徐開偉,鄒小彤,劉 意,張高山,杜偉豪,馬曉靜,雷梣岑,李彥鵬,2
·農(nóng)產(chǎn)品加工工程·
耦合浮珠-超聲輔助溶劑萃取法用于微藻采收及油脂提取
徐開偉1,鄒小彤1,劉 意1,張高山1,杜偉豪1,馬曉靜1,雷梣岑1,李彥鵬1,2※
(1. 長安大學(xué)水利與環(huán)境學(xué)院,西安 710054;2.長安大學(xué)旱區(qū)地下水文與生態(tài)效應(yīng)教育部重點實驗室,西安 710054)
為了優(yōu)化微藻生物柴油生產(chǎn)工藝,開發(fā)高效低耗的微藻采收與油脂提取技術(shù),該研究使用優(yōu)化浮珠浮選工藝對小球藻進行采收,隨后選取小球藻-表面層狀聚合物浮珠聚集體進行破壁提油處理,并通過響應(yīng)面優(yōu)化破壁工藝,建立一種新型耦合浮珠-超聲輔助溶劑萃取工藝。結(jié)果表明,在超聲時間為13 min,正己烷:異丙醇體積比例為4,微藻質(zhì)量濃度為13.6 g/L,超聲功率為254 W時,油脂提取效率較高,為18.91%。相比傳統(tǒng)氣浮法與超聲輔助溶劑萃取法,該法采收效率、細胞破壁效率和飽和脂肪酸含量都達到了較高水平,分別為98.36%、90.19%和37.03%。因此,耦合浮珠-超聲輔助溶劑萃取工藝是一種有效提取小球藻細胞中油脂的工藝。研究結(jié)果為微藻生物柴油制備工藝的發(fā)展提供科學(xué)依據(jù)。
生物柴油;油脂;提??;微藻;浮珠浮選;超聲破碎
中國人口數(shù)量大,人均耕地遠低于世界平均水平,因此走以農(nóng)作物為原料生產(chǎn)生物柴油的技術(shù)路線,不適合中國國情。開發(fā)利用不占耕地的生物柴油資源,對農(nóng)業(yè)與社會的可持續(xù)發(fā)展意義重大[1]。微藻細胞因具有高含量的脂質(zhì)、蛋白質(zhì)和多糖,可用于保健品、動物飼料、醫(yī)藥、生物燃料和化妝品的生產(chǎn)及制作,而擁有廣泛的應(yīng)用前景[2]。然而,微藻采收過程成本占其生物質(zhì)生產(chǎn)總成本的20%~30%[3],嚴重制約其大規(guī)模工業(yè)化應(yīng)用,所以開發(fā)高效與低耗的采收技術(shù),對推動微藻產(chǎn)業(yè)的發(fā)展意義重大。相比于傳統(tǒng)離心、沉淀、絮凝等采收技術(shù),浮選法因具有能耗低、采收快速且高效的優(yōu)勢,被認為是最具前景的采收方法之一[4]。浮珠浮選法作為一種改進的浮選技術(shù),利用低密度的空心浮珠代替微氣泡,減少了產(chǎn)生氣泡的能量投入。已有研究表明[3],以殼聚糖為預(yù)絮凝藥劑,質(zhì)量濃度為0.55 g/L硅硼酸鈉浮珠,在pH值為7時,小球藻和二形柵藻的采收率分別為92.47%和83.77%。然而,相比于其他浮選方法,該法的采收效率還有很大的提升空間。而且,微藻-浮珠結(jié)合體的后續(xù)分離也是需要改進的地方。
采收后,微藻生物質(zhì)被用于油脂提取,這一步占總成本的30%~40%[5]。通常使用氯仿/甲醇混合溶劑萃取法分離油脂,但提取過程緩慢(一般需要振蕩過夜),且因氯仿易燃、高毒,限制了該法的應(yīng)用。近年來,超聲輔助溶劑萃取法(Ultrasound-Assisted Solvent Extraction, UASE)被應(yīng)用于微藻細胞脂質(zhì)的提取[6],可縮短提取時間到原有時間的1/10,提高提取效率50~500倍[7]。然而超聲輔助技術(shù)的加入,勢必會引起油脂提取過程中能耗的增加,如何在縮短時間、提高效率的基礎(chǔ)上,最大程度減少能耗,也是目前亟需解決的問題。
為此,本研究提出一種新型耦合浮珠-超聲輔助溶劑萃取法(Buoyant Beads and Ultrasound Assisted Solvent Extraction, BBUASE)旨在高效快速地從小球藻生物量中提取脂質(zhì)。研究首先優(yōu)化浮珠浮選法(Buoyant-Bead Flotation, BBF)以最大程度采收小球藻的生物量;然后對小球藻-浮珠聚集體進行超聲預(yù)處理,并采用低毒性的正己烷和異丙醇(Hexane and Isopropanol, HIP)混合溶劑進行脂質(zhì)提取,以期避免采收后浮珠與微藻的額外分離過程,且減少超聲過程能耗;最后采用氣相色譜/質(zhì)譜聯(lián)用技術(shù)對提取的脂質(zhì)成分進行分析,以期為微藻生物量的采收和油脂提取提供依據(jù)。
本研究選用淡水小球藻(,F(xiàn)ACHB-8,中國科學(xué)研究院水生生物研究所淡水藻種庫)在裝載BG11培養(yǎng)基的光生物反應(yīng)器(Photobioreactor,上海光宇生物科技有限公司)中進行培養(yǎng)。具體過程參見鄒小彤等[8]研究。
紫外分光光度計,DU270型,日本島津公司生產(chǎn);超聲破碎儀,KS-650ZDN型,中國潔力美公司;磁力攪拌器,BX-3F型,常州普天儀器制造有限公司;Zeta電位儀,DelsaTM Nano型,美國貝克曼公司;紅外光譜儀,Tensor II型,德國布魯克公司;離心機,X-15R型,澳洲貝克曼公司。
首先,將低密度空心硅硼酸鈉玻璃微珠(直徑50~60m,上海名玻新材料科技有限公司)用乙醇脫脂,并用去離子水清洗,25 ℃下干燥。其次,將聚二甲基二烯丙氯化銨(Poly Dimethyl Diallyl Ammonium chloride, PDDA)和陰離子聚丙烯酰胺(Anion Polyacrylamide, APAM)分別分散在去離子水中(5 g/L),并用磁力攪拌器攪拌12 h(300 r/min)。依據(jù)Decher的研究[9],表面層狀聚合物微球制備步驟如下:1)將浮珠(10 g/L)添加到PDDA大分子溶液中,100 r/min攪拌,并在50 Hz超聲水浴中處理1 h,避免分子結(jié)構(gòu)降解[10];2)過濾收集浮珠,25 ℃干燥,100 r/min清洗攪拌1 h;3)將清洗后的浮珠加入APAM溶液中,以100 r/min轉(zhuǎn)速攪拌,并在40 kHz超聲水浴中處理1 h;4)重復(fù)步驟2。所有步驟重復(fù)3次,最后一次重復(fù)進行到步驟2,以建立具有陽離子聚合物最外層的表面層狀聚合物浮珠(Surface-Layered PolymericMicrospheres, SLPMs)。
1.4.1 藻液預(yù)處理
浮選試驗前,通過添加生物絮凝劑殼聚糖(Chitosan, CH)/表面活性劑十六烷基三甲基溴化銨(Cetyltrimethylammonium Bromide,C16TAB),改變藻細胞表面電性,使藻細胞結(jié)團,有利于后續(xù)采收。CH和C16TAB濃度梯度均為10、30、50、70、90和110 mg/L。
1.4.2 浮珠浮選試驗
浮選試驗在100 mL燒杯中進行,步驟如下:1)向小球藻懸浮液中加入CH(或C16TAB)和硅硼酸鈉浮珠(0.55 g/L)[8],250 r/min攪拌30 s,靜置15 min;2)直接向藻液中加入SLPMs(0.1、0.3、0.5、0.7、0.9和1.1 g/L),后續(xù)同1。試驗前后,取液面下2 cm處液體,用紫外分光光度計測量680 nm處吸光度,采收效率(Harvesting Efficiency, HE)用公式(1)計算[3]。
式中0與1分別為浮選前后小球藻的吸光度。
1.4.3 破壁試驗
采收后,將小球藻-浮珠聚集體(50 mL)進行超聲處理。圖1為小球藻生物產(chǎn)品制備流程。超聲過程在超聲破碎儀中進行。超聲探頭置于溶液中心,溶液置于冰水浴中,溫度控制在25~40℃,試驗探究連續(xù)超聲作用下,不同超聲時間(0、6、12、18、24 min)、超聲功率(20%×650 W、26%×650 W、32%×650 W、38%×650 W、44%×650 W)處理下小球藻的油脂產(chǎn)量。
此外,試驗還研究4種不同方法作用下,小球藻細胞的油脂產(chǎn)量:①調(diào)整的Bligh & Dyer法[11]:將22.5 mL溶劑(氯仿∶甲醇=2∶1)添加到 6 mL 小球藻懸浮液中(質(zhì)量濃度約為10 g/L),震蕩5 min。加入15 mL(氯仿∶去離子水=1∶1)氯仿和去離子水混合液,震蕩均勻,2 000 r/min離心20 min,將下層油脂-氯仿混合液轉(zhuǎn)移到預(yù)先稱量好的樣品瓶中,60 ℃蒸發(fā)至恒量;②調(diào)整的UASE-HIP法[12]:將10 mL HIP最優(yōu)比例混合液添加到30 mL小球藻懸浮液中,超聲處理后加10 mL正己烷,室溫攪拌1 min,靜置,溶液分三層,對上層脂質(zhì)-正己烷混合液稱量(見方法1);③BBUASE-HIP法:將方法②中“小球藻懸浮液”改為“確定濃度小球藻-浮珠混合液”,后續(xù)同方法②;④BBUASE-hexane法:將方法③中“HIP溶液”替換為正己烷。破壁前后藻細胞濃度用血球計數(shù)板測量。油脂產(chǎn)率和細胞破壁效率用如下公式計算:
式中0為破壁試驗所用小球藻干質(zhì)量,g;1為60 ℃蒸發(fā)至恒量后,樣品瓶所增加的質(zhì)量,g。
式中0為破壁試驗前藻細胞的濃度,cells·mL-1;1為破壁試驗后藻細胞的濃度,cells·mL-1。
1.4.4 響應(yīng)面設(shè)計
本研究用響應(yīng)面分析軟件Design Expert 10.0,建立中心合成設(shè)計(Central Composite Design,CCD),研究了超聲時間(min)、HIP比例(體積比)、藻液濃度(g/L)和超聲功率(W)對脂質(zhì)產(chǎn)量的影響。根據(jù)表1對5個不同水平的變量進行編碼,設(shè)計30組試驗。公式(4)是一個二階多項式,用來描述4個變量對脂質(zhì)產(chǎn)率的影響。
式中為油脂產(chǎn)率,%;A,A和A為方程系數(shù);x和x(≠)為自變量編碼值。
表1 響應(yīng)面試驗的因素和水平
1.4.5 脂肪酸組成分析
1 mL氯仿/甲醇(或正己烷/異丙醇)混合液加入到烘干的油脂中,使脂質(zhì)重新懸浮。然后,向油脂中加入0.15 mL甲醇(含有質(zhì)量分數(shù)為10%硫酸),55 ℃震蕩3 h后,加入0.5 mL 甲醇(含有質(zhì)量分數(shù)為25%甲醇鉀)55 ℃震蕩2 h后[13],加入2 mL正己烷55 ℃震蕩提取4 h,取正己烷相進行氣相色譜-質(zhì)譜(Gas Chromatography and Mass Spectrometry, GC-MS)分析[14]。
本文試驗均進行3次平行測定,結(jié)果以平均值±標準差表示。采用Origin 2019分析軟件分析。利用ANOVA(SPSS 25)一步法分析試驗數(shù)據(jù)。
圖2為不同SLPMs/藥劑濃度作用下小球藻的采收效率。在不添加任何藥劑的情況下,硅硼酸鈉浮珠對微藻的采收效率最高只能達到54.8%[8];相比于表面活性劑+硅硼酸鈉浮珠的方法,SLPMs的采收效率更高(圖2a)。對于SLPMs,當(dāng)浮珠濃度從0增加到0.7 g/L時,采收率達到最大值(98.36%);當(dāng)濃度超過0.7 mg/L時,采收率有輕微的降低。通過Zeta電位分析,可以看出隨著SLPMs/C16TAB濃度的增加,小球藻-浮珠聚集體的Zeta電位整體呈增加趨勢。小球藻細胞表面帶負電,添加表面活性劑有助于中和微藻表面電性,促進微藻絮體在預(yù)絮凝階段的生成。隨著C16TAB濃度的增加,聚集體Zeta電位接近0,此時微藻絮團過大,密度增加,沉淀占主導(dǎo),不利于小球藻-浮珠聚集體的上浮[3]。當(dāng)使用CH為預(yù)絮凝劑時,微藻懸浮液中幾乎沒有可見的微絮體。通過Zeta電位分析可以看出,隨著CH用量的增加,聚集體Zeta電位略有升高。微藻細胞之間的靜電斥力減少,因此在細胞表面的負電荷被陽離子CH聚合物吸附或中和,這一過程為補丁絮凝[15]。因此,SLPMs更有利于小球藻的浮選采收,故本研究使用SLPMs采收的小球藻-SLPMs聚集體進行下一步超聲破壁操作。
與Bligh & Dyer法(油脂產(chǎn)量,7.94 %)相比,在BBUASE法作用下,小球藻的油脂產(chǎn)率為4.83%~18.86%,表面BBUASE法可以更好的提取油脂。根據(jù)試驗結(jié)果進行回歸分析,得回歸方式(公式(5))和方差分析表(表2),其中模型值<0.000 1,2=0.940 2表明試驗值擬合模型較好,自變量與響應(yīng)值之間線性關(guān)系顯著。經(jīng)過擬合,預(yù)測在超聲時間為13 min,HIP比例為4,藻液濃度為13.6 g/L,超聲功率為254 W時,油脂產(chǎn)率達最大,為19.33%。通過試驗驗證,在優(yōu)化條件下的油脂產(chǎn)率為18.91%±1.57%。
據(jù)圖3a,脂質(zhì)產(chǎn)率隨著HIP比例的增加,先增大后減少。油脂提取過程中,需要極性有機溶劑(異丙醇)來破壞細胞質(zhì)中中性脂質(zhì)和極性脂質(zhì)之間的氫鍵。當(dāng)HIP比例超過4,異丙醇含量過低,不利于氫鍵的斷裂;從圖3a和b可以看出,油脂提取效率隨超聲功率的增加,呈現(xiàn)先增大后減小的趨勢。當(dāng)超聲時間過長或功率過大,溶液溫度超過警戒值(40 ℃),部分溶劑蒸發(fā),油脂產(chǎn)率降低,這與Ido等[6]的研究結(jié)果相符。同時,通過模型方差分析(表2)和等高線圖形狀可以看出,超聲功率和HIP比例之間存在一定的交互作用,對小球藻油脂產(chǎn)率的影響顯著[16]。
表2 回歸模型方差分析
注:a 差異顯著(<0.05),b 差異不顯著(>0.05)。
Note: a Significant term (<0.05), b Not significant term (>0.05).
從圖3b可以看出,在藻液濃度為13.6 g/L時,脂質(zhì)產(chǎn)率達到最大,且隨著藻液濃度的增加,脂質(zhì)產(chǎn)率降低。因超聲過程產(chǎn)生的氣泡,在其破碎過程中會產(chǎn)生沖擊波,破壞細胞壁,但隨著藻液濃度的增加,氣泡數(shù)量會發(fā)生減少,從而破壁效率降低,脂質(zhì)提取效率也相應(yīng)降低[17]。同時,通過模型方差分析(表2)和等高線圖形狀可以看出,超聲功率和藻液濃度之間存在一定的交互作用,對小球藻油脂產(chǎn)率的影響顯著[16]。
圖4為不同超聲時間下小球藻的紅外光譜圖,其中3 277 cm-1歸屬O-H鍵的伸縮振動,為水分子(H2O),主要來自于小球藻細胞的自由水[18];2 926 cm-1處為C-H鍵的振動吸收峰;1 645 cm-1處歸屬C=O雙鍵的伸縮振動,與藻細胞表面的脂類化合物的存在有關(guān)[19];1 530 cm-1處為N-H鍵和C-N鍵的堆成伸縮和堆成形變振動,為酰胺II紅外特征帶,歸屬為蛋白質(zhì)[20];1 393 cm-1處為C-H鍵和C-O鍵的伸縮振動峰,主要來自藻細胞表面的脂肪、碳水化合物;1 230 cm-1處為C-O-C鍵的伸縮振動,歸為醚類物質(zhì);1 025 cm-1處為Si-O鍵和P-O-P鍵的伸縮振動峰,來自于藻細胞表面的硅磷酸鹽和磷脂類物質(zhì)[18]。對比原藻,超聲處理13和24 min后1 645、1 530和1 393 cm-1處的振動峰值變大。故可以認為,超聲會導(dǎo)致原本大量處于胞內(nèi)的脂質(zhì)、糖類和蛋白質(zhì)在細胞表面、紅外可探測范圍內(nèi)的增加,故認為超聲對微藻細胞結(jié)構(gòu)有一定程度的損害,有利于胞內(nèi)物質(zhì)的提取。然而,當(dāng)超聲時間超過優(yōu)化值(13 min),超聲作用變化不明顯。
注:藻液濃度為13.6 g·L-1、超聲功率為254 W、HIP比例為4。
Note: The microalgal concentration, transducer power and HIP ratio is 13.6 g·L-1, 254 W and 4, respectively.
圖4 不同超聲時間作用下小球藻細胞的紅外光譜分析
Fig.4 FT-IR analysis ofcells under different ultrasonic time
圖5為不同破碎方式下小球藻的油脂產(chǎn)率、細胞破壁效率和粒徑分布。其中,BBUASE-HIP的油脂產(chǎn)率和細胞破壁效率最高,分別為18.91%和90.19%。UASE-HIP油脂產(chǎn)率次之,為13.39%。通常,超聲波的傳播可以促進粒子之間的碰撞[21]。在超聲波、布朗運動和范德華引力的作用下,小球藻細胞和SLPMs浮珠相互靠近并產(chǎn)生碰撞。由圖5可以看出,BBUASE法的細胞破壁效率更高,粒徑更小。且BBUASE-hexane的油脂產(chǎn)率為9.56%,是BBUASE-HIP的50.99%,證明混合極性、非極性的溶劑比單一非極性溶劑具有更好的油脂提取效率。
通過計算分析生物柴油中飽和脂肪酸(Saturated Fatty Acids,SFA)、單不飽和脂肪酸(Monounsaturated Fatty Acids,MFA)和多不飽和脂肪酸(Polyunsaturated Fatty Acids,PUFA)的含量,可以評價生物柴油的質(zhì)量[22]。表3為不同破碎方式下,小球藻中脂肪酸的組成??梢钥闯?,棕櫚酸(c16:0)和亞油酸(c18:2)為脂肪酸甲酯的主要組成。通常來說,不飽和鍵的存在會對生物柴油的穩(wěn)定性產(chǎn)生不利影響[23]。對比Bligh & Dyer法,超聲輔助法處理后,藻油中PUFA占比降低,SFA占比升高。故該法可能有利于藻油中SFA提取,從而提升了藻油穩(wěn)定性[23]。此外,不同破碎方式對小球藻中脂肪酸組成特征的參數(shù)也被分析(表4)。
表3 不同破碎方式對小球藻中脂肪酸組成的影響
表4 不同破碎方式對小球藻中脂肪酸組成特征參數(shù)分析
其中,生物柴油的不飽和度(Degree of Unsaturation, DU)是指示最終產(chǎn)品十六烷值和碘值的關(guān)鍵參數(shù)[24]。Bligh & Dyer法、UASE-HIP法和BBUASE-HIP法的DU值分別為128.23、117.88和107.98,均符合歐盟標準。通過計算這3種方法處理后得到的生物柴油冷濾點(Cold Filter Plugging Point, CFPP),可以看出這3種方法提取的生物柴油,均適用于氣溫低于0 ℃以下的地區(qū)。
超聲處理過程中的單位能量消耗(MJ/kg(以干藻粉計)),很大程度上會影響B(tài)BUASE法的應(yīng)用。Ido等[6]用超聲法處理質(zhì)量體積比為10 g/L的藻粉溶液(400 W,100 mL,89.21 min),消耗能量為210 MJ/kg;Lee等[25]用超聲法從sp.、和sp.干藻粉中提取油脂,油脂提取效率均低于10%,能量消耗為360 MJ/kg。然而,藻液干燥過程中需要額外的能量投入,每24 kg微藻生物量含油脂30%~40%(質(zhì)量分數(shù)),可以產(chǎn)生1 000 MJ微藻生物柴油的能量,需要投入3 982 MJ的能量烘干[26]。因此,直接從藻液中提取生物柴油可以節(jié)約烘干所需的能量投入。Ellison等[27]使用不同混合溶劑和超聲輔助的方式(750 W,232 mL,30 min,7.78 kg/m3),從混合液中提取油脂,經(jīng)過折算,每處理1 kg干藻粉需要能量投入為581 MJ;而本文中提取油脂的能量消耗為520 MJ/kg。通常,在藻細胞破碎過程中,傳統(tǒng)方式(珠磨、微波或高壓勻漿法)能耗一般大于400 MJ/kg。此外,溶劑萃取法分離脂質(zhì)費時且不環(huán)保。在本研究中,BBUASE法作用下,小球藻的油脂產(chǎn)率高于傳統(tǒng)溶劑萃取法的平均水平[27-29],且所用溶劑低毒性,提取耗時短。因此,可以認為本研究提出的BBUASE法具有商業(yè)應(yīng)用潛力與實踐價值。
1)本文提出了一種集小球藻采收、破壁和油脂提取為一體的微藻處理新技術(shù)。在新型耦合浮珠-超聲輔助溶劑萃取法(Buoyant Beads and Ultrasound Assisted Solvent Extraction, BBUASE)作用下,小球藻的最大油脂產(chǎn)率為18.91%,提取時間為13 min,正己烷和異丙醇(Hexane and Isopropanol, HIP)比例(體積比)為4,藻液濃度為13.6 g/L,超聲功率為254 W。
2)相比傳統(tǒng)氣浮法與超聲輔助溶劑萃取法,本法采收效率、細胞破壁效率和飽和脂肪酸含量都達到了較高水平,分別為98.36%、90.19%和37.03%。
作為浮珠浮選法(Buoyant-Bead Flotation, BBF)的后續(xù)步驟,耦合浮珠-超聲輔助溶劑萃取法(Buoyant Beads and Ultrasound Assisted Solvent Extraction, BBUASE)供了一種高效、環(huán)保的技術(shù),促進了超聲輔助預(yù)處理技術(shù)的發(fā)展。后續(xù)研究可以對比用該法處理不同藻種時的油脂提取效率,并優(yōu)化該技術(shù),拓寬其的適用范圍。
[1] 楊曉琴,喻艷華,謝東,等. 微藻油脂制備生物基多元醇理化性能分析與結(jié)構(gòu)表征[J]. 農(nóng)業(yè)工程學(xué)報,2020,36(7):256-263.
Yang Xiaoqin, Yu Yanhua, Xie Dong, et al. Physicochemical property analysis and structural characterization of bio-based polyol prepared form microalgae oil[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(7): 256-263. (in Chinese with English abstract)
[2] Kwok Y J, Sankaran R, Wayne C K, et al. A review manuscript submitted to Chemosphere Advancement of Green Technologies: A comprehensive review on the potential application of microalgae biomass[J]. Chemosphere, 2021, 281: 130886
[3] Zou X, Li Y, Xu K, et al. Microalgae harvesting by buoy-bead flotation process using Bioflocculant as alternative to chemical Flocculant[J]. Algal Research, 2018, 32: 233-240.
[4] Zhang H , Zhang X. Microalgal harvesting using foam flotation: A critical review[J]. Biomass and Bioenergy, 2019, 120: 176-188.
[5] Kumar V, Arora N, Nanda M, et al. Microalgae Biotechnology for Development of Biofuel and Wastewater Treatment[M]. Berlin: Springer, 2019: 265-292.
[6] Ido A L, Luna M D G D, Capareda S C, et al. Application of central composite design in the optimization of lipid yield from Scenedesmus obliquus microalgae by ultrasound-assisted solvent extraction[J]. Energy, 2018, 157: 949-956.
[7] Suali E, Sarbatly R. Conversion of microalgae to biofuel[J]. Renewable and Sustainable Energy Reviews, 2012, 16: 4316-4342.
[8] 鄒小彤,徐開偉,文豪,等. 能源微藻無泡采收新方法及其性能[J]. 過程工程學(xué)報,2018,18(4):872-878.
Zou Xiaotong, Xu Kaiwei, Wen Hao, et al. Novel method of buoy-bead flotation for harvesting micro-algae and its performance[J]. The Chinese Journal of Process Engineering, 2018, 18(4): 872-878. (in Chinese with English abstract)
[9] Decher G. Fuzzy nanoassemblies: Toward layered polymeric multicomposites[J]. Science, 1997, 277(5330): 1232-1237.
[10] Toh P Y, Ng B W, Ahmad A L, et al. The role of particle-to-cell interactions in dictating nanoparticle aided magnetophoretic separation of microalgal cells[J]. Nanoscale, 2014, 6(21): 12838-12848.
[11] Bligh E G, Dyer W J. A rapid method of total lipid extraction and purification[J]. Canad J Biochem Physiol, 1959, 37: 911-917.
[12] Ido A L, Luna M D G d, Capareda S C, et al. Application of central composite design in the optimization of lipid yield from Scenedesmus obliquus microalgae by ultrasound-assisted solvent extraction[J]. Energy, 2018, 157: 949-956.
[13] Yao S, Mettu S, Law S Q K, et al. The effect of high-intensity ultrasound on cell disruption and lipid extra[J]. Algal Research, 2018, 35: 341-348.
[14] Zou X, Xu K, Chang W, et al. A novel microalgal biofilm reactor using walnut shell as substratum for microalgae biofilm cultivation and lipid accumulation[J]. Renewable Energy, 2021, 175: 676-685.
[15] Li S, Hu T, Xu Y, et al. A review on flocculation as an efficient method to harvest energy microalgae: Mechanisms, performances, influencing factors and perspectives[J]. Renewable and Sustainable Energy Reviews, 2020, 131: 110005
[16] 劉皓涵,鐘迪穎,張潤光,等. 歐李多酚提取純化及抗氧化性研究[J]. 農(nóng)業(yè)工程學(xué)報,2020,36(22):324-332.
Liu Haohan, Zhong Diying, Zhang Runguang, et al. Extraction and purification of polyphenols and determination of antioxidant activity[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(22): 324-332. (in Chinese with English abstract)
[17] Derakhshan M V, Nasernejad B, Dadvar M, et al. Pretreatment and kinetics of oil extraction from algae for biodiesel production[J]. Asia-Pacific Journal of Chemical Engineering, 2014, 9: 629-637.
[18] 王浚浩,張雨,楊優(yōu)優(yōu),等. 微藻種類對其熱解質(zhì)量損失規(guī)律和產(chǎn)物及動力學(xué)的影響[J]. 農(nóng)業(yè)工程學(xué)報,2018,34(19):239-247.
Wang Junhao, Zhang Yu, Yang Youyou, et al. Weight-loss characteristics, components of bio-oil and kinetics during pyrolysis from different types of microalgae[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(19): 239-247. (in Chinese with English abstract)
[19] 陸洪省,劉亞樵,劉文君,等. 養(yǎng)殖污水中蛋白核小球藻的分離鑒定及其污水處理效果[J]. 農(nóng)業(yè)工程學(xué)報,2017,33(4):273-277.
Lu Hongsheng, Liu Yaqiao, Liu Wenjun, et al. Isolation, identification offrom aquaculture wastewater and its purification of wastewater[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(4): 273-277. (in Chinese with English abstract)
[20] Ng M, Liana A E, Liu S, et al. Preparation and characterisation of new-polyaluminum chloride-chitosan composite coagulant[J]. Water Research, 2012, 46(15): 4614-4620.
[21] Liu Y, Li X, Bai F, et al. Effect of system parameters on the size distributions of hollow nickel microspheres produced by an ultrasound-aided electrical discharge machining process[J]. Particuology, 2014, 17: 36-41.
[22] Jesus S S D, Ferreira G F, Moreira L S, et al. Biodiesel production from microalgae by direct transesterification using green solvents[J]. Renewable Energy, 2020, 160: 1283-1294.
[23] Chen J, Li J, Dong W, et al. The potential of microalgae in biodiesel production[J]. Renewable and Sustainable Energy Reviews, 2018, 90: 336-346.
[24] Ramos M J, Fernández C M, Casas A, et al. Influence of fatty acid composition of raw materials on biodiesel properties[J]. Bioresource Technology, 2009, 100: 261-268.
[25] Lee A K, Lewis D M, Ashman P J. Disruption of microalgal cells for the extraction of lipids for biofuels: Processes and specific energy requirements[J]. Biomass and Bioenergy, 2012, 46: 89-101.
[26] Onumaegbu C, Alaswad A, Rodriguez C, et al. Modelling and optimization of wet microalgaelipid extraction using microwave pre-treatment method and response surface methodology[J]. Renewable Energy, 2019, 132: 1323-1331.
[27] Ellison C R, Overa S, Boldor D. Central composite design parameterization of microalgae/cyanobacteria coculture pretreatment for enhanced lipid extraction using an external clampon ultrasonic transducer[J]. Ultrasonics Sonochemistry, 2019, 51: 496-503.
[28] Santos R R D, Moreira D M, Kunigami C N, et al. Comparison between several methods of total lipid extraction from Chlorella vulgaris biomass[J]. Ultrasonics Sonochemistry, 2015, 22: 95-99.
[29] Escorsim A, Rocha G, Vargas J, et al. Extraction of acutodesmus obliquus lipids using a mixture of ethanol and hexane as solvent[J]. Biomass and Bioenergy, 2018, 108: 470-478.
Microalgal harvesting and lipid extraction by coupling buoyant-bead and ultrasound-assisted solvent extraction method
Xu Kaiwei1, Zou Xiaotong1, Liu Yi1, Zhang Gaoshan1, Du Weihao1, Ma Xiaojing1, Lei Chencen1, Li Yanpeng1,2※
(1710054,;2.,’,710054,)
Microalgae can widely be considered as one of the most promising bioenergy feedstocks. There is no competition with crops, where microalgae do not require arable land for cultivation. There is also no influence on the supply or price of food crops, compared with conventional oil crops. However, the harvesting and lipid extraction of microalgae have been the major challenges in the microalgae industry. Traditional harvesting is time-consuming, energy-intensive, and/or not eco-friendly, particularly to separate microalgae cells, including centrifugation, gravity sedimentation, flocculation, and flotation. A buoy-bead flotation is emerging for harvesting the microalgae in recent years. The dried biomass powder or wet concentrate can also be used for lipid extraction after microalgae harvesting and concentration. The cost of lipid extraction accounts for 30%-40% of the total biodiesel production. Bead milling, homogenizer, microwave, and ultrasound are commonly-used mechanical disruptions. Among them, ultrasound-assisted extraction has widely been used to extract intracellular components, due to its high energy efficiency easy to be commercialized on a large scale. Specifically, the extraction time can be shortened to 1/10, while the extraction efficiency can increase by 50-500 times, compared with the control. In this study, surface-layered polymeric microspheres (SLPMs) were used in the buoy-bead flotation for harvesting microalgae. After that, the ultrasound-assisted extraction was utilized to break the cell wall, and then to extract lipid from microalgae. In harvesting, the zeta potential of flocs was analyzed to compare the harvesting efficiency of microspheres with flocculants and surface-modified microspheres by a single factor. In lipid extracting, a novel approach was developed to couple the buoyant beads and ultrasound-assisted solvent extraction for higher efficiency. Mathematical modeling and central composite design (CCD) were used to statistically optimize the effect of ultrasonic time, the ratio of hexane and isopropanol, microalgal concentration, and transducer power on lipid yield. The optimum operation condition was determined to compare with different lipid extraction. The compositions of extracted lipids were then characterized using gas chromatography/mass spectrometry analysis (GC-MS). It was found that the SLPMs achieved a higher harvesting efficiency of 98.36%, compared with the surfactant/flocculant and sodium silicate microspheres. Consequently, the maximum lipid yield was 18.91 % under an optimal combination: the ultrasonic time of 13 min, the hexane: isopropanol ratio of 4, microalgal concentration of 13.6 g/L, and transducer power of 254 W. Fourier transform infrared demonstrated that the content of lipid, polysaccharide and proteins increased significantly on the surface of microalgal cells, with the increase of ultrasonic time. More importantly, ultrasound can also damage the cell structure of microalgae cells. A higher cell disruption efficiency and small particle size were achieved in the coupled approach, compared with ultrasonic-assisted solvent extraction. Additionally, compared with the modified Bligh & Dyer method, the buoyant beads and ultrasound assisted solvent extraction (BBUASE) method has lower polyunsaturated fatty acid content and higher saturated fatty acid content. Thus, the BBUASE can be expected to serve as a highly efficient way to produce fatty acid methyl ester and raw biodiesel in the modern microalgae industry.
biodiesel; lipid; extraction; microalgae; buoy-bead flotation; ultrasound disruption
徐開偉,鄒小彤,劉意,等. 耦合浮珠-超聲輔助溶劑萃取法用于微藻采收及油脂提取[J]. 農(nóng)業(yè)工程學(xué)報,2021,37(15):267-274.doi:10.11975/j.issn.1002-6819.2021.15.032 http://www.tcsae.org
Xu Kaiwei, Zou Xiaotong, Liu Yi, et al. Microalgal harvesting and lipid extraction by coupling buoyant-bead and ultrasound-assisted solvent extraction method[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(15): 267-274. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.15.032 http://www.tcsae.org
2021-04-23
2021-07-13
陜西省自然科學(xué)基金(2020JM-236);中央高校基本科研業(yè)務(wù)費專項(300102299703, 300102299708)
徐開偉,博士生,研究方向為生物質(zhì)生化轉(zhuǎn)化。Email:2418212334@qq.com
李彥鵬,教授,博士生導(dǎo)師,研究方向為污廢資源化與能源化應(yīng)用。Email:liyanp01@chd.edu.cn
10.11975/j.issn.1002-6819.2021.15.032
TQ028
A
1002-6819(2021)-15-0267-08