吳慶良,吳夢軍,方 林,向 榮,劉冒佚,郭鴻雁
非均勻應(yīng)力場作用下圓形水工隧洞開挖與支護(hù)參數(shù)設(shè)計(jì)
吳慶良1,2,3,吳夢軍2,3※,方 林2,3,向 榮4,劉冒佚4,郭鴻雁2,3
(1. 西南大學(xué)工程技術(shù)學(xué)院,重慶 400715; 2. 招商局重慶交通科研設(shè)計(jì)院有限公司,重慶 400067;3. 公路隧道建設(shè)技術(shù)國家工程實(shí)驗(yàn)室,重慶 400067;4. 重慶市城投公租房建設(shè)有限公司,重慶 400015)
引水隧洞是農(nóng)業(yè)、水利等工程領(lǐng)域重要的地下結(jié)構(gòu),確定合理的施工參數(shù)是保證隧洞施工安全的前提。該研究基于復(fù)變函數(shù)方法,考慮開挖卸荷和圍巖-襯砌相互作用影響,推導(dǎo)了非均勻應(yīng)力場下開挖后立即支護(hù)時(shí)襯砌與圍巖光滑接觸條件下應(yīng)力與位移的解析解,并基于最大主應(yīng)力準(zhǔn)則建立隧洞施工參數(shù)優(yōu)化目標(biāo)函數(shù),以兩個(gè)不同算例分別設(shè)計(jì)了隧洞的開挖尺寸和襯砌的彈性模量。研究結(jié)果表明:圍巖開挖邊界引起的應(yīng)力集中以及襯砌內(nèi)部的應(yīng)力分布均與隧洞開挖尺寸、內(nèi)部水壓力、原巖應(yīng)力場中的水平側(cè)壓力系數(shù)、圍巖與襯砌的物理力學(xué)參數(shù)等有關(guān);當(dāng)水平側(cè)壓力系數(shù)大于1.00時(shí),襯砌內(nèi)最大主應(yīng)力值會(huì)隨著隧洞開挖尺寸的增大而增大,甚至?xí)谝r砌內(nèi)壁0°和90°處附近出現(xiàn)拉應(yīng)力;當(dāng)水平側(cè)壓力系數(shù)小于1.00時(shí),襯砌內(nèi)最大主應(yīng)力值會(huì)隨著襯砌材料彈性模量的增大而增大。通過分析兩個(gè)算例可知,合理限制隧洞開挖尺寸、適當(dāng)增加襯砌內(nèi)壁處的配筋率均有利于隧洞襯砌安全;采用高強(qiáng)度低彈性模量的混凝土配比用于襯砌,可提高襯砌的承載能力。研究結(jié)果可為相關(guān)工程中隧洞的開挖與支護(hù)參數(shù)設(shè)計(jì)等提供理論借鑒和參考。
隧道襯砌;彈性模型;圓形隧洞;參數(shù)設(shè)計(jì);應(yīng)力場;復(fù)變函數(shù)方法
引水隧洞是廣泛應(yīng)用于農(nóng)業(yè)、水利等工程領(lǐng)域的地下結(jié)構(gòu)[1-3],為了保證其安全使用,常在隧洞內(nèi)模筑鋼筋混凝土襯砌。由于隧洞的開挖擾動(dòng)改變了原巖應(yīng)力場,圍巖應(yīng)力重分布過程隨著開挖尺寸、支護(hù)參數(shù)、支護(hù)時(shí)機(jī)等不同而千差萬別[4-7],因此,確定合理的施工參數(shù)是保證隧洞施工安全的前提[8-9]。
當(dāng)前,隧洞施工參數(shù)的優(yōu)化設(shè)計(jì)主要依賴于工程類比為主的經(jīng)驗(yàn)設(shè)計(jì)法,再根據(jù)預(yù)設(shè)參數(shù)建立模型進(jìn)行驗(yàn)算[10-11];也有一部分學(xué)者基于室內(nèi)物理模型試驗(yàn)或現(xiàn)場試驗(yàn)段的結(jié)果指導(dǎo)隧洞的支護(hù)參數(shù)或結(jié)構(gòu)的體型參數(shù)設(shè)計(jì)[12-14];隨著隧洞埋深越來越大,地質(zhì)構(gòu)造越來越復(fù)雜,又有不少學(xué)者提出采用現(xiàn)場試驗(yàn)、數(shù)值計(jì)算等多手段相結(jié)合的方法進(jìn)行施工參數(shù)優(yōu)化設(shè)計(jì)[15-17],如曲星等[16]根據(jù)青海省江源水電站引水隧洞現(xiàn)場監(jiān)測資料反演得出分析洞段圍巖參數(shù),以此參數(shù)為依據(jù)采用有限元軟件對比了4種不同支護(hù)方案的優(yōu)劣;Luo等[17]對大跨度隧道支護(hù)結(jié)構(gòu)的變形特性和力學(xué)特性進(jìn)行了實(shí)測分析,并采用有限元軟件對不同支護(hù)參數(shù)下的支護(hù)結(jié)構(gòu)安全性進(jìn)行了模擬計(jì)算獲取最優(yōu)支護(hù)參數(shù)。
由于現(xiàn)場監(jiān)測費(fèi)時(shí)費(fèi)力,數(shù)值計(jì)算模型因工況不同而不具備可重復(fù)性,故基于圍巖與襯砌應(yīng)力場分布的施工參數(shù)反演分析方法越來越得到較多學(xué)者青睞[18-20],如楊凱等[18]考慮圍巖松動(dòng)圈支護(hù)體的影響,推導(dǎo)出深埋圓形隧洞襯砌應(yīng)力解析解,引入功能梯度材料思想,討論了不同彈性模量雙層混凝土圓形襯砌的優(yōu)化設(shè)計(jì);于遠(yuǎn)祥等[19]通過建立預(yù)應(yīng)力錨桿與隧洞圍巖的相互作用力學(xué)模型,并以秦嶺某引水隧洞為工程背景,利用所提出的理論公式計(jì)算了該隧洞極不穩(wěn)定區(qū)段圍巖變形范圍及洞壁位移量,進(jìn)而對原開挖及支護(hù)方案進(jìn)行了優(yōu)化;Zhou等[20]考慮了錨桿的流變模型,應(yīng)力釋放系數(shù)和附加徑向力等建立了三種隧道支護(hù)條件,推導(dǎo)了初次支撐和二次襯砌上位移的解析公式,并以此得到了不同支護(hù)參數(shù)下的支護(hù)荷載變化。然而這些力學(xué)解析模型都是基于均勻的原巖應(yīng)力場假設(shè),也未考慮隧洞開挖卸荷影響。
基于此,本文基于復(fù)變函數(shù)冪級(jí)數(shù)方法,考慮開挖卸荷和圍巖-襯砌相互作用影響,推導(dǎo)非均勻應(yīng)力場下開挖后立即支護(hù)時(shí)襯砌與圍巖光滑接觸條件下的應(yīng)力與位移的解析解,并基于最大主應(yīng)力準(zhǔn)則建立隧洞施工參數(shù)優(yōu)化目標(biāo)函數(shù),以兩個(gè)不同算例分別設(shè)計(jì)隧洞的開挖尺寸和襯砌的彈性模量。以期為相關(guān)工程中隧洞的開挖與支護(hù)參數(shù)設(shè)計(jì)等提供借鑒與參考。
根據(jù)地下洞室力學(xué)分析的復(fù)變函數(shù)相關(guān)理論[22-23]可知
式中σ、σ、σ分別代表徑向應(yīng)力、切向應(yīng)力和剪應(yīng)力;u、u分別代表徑向位移和切向位移;為復(fù)平面變量;κ為中間參數(shù);G為剪切模量。且有
式中、分別為極坐標(biāo)系下的半徑和角度;為自然常數(shù),為虛數(shù);μ、E分別為泊松比和彈性模量。
只要求出相應(yīng)工況的兩個(gè)解析函數(shù)φ()、ψ(),即可得出隧洞以及襯砌的應(yīng)力分量和位移分量。
此處需要說明的是,本文求解過程中的物理參數(shù)均取國際單位制中的基本單位,如σ、σ、σ、σ、σ、τ、、0、E、G單位均為Pa,0、1、u、u、單位均為m,單位為rad(第四節(jié)的算例中為方便書寫均換算為°),、κ、μ均無量綱。參數(shù)下標(biāo)=1,2分別表示無支護(hù)、有支護(hù)狀態(tài)下的圍巖,=3表示襯砌,下標(biāo)、分別表示徑向和切向方向,上標(biāo)、分別表示圍巖和襯砌。
1)隧洞開挖卸荷后無支護(hù)時(shí)圍巖的解析函數(shù)
原巖應(yīng)力場下,隧洞的開挖卸荷作用會(huì)造成隧洞邊界上“面力解除”,不考慮支護(hù)反力作用,利用復(fù)變函數(shù)方法即可求出隧洞開挖后≥1域內(nèi)圍巖的兩個(gè)解析函數(shù)[24]1()、1()為
將式(5)代入式(3),即可求出圍巖內(nèi)部任意一點(diǎn)的徑向位移u和切向位移u為
2)開挖后立即支護(hù)時(shí)隧洞與圍巖的解析函數(shù)
假定隧洞開挖后立即進(jìn)行襯砌支護(hù),且設(shè)置支護(hù)后圍巖與襯砌相互作用,圍巖僅在支護(hù)作用下對應(yīng)的兩個(gè)解析函數(shù)2()、2()可用Taylor級(jí)數(shù)[25-26]表示為
式中為級(jí)數(shù)的項(xiàng)數(shù)。
圍巖對襯砌作用后,襯砌內(nèi)的兩個(gè)復(fù)勢函數(shù)[25-26]3()和3()可用Laurent級(jí)數(shù)表示為
式(7)和式(8)中的a、b、c、d、e、f(≥1)均為待定的實(shí)數(shù),可由1.3節(jié)給出的邊界條件確定。
根據(jù)求解的力學(xué)模型可知,襯砌內(nèi)邊界(=0)上的應(yīng)力邊界條件為
圍巖與襯砌接觸面(=1)上的光滑接觸條件[27]為
假定圍巖在支護(hù)前后的彈性參數(shù)未發(fā)生改變,即1=2,1=2。將隧洞開挖后支護(hù)前、后圍巖與襯砌的六個(gè)解析函數(shù)(式(5)、式(7)和式(8))代入到式(9)和式(10)中,聯(lián)立式(1)~式(3),并進(jìn)一步對冪級(jí)數(shù)整理分析可以發(fā)現(xiàn):當(dāng)≥2時(shí),系數(shù)a、b+2、c、d+2、e+2、f都等于0,不為0的系數(shù)只有1、1、3、1、1、3、1、3、1,而這些系數(shù)又可由線性方程組(11)~(19)求出
將求解出的參數(shù)代入式(7)~式(8)從而得到非均勻應(yīng)力場下考慮開挖卸荷影響,以及圍巖與襯砌相互作用后圍巖和襯砌的復(fù)勢函數(shù)。
給定圍巖與襯砌的相關(guān)參數(shù)0、1、、、0、1、1、2、2的具體數(shù)值后,聯(lián)立求解線性方程組(11)~(19),可得出待定的系數(shù)1、1、3、1、1、3、1、3、1。待求的圍巖解析函數(shù)2()、2(),以及襯砌的解析函數(shù)3()、3()可寫為
顯然,襯砌中的應(yīng)力由式(21)聯(lián)立式(1)~式(3)求出。
而圍巖中的應(yīng)力不僅需要考慮1.2小節(jié)中的兩部分,還需要疊加上開挖前的原巖應(yīng)力場,而原巖應(yīng)力場解析函數(shù)[24]0()和0()為
即原巖應(yīng)力場作用下,考慮開挖卸荷、襯砌與圍巖相互作用,開挖后立即進(jìn)行支護(hù)時(shí)圍巖應(yīng)力場的兩個(gè)最終解析函數(shù)φ()和ψ()為
將式(26)和式(27)代入式(1)和式(2)可求得
假設(shè)隧洞開挖后沒有施作襯砌,則式(7)中圍巖僅在支護(hù)作用下對應(yīng)的兩個(gè)解析函數(shù)不存在,即系數(shù)a=b=0,此時(shí)式(28)~式(30)可寫為
上述結(jié)果與經(jīng)典的Kirsch解完全一致[29],這驗(yàn)證了本文解析解的正確性。
隧洞施工參數(shù)優(yōu)化設(shè)計(jì)的目的是為了保證襯砌內(nèi)部受力更合理。根據(jù)式(22)~式(24)可知,圍巖開挖邊界引起的應(yīng)力集中以及襯砌內(nèi)部的應(yīng)力分布均與隧洞開挖尺寸、內(nèi)部水壓力、圍巖側(cè)壓力系數(shù)以及襯砌的彈性模量等有關(guān),在原巖應(yīng)力場、巖體物理力學(xué)性質(zhì)、過水?dāng)嗝娉叽?、?nèi)水壓力等已定的情況下,可通過改變隧洞開挖尺寸、選擇合理的混凝土彈性模量等改變襯砌內(nèi)部受力。
鑒于此,構(gòu)造襯砌優(yōu)化設(shè)計(jì)的目標(biāo)函數(shù)如下:
約束條件為
式中、為大于0的實(shí)常數(shù),兩者均根據(jù)設(shè)計(jì)工況而定。本文待優(yōu)化變量是開挖尺寸1和混凝土彈性模量3。
當(dāng)襯砌內(nèi)部有拉應(yīng)力產(chǎn)生時(shí),補(bǔ)充約束條件為
針對水平地應(yīng)力小于垂直地應(yīng)力的地質(zhì)環(huán)境:假定原巖應(yīng)力場=10.00 MPa,側(cè)壓力系數(shù)為=0.40,彈性參數(shù)1=0.25,1=5.00 GPa,襯砌擬采用的鋼筋混凝土材料折合彈性參數(shù)2=0.20,2=20.00 MPa,抗壓強(qiáng)度f=25.00 MPa,抗拉強(qiáng)度f=4.00 MPa,襯砌內(nèi)半徑0=3.00 m,內(nèi)部承受靜水壓力0的作用,且0≤3.00 MPa,現(xiàn)需確定圍巖的開挖尺寸。
根據(jù)目標(biāo)函數(shù)式(35),采用Matlab優(yōu)化工具箱可求解圍巖的最大的開挖半徑為1=3.67 m。為證明以上分析和求解的正確性,下文對1=3.67 m與1=4.00 m兩種開挖半徑下的襯砌內(nèi)部應(yīng)力分布(分別如圖2和圖3所示)做對比分析。
由于開挖半徑不同造成橫坐標(biāo)軸不一致,為更直觀對比兩種開挖半徑下的應(yīng)力分布特征,故先對數(shù)據(jù)進(jìn)行歸一化處理,即對半徑進(jìn)行離差標(biāo)準(zhǔn)化,使橫坐標(biāo)值映射到[0,1]區(qū)間。轉(zhuǎn)換函數(shù)如下:
式中*為歸一化處理后的開挖半徑。
從圖3可以看出,當(dāng)開挖半徑1=4.00 m時(shí),襯砌內(nèi)部出現(xiàn)最大主應(yīng)力大于25.00 MPa的情況,即最大值28.29 MPa出現(xiàn)在=0°時(shí)的內(nèi)壁處(圖3a與圖3b左上角),超出了襯砌材料的抗壓強(qiáng)度極限;而最小主應(yīng)力也出現(xiàn)了負(fù)值,即在襯砌內(nèi)壁=0°和=90°處附近出現(xiàn)了拉應(yīng)力(圖3a和圖3b中的點(diǎn)虛線以下)。從圖3a可以看出,徑向方向上,拉應(yīng)力區(qū)在=0°處分布在≥3.97 m(≥0.97)范圍內(nèi),在=90°處分布在≤3.07 m(≤0.07)范圍內(nèi),從圖3b可以看出,環(huán)向方向上,拉應(yīng)力區(qū)在襯砌外壁處分布在0°≤≤10.23°范圍內(nèi),在襯砌內(nèi)壁處分布在73.86°≤≤90°范圍內(nèi),且最大值為2.37 MPa。
以上表明,當(dāng)圍巖與襯砌的物理力學(xué)參數(shù)均已知,水平側(cè)壓力系數(shù)小于1.00時(shí),隧洞開挖尺寸越大,襯砌內(nèi)最大主應(yīng)力值越大,且出現(xiàn)在=0°時(shí)的內(nèi)壁處;隧洞的最大和最小主應(yīng)力的表達(dá)式并不固定,在徑向和環(huán)向方向上都會(huì)產(chǎn)生轉(zhuǎn)換;隨著開挖尺寸的進(jìn)一步擴(kuò)大,在襯砌內(nèi)壁=0°和=90°處附近也會(huì)出現(xiàn)拉應(yīng)力,考慮到混凝土的抗拉強(qiáng)度較低,在隧洞支護(hù)設(shè)計(jì)時(shí)需更加注意。
針對水平地應(yīng)力大于垂直地應(yīng)力的地質(zhì)環(huán)境:假定原巖應(yīng)力場=10.00 MPa,側(cè)壓力系數(shù)為=1.20,圍巖的開挖半徑1=4.00 m,彈性參數(shù)1=0.25,1=5.00 GPa,襯砌擬采用的鋼筋混凝土材料折合彈性參數(shù)1=0.20,抗壓強(qiáng)度f=25.00 MPa,抗拉強(qiáng)度f=4.00 MPa,襯砌內(nèi)半徑0=3.00 m,內(nèi)部承受靜水壓力0的作用,且取0≤3.00 MPa,現(xiàn)需確定襯砌的彈性模量。
根據(jù)目標(biāo)函數(shù)式(35),采用Matlab的優(yōu)化工具箱可求解襯砌材料的最大彈性模量為3=14.71 GPa,此時(shí)襯砌內(nèi)部的最大或最小主應(yīng)力均不能超過給定的抗壓或抗拉強(qiáng)度極限。同樣,為證明以上分析和求解的正確性,下面給出3=14.71 GPa與3=15.00 GPa兩種彈性模量下襯砌內(nèi)部應(yīng)力分布(分別如圖4和圖5所示)做對比分析。
從圖4可以看出,當(dāng)襯砌彈性模量3=14.71 GPa時(shí),襯砌內(nèi)部各位置的最大主應(yīng)力均小于25.00MPa,最大值出現(xiàn)在=90°時(shí)的內(nèi)壁處(圖4a左上角與圖4b右上角),最大值為24.999 968 MPa,最小主應(yīng)力為3.00 MPa,在襯砌內(nèi)壁的環(huán)向各處(圖4b中的底部虛線),即襯砌內(nèi)部無拉應(yīng)力出現(xiàn),壓應(yīng)力也均滿足襯砌材料的抗壓強(qiáng)度要求。
從圖5可以看出,當(dāng)彈性模量3=15.00 GPa時(shí),襯砌內(nèi)部出現(xiàn)最大主應(yīng)力大于25.00 MPa的情況,即最大值25.26 MPa出現(xiàn)在=90°時(shí)的內(nèi)壁處(圖5a左上角與圖5b右上角),超出了襯砌材料的抗壓強(qiáng)度極限。實(shí)際工程中為防止襯砌變形破壞常規(guī)做法是提高混凝土的抗壓強(qiáng)度,對于傳統(tǒng)的混凝土材料來說,提高其強(qiáng)度也會(huì)相應(yīng)提高了其彈性模量,若能設(shè)計(jì)高強(qiáng)度低彈性模量的混凝土配比用于襯砌,會(huì)減少其內(nèi)部最大主應(yīng)力峰值,有利于提高襯砌的承載能力。
本文在考慮開挖卸荷和圍巖-襯砌相互作用影響下,采用復(fù)變函數(shù)方法推導(dǎo)了非均勻應(yīng)力場下開挖且立即支護(hù)時(shí)襯砌與圍巖光滑接觸條件下的應(yīng)力與位移的解析解,并基于最大主應(yīng)力準(zhǔn)則建立隧洞施工參數(shù)優(yōu)化目標(biāo)函數(shù),通過對不同測壓力系數(shù)下隧洞的開挖尺寸和襯砌的彈性模量的優(yōu)化設(shè)計(jì),得出了以下結(jié)論:
1)圍巖開挖邊界引起的應(yīng)力集中以及襯砌內(nèi)部的應(yīng)力分布均與隧洞開挖尺寸、內(nèi)部水壓力、原巖應(yīng)力場中的水平側(cè)壓力系數(shù)、圍巖與襯砌的物理力學(xué)參數(shù)等有關(guān)。
2)在水平側(cè)壓力系數(shù)大于1.00時(shí),襯砌內(nèi)最大主應(yīng)力值會(huì)隨著隧洞開挖尺寸的增大而增大,因而合理地限制隧洞開挖尺寸有益于減少襯砌支護(hù)成本;隨著隧洞開挖尺寸的進(jìn)一步擴(kuò)大,襯砌內(nèi)部最大和最小主應(yīng)力會(huì)在徑向和環(huán)向方向上產(chǎn)生轉(zhuǎn)換,甚至?xí)谝r砌內(nèi)壁=0°和=90°處附近出現(xiàn)拉應(yīng)力,支護(hù)設(shè)計(jì)時(shí)可適當(dāng)增加襯砌內(nèi)壁處的配筋率以增強(qiáng)其抗拉強(qiáng)度。
3)在水平側(cè)壓力系數(shù)小于1.00時(shí),襯砌內(nèi)最大主應(yīng)力值會(huì)隨著襯砌材料彈性模量的增大而增大。若能設(shè)計(jì)高強(qiáng)度低彈性模量的混凝土配比用于襯砌,一方面可以提高襯砌本身的抗壓強(qiáng)度,另一方面又可以減少其內(nèi)部最大主應(yīng)力峰值,對于提高襯砌的承載能力有較好的效果。
[1] 張寬地,呂宏興,趙延風(fēng). 明流條件下圓形隧洞正常水深與臨界水深的直接計(jì)算[J]. 農(nóng)業(yè)工程學(xué)報(bào),2009,25(3):1-5.
Zhang Kuandi, Lyu Hongxing, Zhao Yanfeng. Direct calculation for normal depth and critical depth of circular section tunnelunder free flow[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(3): 1-5. (in Chinese with English abstract)
[2] 貢力,李雅嫻,靳春玲. 流冰對引水隧洞撞擊破壞力學(xué)特性數(shù)值分析與驗(yàn)證[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(13):144-151.
Gong Li, Li Yaxian, Jin Chunling. Numerical simulation and verification on impact damage mechanical property of drift ice on diversion tunnel[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(13): 144-151. (in Chinese with English abstract)
[3] 雷江,陳衛(wèi)忠,李翻翻,等. 引紅濟(jì)石引水隧洞圍巖力學(xué)特性研究[J]. 巖土力學(xué),2019,40(9):3435-3446.
Lei Jiang, Chen Weizhong, Li Fanfan, et al. Mechanical properties of surrounding rock in diversion tunnel of water diversion project from Hongyan River to Shitou River[J]. Rock and Soil Mechanics, 2019, 40(9): 3435-3446. (in Chinese with English abstract)
[4] 周春華,尹健民,丁秀麗,等. 秦嶺深埋引水隧洞地應(yīng)力綜合測量及區(qū)域應(yīng)力場分布規(guī)律研究[J]. 巖石力學(xué)與工程學(xué)報(bào),2012,31(S1):2956-2964.
Zhou Chunhua, Yin Jianmin, Ding Xiuli, et al. Complex measurements of geo-stress in deep diversion tunnel and research on distribution law of regional stress field in Qinling mountain[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(S1): 2956-2964. (in Chinese with English abstract)
[5] 朱澤奇,盛謙,周永強(qiáng),等. 隧洞圍巖應(yīng)力開挖擾動(dòng)特征與規(guī)律研究[J]. 應(yīng)用基礎(chǔ)與工程科學(xué)學(xué)報(bào),2015,23(2):349-358.
Zhu Zeqi, Sheng Qian, Zhou Yongqiang, et al. Stress disturbance characteristics and law research of surrounding rock during tunnel excavation[J]. Journal of Basic Science and Engineering, 2015, 23(2): 349-358. (in Chinese with English abstract)
[6] 周輝,高陽,張傳慶,等. 考慮圍巖襯砌相互作用的鋼筋混凝土襯砌數(shù)值模擬[J]. 水利學(xué)報(bào),2016,47(6):763-771.
Zhou Hui, Gao Yang, Zhang Chuanqing, et al. Numerical simulation of reinforced concrete lining considering the interaction with the surrounding rock[J]. Journal of Hydraulic Engineering, 2016, 47(6): 763-771. (in Chinese with English abstract)
[7] Xu D P, Huang X, Jiang Q, et al. Estimation of the three-dimensional in situ stress field around a large deep underground cavern group near a valley[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2021, 13(3): 529-544.
[8] ?zsan A, Ba?ar?r H. Support capacity estimation of a diversion tunnel in weak rock[J]. Engineering Geology, 2003, 68(3): 319-331.
[9] 劉寧,房敦敏,張傳慶. 深埋引水隧洞復(fù)合承載結(jié)構(gòu)運(yùn)行期安全性評(píng)價(jià)[J]. 科技通報(bào),2015,31(1):103-107.
Liu Ning, Fang Dunmin, Zhang Chuanqing. Safety assessment of deep buried diversion tunnel composite bearing structure runtime[J]. Bulletin of Science and Technology, 2015, 31(1): 103-107. (in Chinese with English abstract)
[10] 孫星亮,李宏建,朱永全. 大斷面水工隧洞方案優(yōu)化設(shè)計(jì)[J]. 石家莊鐵道學(xué)院學(xué)報(bào),2005(3):5-8.
Sun Xingliang, Li Hongjian, Zhu Yongquan. Scheme optimization design of large section hydraulic tunnel[J]. Journal of Shijiazhuang Railway University, 2005(3): 5-8. (in Chinese with English abstract)
[11] 李俊美. 新疆地區(qū)典型引水隧洞圍巖力學(xué)特性及穩(wěn)定性分析[D]. 重慶:重慶大學(xué),2017.
Li Junmei. Study on Mechanical Properties and Stability Analyses of Surrounding Rocks of Typical Diversion Tunnel in Xinjiang Area[D]. Chongqing: Chongqing University, 2017. (in Chinese with English abstract)
[12] 丁鵬宇,馬旭東,李強(qiáng),等. 導(dǎo)流隧洞出口小挑坎體型參數(shù)試驗(yàn)研究[J]. 中國農(nóng)村水利水電,2019(4):96-98.
Ding Pengyu, Ma Xudong, Li Qiang, et al. Experimental research on the shape parameters of small flip bucket at diversion tunnel outlet[J]. China Rural Water and hydropower, 2019(4): 96-98. (in Chinese with English abstract)
[13] 唐貴強(qiáng). 秦嶺隧洞巖爆應(yīng)力解除爆破及支護(hù)參數(shù)優(yōu)化[J]. 人民黃河,2019,41(2):130-134.
Tang Guiqiang. Study on rock burst stress relieving blasting and supporting parameter optimization of Qinling Tunnel[J]. Yellow River, 2019, 41(2): 130-134. (in Chinese with English abstract)
[14] Sun M L, Zhu Y Q, Li X Z, et al. Experimental Study of Mechanical Characteristics of Tunnel Support System in Hard Cataclastic Rock with High Geostress[J]. Shock and Vibration, 2020, 2020(5): 1-12.
[15] Basarir H, Ozsan A, Karakus M. Analysis of support requirements for a shallow diversion tunnel at Guledar dam site, Turkey[J]. Engineering Geology, 2005, 81(2): 131-145.
[16] 曲星,李寧,張志強(qiáng). 圍巖力學(xué)參數(shù)對水工隧洞運(yùn)行期襯砌受力影響分析及工程應(yīng)用[J]. 西安理工大學(xué)學(xué)報(bào),2012,28(4):404-410.
Qu Xing, Li Ning, Zhang Zhiqiang. Analysis of the influence of surrounding rock mechanics parameters on lining stress during operation of hydraulic tunnel and its engineering application[J]. Journal of Xi'an University of Technology, 2012, 28(4): 404-410. (in Chinese with English abstract)
[17] Luo Y B, Chen J X, Shi Z, et al. Mechanical and deformation characteristics and optimization of support parameters for superlarge-span tunnel: A case study from laohushan Tunnel[J]. Advances in Civil Engineering, 2020, 2020(1): 1-17.
[18] 楊凱,吳順川,吳慶良,等. 考慮圍巖松動(dòng)圈支護(hù)體影響的深埋圓形隧道襯砌優(yōu)化設(shè)計(jì)[J]. 工程科學(xué)學(xué)報(bào),2015,37(7):839-843.
Yang Kai, Wu Shunchuan, Wu Qingliang, et al. Optimization design of deep circular tunnel lining considering the influence of surrounding rock loose circle support[J]. Journal of Engineering Science, 2015, 37(7): 839-843. (in Chinese with English abstract)
[19] 于遠(yuǎn)祥,姚堯,王京濱,等. 桿巖耦合作用下深埋隧洞圍巖穩(wěn)定性主控因素及支護(hù)優(yōu)化研究[J]. 現(xiàn)代隧道技術(shù),2021,58(1):19-26.
Yu Yuanxiang, Yao Yao, Wang Jingbin, et al. Study on main control factors of surrounding rock stability and support optimization of deep tunnel under the coupling action of rod and rock[J]. Modern Tunnel Technology, 2021, 58(1): 19-26. (in Chinese with English abstract)
[20] Zhou J, Yang X A, Ma M J, et al. The support load analysis of deep-buried composite lining tunnel in rheological rock mass[J]. Computers and Geotechnics, 2021, 130: 103934.
[21] 蔡美峰. 巖石力學(xué)與工程[M]. 第2版. 北京:科學(xué)出版社,2013:296-313.
[22] Muskhelishvili N I. Some Basic Problems of the Mathematical Theory of Elasticity[M]. Groningen: Noordhoff International Publishing, 1977: 105-166.
[23] 陳子蔭. 圍巖力學(xué)分析中的解析方法[M]. 北京:煤炭工業(yè)出版社,1994.
[24] Lyu A Z, Zhang L Q, Zhang N. Analytic stress solutions for acircular pressure tunnel at pressure and great depth including support delay[J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48(3): 514-519.
[25] Muskhelishvili NI. Some Basic Problems of the Mathematical Theory of Elasticity[M]. Groningen: Noordhoof Ltd., 1963.
[26] 呂愛鐘,張路青. 地下隧洞力學(xué)分析的復(fù)變函數(shù)方法[M]. 北京:科學(xué)出版社,2007.
[27] 高永濤,吳慶良,呂愛鐘. 一類非均布荷載作用下雙層厚壁圓筒光滑接觸時(shí)的應(yīng)力解析解[J]. 工程力學(xué),2013,30(10):93-99.
Gao Yongtao, Wu Qingliang, Lyu Aizhong. Analytical solution of stress in smooth contact of Double thick walled cylinder under a class of non-uniform load[J]. Engineering Mechanics, 2013, 30(10): 93-99. (in Chinese with English abstract)
[28] 吳慶良,呂愛鐘. 一類非均布荷載作用下厚壁圓筒平面問題的應(yīng)力解析解[J]. 工程力學(xué),2011,28(6):6-10.
Wu Qingliang, Lyu Aizhong. An analytical solution to the plane problems of thick walled cylinder under heterogeneous loads[J]. Engineering Mechanics, 2011, 28(6): 6-10. (in Chinese with English abstract)
[29] Kirsch G. Die Theorie der Elastizitat und die Bedurfnisse der Festigkeitslehre[J]. Zeitschrift des Vereines Deutscher Ingenieure, 1898, 42: 797-807.
[30] 孫訓(xùn)方,方孝淑,關(guān)來泰. 材料力學(xué)[M]. 第六版,北京:高等教育出版社,2019.
Excavation and design of the support parameters of circular hydraulic tunnel under non-uniform stress field
Wu Qingliang1,2,3, Wu Mengjun2,3※, Fang Lin2,3, Xiang Rong4, Liu Maoyi4, Guo Hongyan2,3
(1.,,400715,;2..,.,400067,; 3.,400067,; 4..,,400015,)
Diversion tunnel is one of the most important underground structures in agriculture, water conservancy and engineering fields. Optimal parameters are critical to ensure the safety of tunnel construction. In this study, the complex function was used to determine support parameters of a circular hydraulic tunnel, considering the influence of excavation unloading and the interaction between surrounding rock and lining. An analytical solution was also derived for the stress and displacement under the condition of immediate support after excavation in the non-uniform stress field with smooth contact between the lining and surrounding rock. The correctness of the solution was verified to compare with the classic Kirsch solution. Finally, the objective function of parameters optimization was established for the tunnel construction using the maximum principal stress criterion. Two cases were selected to design the excavation size of the tunnel and the elastic modulus of lining, namely, the horizontal ground stress less or greater than vertical ground stress. The results show that the stress concentration caused along the excavation boundary of surrounding rock, and the stress distribution inside the lining were all related to the size of the tunnel, the internal water pressure, the horizontal lateral pressure coefficient, the physical and mechanical parameters of surrounding rock and the lining. The excavation radius was optimized, when the horizontal lateral pressure coefficient was less than 1.00 in example 1 (design of excavation size of surrounding rock). It was also found that the maximum principal stress appeared at 0° of the inner wall, where 24.999 478 MPa was for the optimized excavation radius of 3.67 m, and about 28.29 MPa for the excavation radius of 4.00 m. When the excavation radius is 3.67 m, the resistance of lining material is satisfied, while when the excavation radius is 4.00 m, the strength limit of lining material is exceeded, and the tensile stress appeared. The maximum principal stress in the lining increased, with the increase of excavation size. The optimal size of tunnel excavation was beneficial to reduce the cost of lining support. The principal stress changed in the radial and circumferential directions, and even the tensile stress appeared near the 0° and 90° of the inner wall of the lining, with the further expansion of excavation size. Correspondingly, the reinforcement ratio for the inner wall of lining increased appropriately in the support design to enhance the tensile strength. The elastic modulus of lining was optimized, when the horizontal lateral pressure coefficient was greater than 1.00 in example 2 (design of elastic modulus of lining material). Comparing the optimized elastic modulus 14.71 GPa with the elastic modulus 15.00 GPa, it was found that the maximum principal stress appeared at 90° of the inner wall, where the former was about 24.999 968 MPa, which meets the resistance of the lining material, and the latter was about 25.26 MPa, which exceeds the strength limit of the lining material. The maximum principal stress value in the lining increased, with the increase of the elastic modulus of lining material. Consequently, a high-strength and low-modulus concrete ratio can be expected to design for the better bearing capacity of the lining. The findings can provide a sound theoretical reference for the tunnel excavation and support parameter design in modern projects.
tunnel linings; elastic modulus;circular tunnels; parameter optimization;stress fields; complex function method
吳慶良,吳夢軍,方林,等. 非均勻應(yīng)力場作用下圓形水工隧洞開挖與支護(hù)參數(shù)設(shè)計(jì)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(15):78-85.doi:10.11975/j.issn.1002-6819.2021.15.010 http://www.tcsae.org
Wu Qingliang, Wu Mengjun, Fang Lin, et al. Excavation and design of the support parameters of circular hydraulic tunnel under non-uniform stress field[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(15): 78-85. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.15.010 http://www.tcsae.org
2021-05-13
2021-07-05
國家重點(diǎn)研發(fā)計(jì)劃(2018YFC0809600, 2018YFC0809603);中國博士后科學(xué)基金(2019M660022XB)。
吳慶良,博士,講師,研究方向?yàn)閹r土與地下工程。Email:wuqingliang@swu.edu.cn
吳夢軍,博士,教授級(jí)高工,研究方向?yàn)樗淼琅c地下工程。Email:1574818282@qq.com
10.11975/j.issn.1002-6819.2021.15.010
TV222
A
1002-6819(2021)-15-0078-08