费a在线| 高清毛片免费观看视频网站| 中文在线观看免费www的网站| 亚洲熟女毛片儿| 欧美黄色片欧美黄色片| xxxwww97欧美| www日本在线高清视频| 色噜噜av男人的天堂激情| 天天躁日日操中文字幕| 天堂影院成人在线观看| 悠悠久久av| 成年女人永久免费观看视频| 国产亚洲欧美98| 国产精品乱码一区二三区的特点| 久久久久久久久久黄片| 国产亚洲欧美98| 久久久久国产精品人妻aⅴ院| 亚洲片人在线观看| 别揉我奶头~嗯~啊~动态视频| 少妇的逼水好多| 亚洲精品一区av在线观看| 在线观看美女被高潮喷水网站 | 国产黄色小视频在线观看| 色av中文字幕| 不卡一级毛片| 观看美女的网站| 国产激情久久老熟女| 变态另类成人亚洲欧美熟女| 亚洲av免费在线观看| 国产真实乱freesex| 亚洲国产日韩欧美精品在线观看 | 少妇裸体淫交视频免费看高清| 成熟少妇高潮喷水视频| 久久国产精品影院| 欧美日韩中文字幕国产精品一区二区三区| 校园春色视频在线观看| 日本免费一区二区三区高清不卡| 久久中文看片网| 美女黄网站色视频| 一级a爱片免费观看的视频| 91麻豆精品激情在线观看国产| 香蕉丝袜av| tocl精华| 天堂影院成人在线观看| 久久国产精品影院| 丰满的人妻完整版| 搡老妇女老女人老熟妇| 少妇的丰满在线观看| 窝窝影院91人妻| 欧美三级亚洲精品| 亚洲熟妇熟女久久| 国产亚洲精品久久久com| 欧美极品一区二区三区四区| 中文字幕高清在线视频| 免费av不卡在线播放| 天堂动漫精品| 一个人免费在线观看的高清视频| 中亚洲国语对白在线视频| 欧美成人免费av一区二区三区| 美女扒开内裤让男人捅视频| 国产亚洲精品综合一区在线观看| 一区二区三区高清视频在线| 色吧在线观看| 天天躁日日操中文字幕| 亚洲精品456在线播放app | 99久久久亚洲精品蜜臀av| 动漫黄色视频在线观看| 99re在线观看精品视频| 久久中文字幕一级| 亚洲成人久久爱视频| 欧洲精品卡2卡3卡4卡5卡区| 欧美乱色亚洲激情| 757午夜福利合集在线观看| 国产淫片久久久久久久久 | 老司机午夜十八禁免费视频| 精品久久久久久成人av| 精品国产乱子伦一区二区三区| 超碰成人久久| 97碰自拍视频| 老汉色av国产亚洲站长工具| 久久久久国内视频| 老司机福利观看| 一本综合久久免费| 99国产极品粉嫩在线观看| 国产精品日韩av在线免费观看| 后天国语完整版免费观看| 淫妇啪啪啪对白视频| 国产精品98久久久久久宅男小说| 18禁黄网站禁片免费观看直播| 一个人免费在线观看的高清视频| 在线观看日韩欧美| 中文字幕最新亚洲高清| 此物有八面人人有两片| 性色avwww在线观看| 人人妻人人看人人澡| av欧美777| 久久午夜亚洲精品久久| 亚洲国产精品合色在线| 色综合站精品国产| 最新美女视频免费是黄的| 97碰自拍视频| 毛片女人毛片| 色老头精品视频在线观看| 88av欧美| 日韩欧美在线二视频| 日韩人妻高清精品专区| 亚洲五月婷婷丁香| 韩国av一区二区三区四区| 午夜免费观看网址| 欧美日韩亚洲国产一区二区在线观看| 婷婷精品国产亚洲av在线| 成人无遮挡网站| 午夜日韩欧美国产| 日韩欧美三级三区| 成年女人毛片免费观看观看9| 国产精品久久久久久久电影 | 在线观看日韩欧美| 午夜两性在线视频| 免费搜索国产男女视频| 国产av麻豆久久久久久久| 亚洲国产看品久久| 老司机午夜十八禁免费视频| 免费在线观看影片大全网站| 免费看美女性在线毛片视频| 九色国产91popny在线| 亚洲精品一区av在线观看| 高清毛片免费观看视频网站| 成年版毛片免费区| 偷拍熟女少妇极品色| 国产综合懂色| 美女大奶头视频| 免费观看的影片在线观看| 欧美绝顶高潮抽搐喷水| 色综合站精品国产| 人妻丰满熟妇av一区二区三区| 久久国产乱子伦精品免费另类| 午夜免费激情av| 特级一级黄色大片| 久久久国产精品麻豆| 国产高清videossex| 女人高潮潮喷娇喘18禁视频| 久久久国产成人免费| 手机成人av网站| 九九热线精品视视频播放| 99久久成人亚洲精品观看| 人人妻人人澡欧美一区二区| 亚洲成人久久爱视频| 又紧又爽又黄一区二区| 亚洲国产精品成人综合色| 中文字幕高清在线视频| 99在线人妻在线中文字幕| 在线观看日韩欧美| 国产成人影院久久av| 亚洲精品美女久久av网站| 91av网站免费观看| 欧美色视频一区免费| 丰满人妻熟妇乱又伦精品不卡| 国语自产精品视频在线第100页| 亚洲美女视频黄频| 最近最新免费中文字幕在线| 伦理电影免费视频| 国产精品久久久久久久电影 | 999久久久精品免费观看国产| 高清毛片免费观看视频网站| 两个人看的免费小视频| 搞女人的毛片| 国产精品一及| 国产麻豆成人av免费视频| 欧美高清成人免费视频www| 久久精品夜夜夜夜夜久久蜜豆| 亚洲欧美日韩卡通动漫| 欧美中文日本在线观看视频| 国产精品99久久久久久久久| 神马国产精品三级电影在线观看| 亚洲av电影在线进入| 性欧美人与动物交配| 亚洲欧美日韩东京热| 99re在线观看精品视频| 麻豆av在线久日| 99热这里只有是精品50| 久久久久久九九精品二区国产| 欧美一区二区国产精品久久精品| 久久伊人香网站| 午夜两性在线视频| 久久久久久国产a免费观看| 欧美另类亚洲清纯唯美| 悠悠久久av| 日本a在线网址| 欧美一级a爱片免费观看看| 午夜影院日韩av| 男插女下体视频免费在线播放| 亚洲午夜理论影院| 国产精品av视频在线免费观看| 麻豆成人午夜福利视频| 91在线观看av| 1024香蕉在线观看| aaaaa片日本免费| 国产亚洲av高清不卡| a级毛片a级免费在线| 在线播放国产精品三级| 国产三级中文精品| 久久久久久久精品吃奶| 国产av一区在线观看免费| 精品国产超薄肉色丝袜足j| 九九热线精品视视频播放| 极品教师在线免费播放| 色综合站精品国产| 99riav亚洲国产免费| 真实男女啪啪啪动态图| 免费在线观看影片大全网站| 成人特级av手机在线观看| 欧美3d第一页| 亚洲精品一卡2卡三卡4卡5卡| 中文字幕人妻丝袜一区二区| 国产成人一区二区三区免费视频网站| 99国产精品一区二区三区| 国产精品香港三级国产av潘金莲| 美女cb高潮喷水在线观看 | 亚洲精品一区av在线观看| 日韩av在线大香蕉| 精品一区二区三区av网在线观看| 97碰自拍视频| 久久亚洲真实| 可以在线观看毛片的网站| www日本黄色视频网| 亚洲五月婷婷丁香| 两性午夜刺激爽爽歪歪视频在线观看| 在线免费观看的www视频| 两人在一起打扑克的视频| 国产99白浆流出| 亚洲国产欧美一区二区综合| netflix在线观看网站| 久久这里只有精品中国| 欧美日韩一级在线毛片| 免费在线观看视频国产中文字幕亚洲| 久久精品国产亚洲av香蕉五月| 99国产精品一区二区蜜桃av| 中文字幕熟女人妻在线| 午夜福利欧美成人| 精品熟女少妇八av免费久了| 亚洲av五月六月丁香网| 麻豆国产97在线/欧美| av黄色大香蕉| 日韩人妻高清精品专区| 欧美激情在线99| 精品国产乱子伦一区二区三区| 好男人电影高清在线观看| 久久亚洲真实| 看黄色毛片网站| 欧美午夜高清在线| 国产亚洲欧美98| 日本黄色视频三级网站网址| 两个人视频免费观看高清| 欧美日本视频| 99在线人妻在线中文字幕| www.熟女人妻精品国产| 日韩精品青青久久久久久| 午夜精品在线福利| 日本熟妇午夜| 琪琪午夜伦伦电影理论片6080| 国产精品 欧美亚洲| 亚洲成人精品中文字幕电影| 午夜免费激情av| 亚洲无线观看免费| 亚洲av美国av| 性欧美人与动物交配| 中文字幕高清在线视频| 首页视频小说图片口味搜索| 又黄又爽又免费观看的视频| 国产黄a三级三级三级人| 99久久成人亚洲精品观看| 日韩成人在线观看一区二区三区| 亚洲成人久久爱视频| av在线蜜桃| www.www免费av| 网址你懂的国产日韩在线| 一二三四社区在线视频社区8| 欧洲精品卡2卡3卡4卡5卡区| av中文乱码字幕在线| 99国产精品一区二区蜜桃av| 成人欧美大片| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲色图 男人天堂 中文字幕| 亚洲国产日韩欧美精品在线观看 | 一本一本综合久久| 啦啦啦观看免费观看视频高清| 婷婷精品国产亚洲av在线| 亚洲国产精品成人综合色| 少妇的逼水好多| 免费电影在线观看免费观看| 99热6这里只有精品| 亚洲电影在线观看av| 亚洲七黄色美女视频| 国产激情欧美一区二区| 国产免费av片在线观看野外av| 在线看三级毛片| 国产一级毛片七仙女欲春2| av视频在线观看入口| 在线国产一区二区在线| 免费电影在线观看免费观看| www国产在线视频色| 日韩人妻高清精品专区| 十八禁人妻一区二区| 欧美日韩瑟瑟在线播放| 女生性感内裤真人,穿戴方法视频| 丰满人妻熟妇乱又伦精品不卡| 欧美又色又爽又黄视频| 日本黄色片子视频| 精品国产三级普通话版| 午夜久久久久精精品| 久久中文看片网| 人妻丰满熟妇av一区二区三区| 久久香蕉国产精品| 久久精品亚洲精品国产色婷小说| 99久久无色码亚洲精品果冻| 成年女人看的毛片在线观看| 无人区码免费观看不卡| 无遮挡黄片免费观看| 成年女人毛片免费观看观看9| 最新中文字幕久久久久 | 亚洲美女黄片视频| 国产成人啪精品午夜网站| 久久精品国产清高在天天线| 精品国产乱子伦一区二区三区| 国产三级黄色录像| 特级一级黄色大片| 中国美女看黄片| 国产一级毛片七仙女欲春2| 日韩有码中文字幕| 亚洲欧美日韩无卡精品| 久久久久精品国产欧美久久久| 国产精品免费一区二区三区在线| 一级毛片精品| 偷拍熟女少妇极品色| 欧美激情久久久久久爽电影| 男插女下体视频免费在线播放| 给我免费播放毛片高清在线观看| 亚洲国产欧洲综合997久久,| x7x7x7水蜜桃| 免费无遮挡裸体视频| 我要搜黄色片| 亚洲中文日韩欧美视频| 99热只有精品国产| 婷婷丁香在线五月| av天堂在线播放| 国产亚洲精品久久久com| 国产乱人伦免费视频| 一个人免费在线观看电影 | 美女免费视频网站| x7x7x7水蜜桃| 日韩免费av在线播放| 香蕉国产在线看| 黑人巨大精品欧美一区二区mp4| 欧美成人性av电影在线观看| 9191精品国产免费久久| 麻豆国产97在线/欧美| 国产高清三级在线| 色综合亚洲欧美另类图片| 美女扒开内裤让男人捅视频| 亚洲国产精品sss在线观看| 日本撒尿小便嘘嘘汇集6| 日韩人妻高清精品专区| 久久久国产成人免费| 全区人妻精品视频| 国产美女午夜福利| 欧美在线黄色| 淫妇啪啪啪对白视频| 国产一区二区三区在线臀色熟女| 国产毛片a区久久久久| 免费观看的影片在线观看| 嫩草影视91久久| 精品日产1卡2卡| 国产私拍福利视频在线观看| 麻豆一二三区av精品| 狠狠狠狠99中文字幕| 夜夜看夜夜爽夜夜摸| 美女 人体艺术 gogo| 美女免费视频网站| 91老司机精品| 最近视频中文字幕2019在线8| www日本在线高清视频| 亚洲五月婷婷丁香| 国产av在哪里看| 午夜成年电影在线免费观看| 床上黄色一级片| 不卡av一区二区三区| 一边摸一边抽搐一进一小说| 97碰自拍视频| 国产精品 欧美亚洲| 床上黄色一级片| 日本熟妇午夜| tocl精华| 一级a爱片免费观看的视频| 国产又黄又爽又无遮挡在线| 亚洲av日韩精品久久久久久密| 欧美日韩瑟瑟在线播放| 亚洲欧美日韩高清专用| 人人妻,人人澡人人爽秒播| 法律面前人人平等表现在哪些方面| 亚洲精品美女久久久久99蜜臀| 国产伦在线观看视频一区| 国产精品久久视频播放| 97碰自拍视频| 国内久久婷婷六月综合欲色啪| 亚洲国产欧美人成| 激情在线观看视频在线高清| 一级作爱视频免费观看| 啦啦啦免费观看视频1| 亚洲在线观看片| 日韩欧美免费精品| 午夜两性在线视频| 夜夜夜夜夜久久久久| 91麻豆精品激情在线观看国产| 人人妻人人看人人澡| 国产精品 国内视频| 18禁观看日本| 亚洲精品乱码久久久v下载方式 | 女警被强在线播放| 午夜a级毛片| 精品国内亚洲2022精品成人| 狠狠狠狠99中文字幕| 身体一侧抽搐| 欧美成人免费av一区二区三区| 亚洲熟妇中文字幕五十中出| 亚洲va日本ⅴa欧美va伊人久久| 黄片大片在线免费观看| 村上凉子中文字幕在线| 国产精品一区二区免费欧美| 午夜亚洲福利在线播放| 国内精品美女久久久久久| 欧美中文日本在线观看视频| 男女床上黄色一级片免费看| 日韩国内少妇激情av| 国产亚洲av嫩草精品影院| 久久国产乱子伦精品免费另类| 国产在线精品亚洲第一网站| 18禁美女被吸乳视频| 我的老师免费观看完整版| 亚洲欧美精品综合久久99| 久久精品影院6| 成人国产综合亚洲| 18禁黄网站禁片午夜丰满| 亚洲美女视频黄频| 国产亚洲精品综合一区在线观看| a在线观看视频网站| 亚洲乱码一区二区免费版| 亚洲第一电影网av| 99国产综合亚洲精品| 国产精品久久久久久久电影 | 国产精品99久久久久久久久| tocl精华| 一区福利在线观看| 色综合婷婷激情| 欧美xxxx黑人xx丫x性爽| 人人妻,人人澡人人爽秒播| 制服人妻中文乱码| 黄频高清免费视频| 一进一出抽搐gif免费好疼| 法律面前人人平等表现在哪些方面| 成人特级av手机在线观看| 精品不卡国产一区二区三区| 最新在线观看一区二区三区| 国产高清视频在线观看网站| 天天一区二区日本电影三级| 欧美日韩福利视频一区二区| 国产伦精品一区二区三区视频9 | 9191精品国产免费久久| 日本免费a在线| 国产亚洲精品一区二区www| 国产精品久久久久久久电影 | 99国产综合亚洲精品| 搞女人的毛片| 亚洲aⅴ乱码一区二区在线播放| 一二三四在线观看免费中文在| 久久九九热精品免费| 999久久久国产精品视频| 色视频www国产| 久久精品aⅴ一区二区三区四区| 久久人妻av系列| 久久精品综合一区二区三区| 国产精品亚洲美女久久久| 国产精品久久久久久人妻精品电影| 欧美不卡视频在线免费观看| 禁无遮挡网站| 国产精品影院久久| 欧美成人免费av一区二区三区| 国产91精品成人一区二区三区| 丁香六月欧美| 亚洲av第一区精品v没综合| 午夜两性在线视频| 热99re8久久精品国产| 美女午夜性视频免费| 黄色丝袜av网址大全| 免费高清视频大片| 欧美日韩国产亚洲二区| 色精品久久人妻99蜜桃| 悠悠久久av| 精品久久蜜臀av无|