侯俊英,楊金星,郝建軍,占志國(guó),王雅雅
石蠟/Fe-MIL-101-NH2金屬有機(jī)骨架定形復(fù)合相變材料制備
侯俊英,楊金星,郝建軍,占志國(guó),王雅雅
(河北農(nóng)業(yè)大學(xué)機(jī)電工程學(xué)院,保定 071001)
該研究采用石蠟為相變芯材,F(xiàn)e-MIL-101-NH2金屬有機(jī)骨架為載體材料,旨在解決石蠟芯材在固-液相變過(guò)程中體積變大,從而出現(xiàn)泄漏現(xiàn)象的問(wèn)題。通過(guò)溶劑蒸發(fā)法制備了質(zhì)量分?jǐn)?shù)為40%~70%的石蠟/Fe-MIL-101-NH2定形復(fù)合相變材料。采用掃描電子顯微鏡(Scanning Electron Microscope, SEM)、X射線衍射儀(X-ray Diffraction, XRD)、傅里葉變換紅外光譜(Fourier Transform Infrared Spectroscopy, FTIR)對(duì)定形復(fù)合相變材料的形貌和結(jié)構(gòu)進(jìn)行觀察;用熱重分析(Thermogravimetric Analysis, TGA)對(duì)定形復(fù)合相變材料的熱穩(wěn)定性進(jìn)行分析;通過(guò)差示掃描量熱(Differential Scanning Calorimetry, DSC)儀對(duì)樣品的相變溫度、相變焓和熱循環(huán)穩(wěn)定性進(jìn)行測(cè)試;SEM結(jié)果表明,石蠟的最高負(fù)載量為70%,且其均勻分布于Fe-MIL-101-NH2孔道中。XRD、FTIR分析發(fā)現(xiàn)石蠟與Fe-MIL-101-NH2之間只是物理混合,沒(méi)有化學(xué)變化;DSC分析可知,質(zhì)量分?jǐn)?shù)為70%的石蠟/Fe-MIL-101-NH2儲(chǔ)能量最大,為51.3 J/g,且質(zhì)量分?jǐn)?shù)為70%的石蠟/Fe-MIL-101-NH2經(jīng)過(guò)50次循環(huán)后,其儲(chǔ)能量為47.6 J/g,無(wú)明顯下降,說(shuō)明質(zhì)量分?jǐn)?shù)為70%的石蠟/Fe-MIL-101-NH2具有良好的熱循環(huán)穩(wěn)定性,可為相變材料在建筑領(lǐng)域應(yīng)用研究提供參考。
相變材料;熱儲(chǔ)能;金屬有機(jī)骨架;石蠟;Fe-MIL-101-NH2
近年來(lái),全球能源需求和消耗量急劇增加,并達(dá)到了前所未有的高水平[1]。不可再生的化石燃料在全球能源消耗中所占比例較大,但會(huì)導(dǎo)致嚴(yán)重的環(huán)境污染,為了解決此問(wèn)題,新能源開(kāi)發(fā)和有效利用逐漸成為科學(xué)研究的重點(diǎn)之一[2]。熱儲(chǔ)能技術(shù)能夠緩解能源供需在時(shí)間和空間上的不匹配,提高能源的有效利用率[3]。熱儲(chǔ)能技術(shù)主要分為潛熱儲(chǔ)能、顯熱儲(chǔ)能和化學(xué)儲(chǔ)能。其中,潛熱儲(chǔ)能在儲(chǔ)熱領(lǐng)域的應(yīng)用中具有儲(chǔ)熱容量大、相變溫度適宜、熱穩(wěn)定性高等優(yōu)點(diǎn),成為最具競(jìng)爭(zhēng)力的儲(chǔ)能技術(shù)[4]。
相變儲(chǔ)能時(shí)潛熱儲(chǔ)能中最重要的一種儲(chǔ)能方式,其中,相變材料作為相變儲(chǔ)能的主體,包括相變芯材和載體材料,相變芯材通常分為液-氣、固-液、固-氣和固-固四大類(lèi)材料[5]。其中固-液相變材料因其具有體積變化小、易于后處理、儲(chǔ)能密度高等優(yōu)點(diǎn)引起了研究者的廣泛關(guān)注。有機(jī)相變材料作為固-液相變材料的一種,不僅具有上述優(yōu)勢(shì),而且其廉價(jià)易得、無(wú)腐蝕性及具有良好的化學(xué)熱穩(wěn)定性等[6-7]。石蠟作為一種典型的有機(jī)相變芯材,其良好的能量存儲(chǔ)密度及恰當(dāng)?shù)南嘧儨囟确秶蛊湓诮ㄖI(lǐng)域具有很好的應(yīng)用前景。因此本文選用石蠟做為相變芯材。
固-液相變材料在相變過(guò)程中,相變材料在熔點(diǎn)以上體積變大,且會(huì)發(fā)生嚴(yán)重的泄漏現(xiàn)象[8],多采用載體材料來(lái)封裝相變芯材形狀穩(wěn)定的復(fù)合相變材料,以此來(lái)解決相變芯材的泄漏。目前,膨脹石墨[9]、多孔碳[10]、碳納米管[11]等多被用作載體材料,但其制備過(guò)程繁瑣,孔體積小[12],對(duì)相變芯材的儲(chǔ)存量小,且其受到外力作用時(shí),會(huì)發(fā)生泄漏現(xiàn)象,從而降低其儲(chǔ)熱性能[13]。因此,需要一種新的多孔載體材料,來(lái)保證相變芯材封裝的穩(wěn)定性,從而獲得更高的儲(chǔ)熱量。金屬有機(jī)骨架(MOFs)具有高的比表面積和孔隙率、獨(dú)特的拓?fù)浣Y(jié)構(gòu)、結(jié)構(gòu)和孔徑可調(diào)、可功能化修飾等[14]成為一種較好的載體材料。如:Tang等[15]利用金屬有機(jī)骨架成功制備了一種PEG/HPCs復(fù)合材料,其具有較高的相變焓和大的儲(chǔ)能量;Wang等[16]制備了一種聚乙二醇/CNT/Cr-MIL-101-NH2復(fù)合材料,具有較高的儲(chǔ)能及良好的熱循環(huán)穩(wěn)定性;Luan等[17]制備出一種Acid/Cr-MIL-101-NH2復(fù)合相變材料,其相變潛熱高,具有良好的儲(chǔ)熱能力。Fe-MIL-101-NH2金屬有機(jī)骨架由于其在空氣中能夠保持長(zhǎng)期相對(duì)穩(wěn)定,同時(shí)其孔徑、形狀和尺寸可控,制備方法簡(jiǎn)單,成本低[18]。具有規(guī)則的孔隙結(jié)構(gòu),大的比表面積和良好的熱穩(wěn)定性等[19],有望解決了相變材料在液相中出現(xiàn)的泄漏現(xiàn)象,因此Fe-MIL-101-NH2被選擇作為負(fù)載相變芯材的載體材料。利用Fe-MIL-101-NH2骨架中孔道的毛細(xì)作用力,使石蠟芯材牢牢吸附在其孔道內(nèi),以達(dá)到防止石蠟泄漏的目的。石蠟/Fe-MIL-101-NH2定形復(fù)合相變材料可以廣泛應(yīng)用于農(nóng)村的建筑物領(lǐng)域,如:農(nóng)村溫室大棚,根據(jù)溫差變化,通過(guò)石蠟相變芯材在不同時(shí)間段的吸放熱達(dá)到儲(chǔ)能節(jié)能的目的,使大棚在一定的范圍內(nèi)保持恒定的溫度。吳薇等[20]以62#石蠟和癸酸(Capric Acid, CA)不同配比制備成CA/62#復(fù)合相變材料,根據(jù)冬季和夏季的太陽(yáng)輻射強(qiáng)度不同,分季節(jié)達(dá)到相應(yīng)的相變溫度,從而最大化利用太陽(yáng)能。
目前相變儲(chǔ)能材料普遍存在儲(chǔ)能量低,相變芯材易泄漏的問(wèn)題,本文采用Fe-MIL-101-NH2作為石蠟(相變芯材)的載體材料,將石蠟負(fù)載在Fe-MIL-101-NH2的孔道中,以期得到最大石蠟芯材負(fù)載量,使此復(fù)合相變材料具有較大的儲(chǔ)能量;同時(shí)期望解決石蠟在固-液相變過(guò)程中體積變大,易于泄漏的問(wèn)題。
試劑:六水合氯化鐵(FeCl3·6H2O)、2-氨基對(duì)苯二甲酸(NH2-H2BDC)、二甲基甲酰胺(DMF)購(gòu)置于Sigma-Aldrich公司,切片石蠟購(gòu)置于上海華永石蠟有限公司。
試驗(yàn)儀器:掃描電子顯微鏡(Scanning Electron Microscope, SEM, TESCAN VEGA 3 LMH)放大倍數(shù):2.5~100 000×,加速電壓0.2~30 kV;X射線衍射儀(X-ray Diffraction, XRD, Bruker D2PHASER)采用Cu靶K輻射,工作電流為10 mA、電壓為30 kV、掃描速度為5°/min、波長(zhǎng)為0.1541 nm、掃描范圍為5°~30°;傅里葉變換紅外光譜(Fourier Transform Infrared Spectroscopy,FTIR,KBr,Bio-Red FTS 3000),光譜范圍700~4 000 cm-1,精度為0.5 cm-1;熱重分析(Thermogravimetric Analysis, TGA, Netzsch STA449F3),稱(chēng)重解析度0.1g,升溫速率為5 ℃/min,分解溫度在室溫和600 ℃之間;差示掃描量熱(DifferentialScanningCalorimetry,DSC, Q2000TA),量熱精度±0.05 ℃,溫度范圍0~100 ℃。
1.2.1 Fe-MIL-101-NH2金屬有機(jī)骨架材料制備
將0.225 g NH2-H2BDC(1.242 mmol)與0.675 g FeCl3·6H2O(2.497 mmol)溶解在7.5 mL的二甲基甲酰胺(DMF)中,然后將反應(yīng)混合物轉(zhuǎn)移到不銹鋼反應(yīng)釜中,110 ℃加熱24 h,待溫度冷卻至室溫后,通過(guò)離心機(jī)分離產(chǎn)物,所得產(chǎn)物用二甲基甲酰胺(DMF)、乙醇洗滌。最后,將所得樣品在80 ℃下干燥24 h后,得到所需樣品Fe-MIL-101-NH2[21]。
1.2.2 石蠟/Fe-MIL-101-NH2定形復(fù)合相變材料制備
采用溶劑蒸發(fā)法制備了質(zhì)量分?jǐn)?shù)為40%~75%石蠟/Fe-MIL-101-NH2定形復(fù)合相變材料。制備過(guò)程如下:將0.05g Fe-MIL-101-NH2溶于10mL乙醇,攪拌均勻,分別將0.034、0.051、0.076、0.117、0.15g石蠟加入其中,在60 ℃油浴中攪拌4h,放入烘箱烘干,得到石蠟質(zhì)量分?jǐn)?shù)分別為40%、50%、60%、70%、75%的定形復(fù)合相變材料,將其命名為質(zhì)量分?jǐn)?shù)為40%~75%的石蠟/Fe-MIL-101-NH2定形復(fù)合相變材料。其中石蠟芯材負(fù)載量(質(zhì)量分?jǐn)?shù),%)通過(guò)公式(1)計(jì)算得出:
負(fù)載量=石蠟質(zhì)量/(石蠟質(zhì)量+Fe-MIL-101-NH2質(zhì)量) (1)
1.2.3 理論焓計(jì)算
石蠟/Fe-MIL-101-NH2定形復(fù)合相變材料理論焓為石蠟質(zhì)量分?jǐn)?shù)與DSC曲線測(cè)得的純石蠟相變焓之積,計(jì)算公式(2)如下[22]:
Δtheo=ΔPCM(2)
式中ΔPCM代表純石蠟的相變焓,J/g;為材料中石蠟所占有的質(zhì)量分?jǐn)?shù),%;Δtheo為復(fù)合相變材料的理論焓,J/g。
1.2.4 相變溫度范圍變化
復(fù)合相變材料的溫度范圍變化Δc可用公式(3)計(jì)算[23]:
Δc=T–c(3)
式中T為熔化溫度,℃;c為結(jié)晶溫度,℃。
1.3.1 泄漏試驗(yàn)
將質(zhì)量分?jǐn)?shù)為40%~75%的石蠟/Fe-MIL-101-NH2定形復(fù)合相變材料放置在濾紙上,將其置于60 ℃烘箱(石蠟熔點(diǎn))中30min,確保此時(shí)石蠟處于液相狀態(tài)。待室溫后,檢查濾紙上面是否有石蠟浸濕的痕跡,來(lái)確認(rèn)相變芯材是否出現(xiàn)泄漏現(xiàn)象。
1.3.2 熱循環(huán)試驗(yàn)
將石蠟/Fe-MIL-101-NH2定形復(fù)合相變材料密封置于烘箱中,60 ℃下反復(fù)循環(huán)加熱-冷卻50次后取出樣品,用差示掃描量熱儀對(duì)樣品進(jìn)行測(cè)試。
如圖所示,F(xiàn)e-MIL-101-NH2形貌為六面體微軸晶體結(jié)構(gòu)(圖1a)與文獻(xiàn)[24]結(jié)果一致,進(jìn)一步說(shuō)明成功得到了Fe-MIL-101-NH2晶體在Fe-MIL-101-NH2中負(fù)載40%石蠟相變芯材,樣品的形貌無(wú)明顯變化(圖1b),仍為六面體微軸晶體結(jié)構(gòu),說(shuō)明Fe- MIL-101-NH2具有良好的定形效果。圖1c~圖1e可以觀察到,隨著石蠟芯材負(fù)載量的增加,石蠟/Fe-MIL-101-NH2形貌仍未改變。但由不同石蠟質(zhì)量分?jǐn)?shù)泄漏試驗(yàn)可知,當(dāng)石蠟負(fù)載量達(dá)到75%時(shí),此時(shí)質(zhì)量分?jǐn)?shù)為75%的石蠟/Fe-MIL-101-NH2發(fā)生了明顯的泄漏現(xiàn)象,說(shuō)明Fe-MIL-101-NH2中石蠟的最大負(fù)載量為70%。進(jìn)一步說(shuō)明,F(xiàn)e-MIL-101-NH2可利用其孔道中的毛細(xì)作用力來(lái)防止石蠟芯材的泄漏,具有良好的封裝效果。
圖2a為石蠟和不同樣品的射線衍射圖。根據(jù)布拉格公式:2sin=(:晶面間距,nm;:布拉格角度,(°);:射線的波長(zhǎng),nm;:反射級(jí)數(shù),=1,2,3…)。當(dāng)射線從不同的角度()照射樣品時(shí),會(huì)在樣品不同晶面發(fā)生衍射,射線儀器接收從該晶面反射出來(lái)的衍射光子數(shù),從而得到不同角度(橫坐標(biāo))和強(qiáng)度(縱坐標(biāo))關(guān)系的譜圖。圖2a中,2=21.1°,23.5°對(duì)應(yīng)石蠟的(110),(200)晶面[25];2=9.4°,11.3°對(duì)應(yīng)Fe-MOF的(002),(100)晶面[26],與文獻(xiàn)一致。且其特征峰呈尖銳的衍射峰形狀,說(shuō)明制備的Fe-MIL-101-NH2具有較好的結(jié)晶度。圖2a可以看出質(zhì)量分?jǐn)?shù)為40%~70%的石蠟/Fe-MIL-101-NH2的衍射峰中沒(méi)有新的衍射峰出現(xiàn),說(shuō)明石蠟與Fe-MIL-101-NH2之間沒(méi)有發(fā)生化學(xué)反應(yīng)。
圖2b為石蠟和不同樣品之間的紅外光譜曲線,由圖2b可知,2 920、2 848 cm-1處為石蠟中-CH3和-CH2的伸縮振動(dòng)吸收峰[26];1 380、1 471 cm-1處的峰為-CH2和-CH3上的彎曲振動(dòng)峰[27]。由圖2b可知,1 576、1 432 cm-1處的峰為Fe-MIL-101-NH2中C=O伸縮振動(dòng)峰[28];3 441、3 379 cm-1處的雙峰為-NH2伸縮振動(dòng)峰[29];1 623 cm-1處為N-H鍵的彎曲振動(dòng)峰;1 339 cm-1處為C-N鍵的拉伸振動(dòng)峰[29]。圖2b中可知,質(zhì)量分?jǐn)?shù)為40%~70%的石蠟/ Fe-MIL-101-NH2中沒(méi)有新的衍射峰出現(xiàn),進(jìn)一步證明石蠟與Fe-MIL-101-NH2只是物理混合,并沒(méi)有發(fā)生化學(xué)變化。
圖3a為Fe-MIL-101-NH2和不同樣品之間的熱重分析曲線,曲線表示的是分析樣品的質(zhì)量隨溫度的變化。曲線上任意兩點(diǎn)縱坐標(biāo)之間的質(zhì)量差,即表示樣品在此溫度區(qū)間內(nèi)的失重量。由圖3a中可知,室溫至240 ℃為Fe-MIL-101-NH2的第一階段,失重量約為10%,為表面吸附水和其他小分子基團(tuán)的分解;第二階段為240~600 ℃,這是Fe-MIL-101-NH2金屬有機(jī)骨架的分解所致[30],說(shuō)明Fe-MIL-101-NH2的穩(wěn)定性為240 ℃,質(zhì)量分?jǐn)?shù)為40%~70%石蠟/Fe-MIL-101-NH2的熱穩(wěn)定性溫度分別為223、230、222、223 ℃,且質(zhì)量分?jǐn)?shù)為70%石蠟/Fe-MIL-101-NH2經(jīng)過(guò)50次熱循環(huán)后熱穩(wěn)定性溫度無(wú)明顯變化,為218 ℃。說(shuō)明質(zhì)量分?jǐn)?shù)為70%石蠟/ Fe-MIL-101-NH2定形復(fù)合相變材料在240 ℃以?xún)?nèi)具有良好的熱穩(wěn)定性。
圖3b為Fe-MIL-101-NH2和不同樣品之間的熔化結(jié)晶曲線。DSC測(cè)試中,升溫區(qū)間設(shè)定為0~100 ℃,降溫區(qū)間設(shè)定為100~0 ℃,升溫速度為5 ℃/min。測(cè)得的DSC曲線橫坐標(biāo)為溫度,縱坐標(biāo)為熱流量。因此,通過(guò)對(duì)DSC曲線的熔化區(qū)間和結(jié)晶區(qū)間進(jìn)行相應(yīng)的積分,得到的數(shù)據(jù)即為所測(cè)樣品的熔化焓(Δm)和結(jié)晶焓(Δc)。由圖3b中石蠟的熔化結(jié)晶曲線可知,熔化曲線中,35 ℃開(kāi)始固-固相變,45 ℃開(kāi)始固-液相變;結(jié)晶曲線中,37 ℃開(kāi)始固- 固相變,47 ℃開(kāi)始固-液相變。石蠟的熔化和結(jié)晶溫度分別為56.3 ℃與54.2 ℃,其熔化焓ΔH為101.1 J/g,結(jié)晶焓Δc為95.1 J/g。當(dāng)Fe-MIL-101-NH2封裝石蠟的質(zhì)量分?jǐn)?shù)達(dá)到100%時(shí),石蠟的熔化焓為101.1 J/g,這一極限狀態(tài)是不能達(dá)到的狀態(tài),因此石蠟/Fe-MIL-101-NH2的定形復(fù)合相變材料熔化焓永遠(yuǎn)小于石蠟相變焓101.1 J/g。
由圖3b和表1可知,質(zhì)量分?jǐn)?shù)為40%~70%的石蠟/ Fe-MIL-101-NH2的熔化焓分別為11.1 J/g (57.4 ℃)、20.5 J/g (57.2 ℃)、32.6 J/g (57.3 ℃)、51.3 J/g (57.4 ℃)。隨著石蠟相變芯材增加,定形復(fù)合相變材料潛熱值逐漸增加,這是因?yàn)橐环矫媸炇菑?fù)合相變材料的工作物質(zhì)。另一方面Fe-MIL-101-NH2逐漸形成的三維網(wǎng)狀結(jié)構(gòu)限制了石蠟的體積膨脹,使得Fe-MIL-101-NH2在相變過(guò)程中,孔隙內(nèi)的壓力不斷增加,阻礙了石蠟在相變過(guò)程中的分子熱運(yùn)動(dòng),從而降低了潛熱[31-32]。由表1可以觀察到質(zhì)量分?jǐn)?shù)為40%~70%的石蠟/Fe-MIL-101-NH2的-熔化焓與石蠟負(fù)載量為100%時(shí)相差較大,但這種差異只能引起石蠟/Fe-MIL-101-NH2儲(chǔ)能量變化而不會(huì)導(dǎo)致此復(fù)合相變材料其他性能的變化。質(zhì)量分?jǐn)?shù)為70%的石蠟/ Fe-MIL-101-NH2經(jīng)過(guò)50次循環(huán)后,熔化焓為47.6 J/g,與循環(huán)前相比,沒(méi)有明顯降低,說(shuō)明質(zhì)量分?jǐn)?shù)為70%石蠟/Fe-MIL-101-NH2具有良好的循環(huán)穩(wěn)定性。
由圖4可以看出石蠟以及不同石蠟質(zhì)量分?jǐn)?shù)的定形復(fù)合相變材料實(shí)際焓與理論焓的比較。通過(guò)試驗(yàn)方法中公式(2)可知,質(zhì)量分?jǐn)?shù)為40%~70%石蠟/Fe-MIL-101-NH2的理論熔化焓Δtheo分別為40.44J/g (101.1 J/g×40%= 40.44 J/g)、50.55 J/g (101.1 J/g×50%=50.55 J/g)、60.66 J/g (101.1 J/g×60%=60.66 J/g)、70.77 J/g (101.1 J/g×70%= 70.77 J/g),其儲(chǔ)能量明顯高于質(zhì)量分?jǐn)?shù)為40%~70%石蠟/Fe-MIL-101-NH2在DSC曲線中測(cè)得的實(shí)際融化焓大?。?1.1、20.5、32.6、51.3 J/g),這是由于石蠟在固-液相變過(guò)程在受到了Fe-MIL-101-NH2孔道壓力在一定程度上的限制所致。實(shí)際焓與理論焓的這種差異性會(huì)導(dǎo)致相變材料的儲(chǔ)熱能力降低,但不會(huì)導(dǎo)致材料其他物理性能的變化,此結(jié)論與本論文的XRD、FTIR結(jié)果一致。
表1 不同樣品熱學(xué)性能參數(shù)
圖5為相變溫度范圍曲線。圖中:熔點(diǎn)(m)代表熔化溫度,表示石蠟在Fe-MIL-101-NH2中由固態(tài)變?yōu)橐簯B(tài)時(shí)的溫度;結(jié)晶點(diǎn)(c)代表結(jié)晶溫度,表示石蠟在Fe-MIL-101-NH2中由固態(tài)變?yōu)橐簯B(tài)時(shí)的溫度。當(dāng)外界環(huán)境溫度低于相變溫度范圍(Δc)時(shí),復(fù)合相變材料放熱;當(dāng)外界環(huán)境溫度高于Δc時(shí),復(fù)合相變材料吸熱。相變溫度范圍Δc由試驗(yàn)方法中公式(3)得出。由圖5可知石蠟的相變溫度范圍大小為2.1 ℃,隨著石蠟負(fù)載量的增加,質(zhì)量分?jǐn)?shù)為40%~70%石蠟/Fe-MIL-101-NH2-的相變溫度范圍分別為1.9、2.3、3.0、3.5 ℃,材料的相變溫度范圍較小,具有良好的蓄熱放熱效果,在溫室環(huán)境能夠保證穩(wěn)定的溫度范圍[33]。
1)本文采用Fe-MIL-101-NH2載體中填入不同含量的石蠟芯材制備得出質(zhì)量分?jǐn)?shù)為40%~70%石蠟/Fe-MIL-101-NH2定形復(fù)合相變材料。Fe-MIL-101-NH2中的毛細(xì)作用力可使石蠟牢固的吸附于Fe-MIL-101-NH2孔道中,成功阻止了石蠟相變芯材的泄漏。
2)在Fe-MIL-101-NH2載體中,石蠟的最大負(fù)載量可以達(dá)到70%,其熔化焓為51.3 J/g,結(jié)果說(shuō)明Fe-MIL-101-NH2具備良好的封裝效果,是一種優(yōu)異的載體材料。
3)質(zhì)量分?jǐn)?shù)為70%的石蠟/Fe-MIL-101-NH2經(jīng)過(guò)50次熱循環(huán)試驗(yàn)后,X射線衍射(XRD)曲線、傅里葉紅外曲線(FTIR)、熱重分析(TGA)曲線均無(wú)明顯變化;且其循環(huán)后熔化焓為47.6 J/g,說(shuō)明石蠟/Fe-MIL-101-NH2具有良好的循環(huán)穩(wěn)定性。
[1] Huo Y. T, Rao Z. H, Investigation of solid-liquid phase change in the spherical capsule using axisymmetric lattice Boltzmann model[J]. International Journal of Heat and Mass Transfer, 2018, 119(11): 1-9.
[2] Fragkos P, Soest H L V, Schaeffer R, et al, Energy system transitions and low-carbon pathways in Australia, Brazil, Canada, China, EU-28, India, Indonesia, Japan, Republic of Korea, Russia and the United States[J]. Energy, 2021, 216(2): 119385.
[3] 蔣自鵬,鐵生年. 芒硝基相變材料性能及其在簡(jiǎn)易溫室中升溫效果試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(20):209-216.
Jiang Zipeng, Tie Shengnian. Property and heat storage performances of Glauber’s salt-based phase change materials for solar greenhouse in Qinghai-Tibet plateau[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE) 2016, 32(20): 209-216. (in Chinese with English abstract)
[4] 鐘麗敏,楊穆,欒奕,等. 石蠟/二氧化硅復(fù)合相變材料的制備及其性能[J]. 工程科學(xué)學(xué)報(bào),2015,37(7):936-942.
Zhong Limin, Yang Mu, Luan Yi, et al. Preparation and properties of paraffin/SiO2composite phase change materials[J]. Chin J Eng, 2015, 37(7): 936-942. (in Chinese with English abstract)
[5] Liu H, Wang X D, Wu D Z, et al. Morphology controlled synthesis of microencapsulated phase change materials with TiO2shell for thermal energy harvesting and temperature regulation[J]. Energy, 2019, 172(1), 599-617.
[6] 章學(xué)來(lái),王迎輝,紀(jì)珺,等. 山梨酸鉀/氯化鉀復(fù)合相變材料制備及熱物性分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(18):277-283.
Zhang Xuelai, Wang Yinghui, Ji Jun, et al. Preparation and thermal performance analysis of C5H7COOK/KCl composite phase change material[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(18): 277-283. (in Chinese with English abstract)
[7] 甘雪菲,何正斌,伊松林,等. 石蠟相變儲(chǔ)熱系統(tǒng)的放熱效率[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(2):222-225.
Gan Xuefei, He Zhengbin, Yi Songlin, et al. Heat release property of paraffin phase change heat storage system[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(2): 222-225. (in Chinese with English abstract)
[8] Chung O, Jeong S G, Kim S, Preparation of energy efficient paraffinic PCMs/expanded vermiculite and perlite composites for energy saving in buildings[J]. Sol Energy Mater Sol Cells, 2015, 137(11): 107-112.
[9] 翟天堯,李廷賢,仵斯,等. 高導(dǎo)熱膨脹石墨/硬脂酸定形相變儲(chǔ)能復(fù)合材料的制備及儲(chǔ)/放熱特性[J]. 科學(xué)通報(bào),2018,63(7):674-683.
Zhai Tianyao, Li Tingxian, Wu Si, et al. Preparation and thermal performance of form-stable expanded graphite/stearic acid composite phase change materials with high thermal conductivity[J]. Chin Sci Bull, 2018, 63(7): 674-683. (in Chinese with English abstract)
[10]王成君,段志英,蘇瓊,等. 以多級(jí)孔碳為支撐基體的復(fù)合相變材料在光熱轉(zhuǎn)換與存儲(chǔ)方面的研究進(jìn)展[J]. 材料導(dǎo)報(bào),2020,34(23):23074-23080.
Wang Chengjun, Duan Zhiying, Su Qiong, et al. Research progress in photo-thermal conversion and storage of multistage porous carbon supported composite phase change materials[J]. Materials Reports, 2020, 34(23): 23074-23080. (in Chinese with English abstract)
[11] 徐眾,侯靜,李軍,等. 有機(jī)酸/碳納米管復(fù)合相變材料的制備及性能[J]. 精細(xì)化工,2020,37(9):1775-1786.
Xu Zhong, Hou Jing, Li Jun, et al. Preparation and properties of multi-wall carbon organic acid/nano-tube composites phase change materials[J]. Fine Chemicals, 2020, 37(9): 1775-1786. (in Chinese with English abstract)
[12] Li B X, Liu T X, Hu L Y, et al. Fabrication and properties of microencapsulated paraffin@SiO2phase change composite for thermal energy storage[J]. ACS Sustainable Chem Eng, 2013, 1(3): 374-380.
[13] 孟新,張煥芝,趙梓名,等. 三元脂肪酸/膨脹石墨復(fù)合相變材料的制備、包覆定形及熱性能[J]. 高等學(xué)?;瘜W(xué)學(xué)報(bào),2012,33(3):526-530.
Meng Xin, Zhang Huanzhi, Zhao Ziming, et al. Preparation, encapsulation and thermal properties of fatty Acid/Expanded graphite composites as shape-stabilized phase change materials[J]. Chemical Journal of Chinese Universities, 2012, 33(3): 526-530. (in Chinese with English abstract)
[14] Canivet J, Fateeva A, Guo Y, et al. Water adsorption in MOFs: Fundamentals and applications[J]. Chemical Society Reviews, 2014, 43(16): 5594-5617.
[15] Tang J, Yang M, Dong W, et al. Highly porous carbons derived from MOFs for shape-stabilized phase change materials with high storage capacity and thermal conductivity[J]. RSC Advances, 2016, 6(46): 40106-40114.
[16] Wang J J, Huang X B, Gao H Y, et al. Construction of CNT/Cr-MIL-101-NH2hybrid composite for shape-stabilized phase change materials with enhanced thermal conductivity[J]. Chemical Engineering Journal, 2018, 350(5): 164-172.
[17] Luan Y, Yang M, Ma Q, et al. Introduction of an organic acid phase changing material into metal–organic frameworks and the study of its thermal properties[J]. Journal of Materials Chemistry A, 2016, 4(20), 7641-764.
[18] Li P, Feng D L, Feng Y H, et al. Thermal properties of PEG/MOF-5 regularized nanoporous composite phase change materials: A molecular dynamics simulation[J]. Case Stud Therm Eng, 2021, 26(8): 101027.
[19] Li H L, Eddaoudi M, O’Keeffe M, et al. Design and synthesis of an exceptionally stable and highly porous metal-organic framework[J]. Nature, 1999, 402(11): 276-279.
[20] 吳薇,陳黎,王曉宇,等. 蓄能型太陽(yáng)能熱泵用復(fù)合相變材料熱性能分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(13):206-212.
Wu Wei, Chen Li, Wang Xiaoyu, et al. Thermal performance analysis of composite phase change materials for energy storage solar heat pump[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE) 2017, 33(13): 206-212. (in Chinese with English abstract)
[21] Bauer S, Serre C, Devic T, et al. High-throughput assisted rationalization of the formation of metal organic frameworks in the iron (III) aminoterephthalate solvothermal system[J]. Inorganic Chemistry, 2008, 47(17): 7568-7576.
[22] Xu T, Li Y, Chen J, et al. Preparation and thermal energy storage properties of LiNO3-KCl-NaNO3/expanded graphite composite phase change material[J]. Solar Energy Materials and Solar Cells, 2017, 169(5): 215-221.
[23] Cao F, Yang B, Supercooling suppression of microencapsulated phase change materials by optimizing shell composition and structure[J]. Appl Energy, 2014, 113(8): 1512-1518.
[24] Xie Q, Li Y, Lv Z, et al. Effective Adsorption and removal of phosphate from aqueous solutions and eutrophic water by Fe-based MOFs of MIL-101[J]. Scientific Reports, 2017, 7(6): 3316.
[25] Kim I H, Sim H W, Hong H H, et al. Effect of filler size on thermal properties of paraffin/silver nanoparticle composites[J]. Korean Journal Chemical Engineering, 2019, 36(6): 1004-1012.
[26] Zhao X, Zhao T B, Luo G, et al. A novel form-stable paraffin-based hydroxyl-terminated polybutadiene binder containing microencapsulated paraffin wax[J]. Journal of Thermal Analysis and Calorimetry, 2019, 135(2): 2125-2136.
[27] Chung O, Jeong S G, Kim S, Preparation of energy efficient paraffinic PCMs/expanded vermiculite and perlite composites for energy saving in buildings[J]. Solar Energy Materials and Solar Cells, 2015, 137(11): 107-112.
[28] Zhang Z, Li X, Liu B, et al. Hexagonal microspindle of NH2-MIL-101(Fe) metal–organic frameworks with visible-light-induced photocatalytic activity for the degradation of toluene[J]. RSC Advances, 2016, 6(6): 4289-4295.
[29] Kandiah M, Nilsen M H, Usseglio S, et al. Synthesis and Stability of Tagged UiO-66 Zr-MOFs[J]. Chemistry of Materials, 2010, 22(24): 6632-6640.
[30] Xu B, Li Z, Paraffin/diatomite composite phase change material incorporated cement-based composite for thermal energy storage[J]. Applied Energy, 2013, 105(1): 229-237.
[31] Xia L, Zhang P, Wang R. Z, Preparation and thermal characterization of expanded graphite/paraffincomposite phase change material[J]. Carbon, 2010, 48(9): 2538-2548.
[32] Wang J J, Yang M, Lu Y F, et al. Surface functionalization engineering driven crystallization behavior of polyethylene glycol confined in mesoporous silica for shape-stabilized phase change materials[J]. Nano Energy, 2016, 19(11): 78-87.
[33] Kwon J Y, Kim H D, Preparation and Application of Polyurethane-urea Microcapsules Containing Phase Change Materials[J]. Fibers and Polymers 2006, 7(3): 12-19.
Shape-stable phase change materials preparation of composite of paraffin/Fe-MIL-101-NH2as metal-organic framework
Hou Junying, Yang Jinxing, Hao Jianjun, Zhan Zhiguo, Wang Yaya
(,,071001,)
Phase change materials (PCMs) can widely be used to absorb and release large amounts of latent heat at temperatures when the physical state changes. Heat storage systems depend mainly on the high latent heat density and small temperature intervals in PCMs during phase transition. However, there is a great leakage of current solid-liquid PCMs in the liquid phase, resulting from a large volume change above the melting point. Alternatively, the porous metal-organic frameworks (MOFs) have been investigated as solid support for a variety of storage purposes. A MOFs matrix material can also be expected to deal with the leakage of a shape-stabilized composite PCM in the most practical way. It is highly demanding for the extremely large surface area, large pore volume, and chemical tunability in the MOFs as the ideal matrix for PCMs. In particular, MOFs can also be designed for several aspects, such as pore shape and size, framework topology, and surface properties in the inner channels. A combination of fatty acids and porous MOF supports can be utilized to maintain the solid shape in the liquid PCM composite, where the phase change temperature of paraffin is within the range of normal human environments. Paraffin also presents high latent heat, suitable melting temperature range, non-corrosivity/non-toxicity, excellent chemical stability, and easy availability. The outstanding energy storage density and suitable phase change temperature also allow for the paraffin highly practical in the building materials. In this study, a facile solution impregnating approach was proposed to access a novel type of shape-stabilized PCM with metal-organic frameworks as the matrix. As such, a paraffin/MOF composite PCM was developed for heating storage, where paraffin was used as a phase change core, while Fe-MIL-101-NH2was the supporting matrix. Solvent evaporation was finally conducted to successfully prepared 40 wt%~70 wt% paraffin/Fe-MIL-101-NH2Shape-stable Phase Change Material (ss-PCM). Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), Fourier Transform Infrared (FTIR) spectroscopy were also conducted to characterize the morphology and structure of ss-PCM composites. Thermal Gravimetric Analysis (TGA) was used to determine the thermal stability, while Differential Scanning Calorimetry (DSC) to the supercooling, the energy storage, and thermal cycle stability of ss-PCM. SEM images showed that the maximum loading of paraffin wax was 70%, mostly distributed in the interior and external core of Fe-MIL-101-NH2. XRD and FTIR showed that the paraffin wax and Fe-MIL-101-NH2were physically combined in the ss-PCM. DSC analysis indicated that the highest energy storage capacity (51.3 J/g) was achieved in the 70 wt% paraffin/ Fe-MIL-101-NH2. In addition, there was no significant decrease in the thermal enthalpy of 70 wt% paraffin/Fe-MIL-101-NH2(47.6 J/g) after 50 cycles, indicating an excellent heat cycle stability. Consequently, a novel paraffin/Fe-MIL-101-NH2composite PCM can be expected to serve as the heat storage application. This finding can also provide a novel approach to access the shape-stabilized composite PCMs, which can potentially be extended to a variety of solid-liquid phase change materials.
phase change material; thermal energy storage; metal organic framework; paraffin; Fe-MIL-101-NH2
侯俊英,楊金星,郝建軍,等. 石蠟/Fe-MIL-101-NH2金屬有機(jī)骨架定形復(fù)合相變材料制備[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(15):232-238.doi:10.11975/j.issn.1002-6819.2021.15.028 http://www.tcsae.org
Hou Junying, Yang Jinxing, Hao Jianjun, et al. Shape-stable phase change materials preparation of composite of paraffin/Fe-MIL-101-NH2as metal-organic framework[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(15): 232-238. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.15.028 http://www.tcsae.org
2021-04-11
2021-08-08
河北農(nóng)業(yè)大學(xué)引進(jìn)人才科研項(xiàng)目(批準(zhǔn)號(hào):YJ201815);河北省重點(diǎn)研發(fā)計(jì)劃(18227209D):互聯(lián)網(wǎng)+溫室設(shè)施集成關(guān)鍵技術(shù)研究
侯俊英,博士,講師,研究方向?yàn)橄嘧儍?chǔ)能材料。Email:junyinghou/126.com
10.11975/j.issn.1002-6819.2021.15.028
O642
A
1002-6819(2021)-15-0232-07