林曉娜,雷寒武,易維明,蔡紅珍,陳曉云,郭亞東
·農(nóng)業(yè)生物環(huán)境與能源工程·
活性炭催化生物質(zhì)與低密度聚乙烯共熱解
林曉娜1,雷寒武2※,易維明1,蔡紅珍1,陳曉云1,郭亞東1
(1. 山東理工大學(xué)農(nóng)業(yè)工程與食品科學(xué)學(xué)院,淄博 255000;2. 華盛頓州立大學(xué)生物系統(tǒng)工程系,里奇蘭 WA99354-1671)
為探究生物質(zhì)主要組分與聚烯烴塑料在活性炭共催化熱解過程的相互作用機(jī)理,該研究采用磷酸活化法制備了活性炭催化劑,利用固定床反應(yīng)器對(duì)纖維素、木聚糖、木質(zhì)素、花旗松單獨(dú)催化熱解及其與低密度聚乙烯共催化熱解產(chǎn)物的產(chǎn)率及組成進(jìn)行了分析。結(jié)果表明,活性炭催化纖維素和木聚糖單獨(dú)熱解的主要產(chǎn)物為呋喃類物質(zhì),其質(zhì)量分?jǐn)?shù)分別為78.6%和83.2%;而活性炭催化木質(zhì)素?zé)峤獾闹饕a(chǎn)物為簡(jiǎn)單酚類物質(zhì)(86.6%)。與理論計(jì)算值相比,四種混合物共催化熱解所得液體產(chǎn)率降低了8.7%~11.4%,氣體產(chǎn)率提高了22.6%~64.0%;液體產(chǎn)物中芳烴和輕質(zhì)脂肪烴(C9~C16)的質(zhì)量分?jǐn)?shù)增加而氧化物的質(zhì)量分?jǐn)?shù)降低;氣體產(chǎn)物中H2的體積分?jǐn)?shù)有所增加而CO和CO2的體積分?jǐn)?shù)明顯降低?;钚蕴看呋瘎┳饔孟?,生物質(zhì)三組分與低密度聚乙烯之間相互作用的影響程度有所不同。
生物質(zhì);塑料;活性炭;共熱解;催化
隨著中國經(jīng)濟(jì)的快速發(fā)展和人民生活水平的不斷提高,可燃固體廢棄物(Combustible Solid Waste, CSW)的產(chǎn)量以每年8%~10%的速度增長[1],如何資源化高效利用CSW成為當(dāng)前的研究熱點(diǎn)。CSW的主要組成組分為生物質(zhì)和塑料廢棄物,二者均是典型的有機(jī)碳源,可通過快速熱解方式將生物質(zhì)和塑料廢棄物轉(zhuǎn)化為生物油或化學(xué)品,替代傳統(tǒng)的化石能源,從而緩解中國能源短缺和廢棄物處理困難的問題。
近年來,國內(nèi)外對(duì)生物質(zhì)與塑料廢棄物共熱解的研究多集中于原料種類、二者比例、熱解參數(shù)等因素對(duì)生物油產(chǎn)率、組成及理化性質(zhì)的影響[2-4]。與生物質(zhì)單獨(dú)熱解相比,生物質(zhì)與塑料廢棄物共熱解具有獨(dú)特的優(yōu)勢(shì)和特色。已有研究表明,生物質(zhì)與塑料廢棄物在共熱解過程中存在相互作用,即生物質(zhì)熱解生成的自由基可引發(fā)塑料碳鏈的分解反應(yīng),而塑料也可作為氫源穩(wěn)定生物質(zhì)熱解自由基,該相互作用有利于獲得高收率、低含氧量和高熱值的液體產(chǎn)物[5-6]。然而,生物質(zhì)與塑料廢棄物共熱解所得液體產(chǎn)物組成十分復(fù)雜,既包括生物質(zhì)組分熱解生成的含氧有機(jī)化合物,也包括塑料組分熱解生成的烴類物質(zhì),需要進(jìn)一步的催化精制處理。
HZSM-5分子篩由于具有獨(dú)特的孔道結(jié)構(gòu)與較強(qiáng)的酸性特點(diǎn),展現(xiàn)出良好的脫氧效果和較高的芳烴選擇性,是生物質(zhì)與塑料共熱解最常用的催化劑。生物質(zhì)熱解生成的含氧化合物與塑料熱解所得的烯烴可在HZSM-5催化劑的活性位上發(fā)生相互反應(yīng),有效地促進(jìn)了芳烴的生成[7-8]。然而,HZSM-5也存在成本高且易結(jié)焦失活等問題,限制了其商業(yè)化推廣應(yīng)用。與HZSM-5相比,活性炭(Activated Carbon, AC)具有較大的比表面積、豐富的表面官能團(tuán)和發(fā)達(dá)的微介孔孔道結(jié)構(gòu),有利于熱解大分子的傳質(zhì)擴(kuò)散,不易結(jié)焦,且活性炭原料來源廣泛,易于大規(guī)模、低成本制備[9-10]。近年來,AC作為一種廉價(jià)且性質(zhì)穩(wěn)定的催化劑引發(fā)了世界范圍內(nèi)的研究熱潮。研究表明,AC在生物質(zhì)/塑料熱解制備酚類/富烴燃料及聯(lián)產(chǎn)氫氣方面展現(xiàn)出良好的催化潛力[11-13]。目前,關(guān)于AC催化生物質(zhì)與塑料共熱解的研究主要集中于AC的制備與改性、熱解參數(shù)等對(duì)產(chǎn)物組成及分布的影響[14-15]。生物質(zhì)主要由具有復(fù)雜空間結(jié)構(gòu)的纖維素、半纖維素和木質(zhì)素三組分組成,生物質(zhì)三組分因結(jié)構(gòu)與組成不同,與塑料共催化熱解所得產(chǎn)物組成、理化特性與相互作用效果均有所差異[16-17]。然而,目前關(guān)于AC催化生物質(zhì)各組分與塑料共熱解過程的相互作用機(jī)理尚不清楚。
鑒于此,本文利用磷酸活化法制備了玉米芯AC催化劑,系統(tǒng)研究了AC催化四種生物質(zhì)原料(微晶纖維素、木聚糖、堿木質(zhì)素和花旗松)、低密度聚乙烯(Low-density Polyethylene, LDPE)單獨(dú)熱解以及四種混合物共熱解所得產(chǎn)物產(chǎn)率與組成的分布規(guī)律,探索不同生物質(zhì)原料與LDPE共催化熱解過程中的相互作用機(jī)理,為典型可燃有機(jī)固體廢棄物的資源化利用提供參考。
本試驗(yàn)選用的花旗松(Douglas Fir, DF)由美國貝爾山林產(chǎn)品有限公司提供,經(jīng)粉碎后篩選粒徑小于1 mm的DF作為試驗(yàn)原料,置于105 ℃的烘箱中干燥48 h。LDPE(CAS#9002-88-4)購買于Sigma-Aldrich公司,經(jīng)粉碎后篩選粒徑為0.25~0.5 mm的LDPE粉末作為試驗(yàn)原料。生物質(zhì)組分模型化合物微晶纖維素、木聚糖(從beechwood提?。┖蛪A木質(zhì)素均購買自Sigma-Aldrich公司。選取DF、微晶纖維素、木聚糖及堿木質(zhì)素分別與LDPE按質(zhì)量比1:1的比例混合均勻,作為共熱解試驗(yàn)原料。采用Euro EA3000元素分析儀(Italy)對(duì)試驗(yàn)原料中的C、H、N、O元素含量進(jìn)行分析測(cè)定,其中O元素的含量通過差值法獲得,分析結(jié)果見表1。
注:*表示O元素由差減法計(jì)算得到。
Note: * is oxygen was calculated by difference.
1.2.1 催化劑制備
試驗(yàn)選用玉米芯(1~2 mm)為原料制備活性炭催化劑。磷酸(質(zhì)量分?jǐn)?shù)85%)購買于Alfa Aeser公司。選取100 g玉米芯放入100 mL 質(zhì)量分?jǐn)?shù)85%磷酸中,加入700 mL去離子水,室溫下攪拌24 h。將攪拌后的溶液放入90 ℃的烘箱中干燥48 h。將干燥后的樣品置于SineoMAS-Ⅱ微波熱解反應(yīng)器(上海中諾微波化學(xué)技術(shù)有限公司)中進(jìn)行炭化處理,炭化前先向系統(tǒng)中通入高純氮?dú)猓?9.999%)吹掃15 min以除去氧氣,設(shè)置微波輸出功率為700 W,炭化溫度為450 ℃,炭化時(shí)間為1 h。將炭化后的樣品從系統(tǒng)中取出,用去離子水洗至中性后放入90 ℃的烘箱中干燥48 h,最終得到干燥后的AC催化劑。
1.2.2 催化劑表征
采用MicromeriticsTristarⅡ3020型全自動(dòng)物理吸附儀測(cè)定AC催化劑的比表面積、孔容及孔徑。AC樣品首先在300 ℃下脫氣處理3 h,然后在–196 ℃下進(jìn)行等溫吸附。采用BET方法計(jì)算比表面積,采用BJH方法計(jì)算孔容與平均孔徑。采用AutoChemⅡ 2920型化學(xué)吸附儀進(jìn)行AC催化劑的酸性分析。樣品首先在300 ℃下用He (50mL/min)吹掃1 h,然后降溫至50 ℃,通入NH3體積分?jǐn)?shù)10% 的NH3/He進(jìn)行飽和吸附1.0 h,再用He 吹掃0.5 h,除去物理吸附的NH3,最后在He氣氛下,以10 ℃/min的速率從50 ℃升溫至500 ℃。采用IR Prestige 21型紅外分析儀對(duì)AC催化劑的表面官能團(tuán)進(jìn)行分析。AC催化劑的微觀形貌利用FEI Quanta 200 F型掃描電鏡進(jìn)行表征。
生物質(zhì)與LDPE共催化熱解試驗(yàn)在固定床熱解反應(yīng)器中進(jìn)行,如圖1所示。分別稱量3.0 g生物質(zhì)/LDPE混合物(質(zhì)量比1:1)與6.0 g AC催化劑于石英管中,原料與催化劑之間通過石英棉分隔。高純氮?dú)猓?9.999%)作為載氣,流量為50 mL/min。熱解反應(yīng)器內(nèi)首先通入高純氮?dú)?0 min以除去空氣,當(dāng)溫度升至500 ℃時(shí),將石英管快速放入熱解器內(nèi)進(jìn)行共催化熱解反應(yīng),熱解時(shí)間為10 min。共催化熱解氣經(jīng)冷凝后得到液體產(chǎn)物,不可冷凝氣體用氣袋收集。反應(yīng)器冷卻至室溫后,取出熱解炭稱其質(zhì)量,通過計(jì)算催化劑使用前后的質(zhì)量差得到催化劑結(jié)焦量,液體產(chǎn)物的質(zhì)量通過稱量反應(yīng)前后的收集器得到,氣體產(chǎn)物的質(zhì)量通過差值法計(jì)算。
將得到的液體產(chǎn)物加入乙酸乙酯(HPLC級(jí),99.5%+,Alfa Aesar)進(jìn)行稀釋處理,液體產(chǎn)物與乙酸乙酯的體積比例為1:2。采用Agilent 7890/5975C型氣質(zhì)聯(lián)用儀對(duì)液體產(chǎn)物的化學(xué)組成進(jìn)行分析。色譜柱為DB-5毛細(xì)管柱(30 m×0.32 mm×0.25m),載氣為高純He(99.999%),流量為0.6 mL/min,分流比60:1。GC首先在40 ℃保持2 min,然后以10 ℃/min的速率升至280 ℃,保持10min。進(jìn)樣口和離子源的溫度分別為280 和230 ℃。電離方式為EI(Electrospray Ionization),電子轟擊能量為70 eV,掃描質(zhì)量為30~500 m/z。根據(jù)NIST 02數(shù)據(jù)庫分析產(chǎn)物組成,采用峰面積歸一法計(jì)算各類化合物的相對(duì)質(zhì)量分?jǐn)?shù)。
采用氣相色譜儀Micro-GC(INFICON inc, Santa Clara, CA, USA)對(duì)氣體產(chǎn)物進(jìn)行分析,每袋熱解氣體連續(xù)測(cè)量3次,取其平均值作為試驗(yàn)結(jié)果。
AC催化劑的孔結(jié)構(gòu)、酸性及表面官能團(tuán)對(duì)其催化活性起著至關(guān)重要的作用。圖2分別給出了AC催化劑的FTIR(Fourier Transform Infrared spectrometry)、N2吸附、NH3-TPD(NH3-Temperature Programmed Desorption)和SEM(Scanning Electron Microscopy)表征結(jié)果。從圖2a中可以看出,AC催化劑的表面官能團(tuán)主要包含-OH(3 400 cm-1)、-C-H(2 950 cm-1)、-C=O(1 700 cm-1)、-C=C(1 550 cm-1、880 cm-1)和-CH-Ar (750 cm-1)。經(jīng)磷酸活化處理后,AC催化劑表面成功引入了-C-O-P(1 150 cm-1)和-P-O(1 050 cm-1)等含P官能團(tuán)。研究表明,這些含P官能團(tuán)在AC催化熱解過程中起到重要的作用,可作為催化活性位點(diǎn)來促進(jìn)熱解氣的脫氧、裂化及芳構(gòu)化等反應(yīng)[12,18]。從圖2b可知,AC催化劑的吸附-脫附等溫曲線屬于Ⅳ型等溫線。當(dāng)/0<0.4時(shí),AC樣品的氮吸附等溫線迅速上升,說明樣品中含有微孔結(jié)構(gòu)。在0.40<1.0處出現(xiàn)明顯的滯回環(huán),表明AC樣品中存在中孔孔隙結(jié)構(gòu)。從表2可知,AC催化劑的總比表面積為1 440.0 m2/g,其中中孔比表面積為1 412.8 m2/g,遠(yuǎn)遠(yuǎn)高于微孔比表面積(27.2 m2/g)。AC催化劑的孔容與平均孔徑分別為0.86 cm3/g和2.7 nm。結(jié)合孔徑分布曲線可知,AC催化劑的孔結(jié)構(gòu)以介孔為主。Villota等[19]研究表明AC的孔隙結(jié)構(gòu)與磷酸濃度有關(guān),隨著磷酸濃度增加,磷酸與AC前驅(qū)體反應(yīng)程度加深,形成更多的介孔結(jié)構(gòu)。從圖2c可知,AC催化劑的NH3-TPD曲線存在兩個(gè)脫附峰,溫度區(qū)間為100~200 ℃的脫附峰對(duì)應(yīng)著AC的弱酸性位點(diǎn),其酸量為0.21 mmol/g;200~300 ℃范圍內(nèi)的脫附峰對(duì)應(yīng)著AC的中強(qiáng)酸性位點(diǎn),其酸量為0.26 mmol/g。AC催化劑的酸性主要來源于其表面豐富的官能團(tuán),如-COOH、-OH、-P-O等[10]。從圖2d可以看出,AC催化劑表面分布著豐富的、大小不一的孔隙結(jié)構(gòu),這是由于磷酸在化學(xué)活化過程中促進(jìn)了生物質(zhì)基體揮發(fā)分的釋放、收縮、融合、裂化等反應(yīng),從而在AC表面形成了孔隙結(jié)構(gòu)[20-21]。
表2 AC催化劑的比表面積、孔容、孔徑及酸量分布
AC催化DF、微晶纖維素、木聚糖及堿木質(zhì)素?zé)峤馑卯a(chǎn)物產(chǎn)率及分布情況如圖3所示。從圖3a可知,在AC催化劑作用下,四種生物質(zhì)原料催化熱解所得液體產(chǎn)率由高到低依次為:纖維素(55.0%)、木聚糖(36.0%)、DF(32.0%)、木質(zhì)素(22.5%)。與之相反地,木質(zhì)素催化熱解后炭產(chǎn)率高達(dá)60%,而纖維素的熱解炭產(chǎn)率最低,僅為17.5%。Stefanidis等[22]比較了纖維素、木聚糖和木質(zhì)素三組分的催化熱解特性,得到了相似的結(jié)果。這與生物質(zhì)三組分的結(jié)構(gòu)特性有關(guān)。木聚糖和DF催化熱解所得氣體產(chǎn)率分別為34.5%和38.0%,纖維素和木質(zhì)素的氣體產(chǎn)率則較低。與?;锵啾?,DF的氣體產(chǎn)率明顯高于其液體產(chǎn)率,這可能是由于生物質(zhì)催化熱解過程十分復(fù)雜,三組分之間存在一定的交互作用,有利于氣體的生成[23]。值得注意的是,AC催化熱解纖維素后的結(jié)焦量最高(8%),而催化木質(zhì)素?zé)峤夂蟮慕Y(jié)焦量幾乎為0。這是因?yàn)槔w維素?zé)峤膺^程中比木質(zhì)素產(chǎn)生更多的熱解氣,大量的熱解氣在AC催化劑活性位點(diǎn)上發(fā)生一系列的化學(xué)反應(yīng),同時(shí)產(chǎn)生焦炭沉積在AC催化劑表面和孔道結(jié)構(gòu)中。
AC催化熱解四種生物質(zhì)原料所得液體產(chǎn)物的分布情況如圖3b所示。AC催化劑作用下,纖維素?zé)峤庖后w產(chǎn)物主要包含呋喃類物質(zhì)和酚類物質(zhì),其質(zhì)量分?jǐn)?shù)分別為78.6%和16.9%;木聚糖熱解液體產(chǎn)物主要為呋喃類(83.2%)和酯類物質(zhì)(14.3%);木質(zhì)素?zé)峤庖后w產(chǎn)物中酚類物質(zhì)的質(zhì)量分?jǐn)?shù)高達(dá)86.6%,其主要組分為苯酚、2-甲基苯酚、4-甲基苯酚等簡(jiǎn)單酚類化合物;DF熱解液體產(chǎn)物組成是生物質(zhì)三組分催化熱解液體產(chǎn)物組成的綜合,其主要組分為呋喃類物質(zhì)(54.1%)和酚類物質(zhì)(27.9%),此外還含有少量的酯類和酮類物質(zhì)。Li等[24]研究也表明AC催化劑促進(jìn)了生物質(zhì)三組分熱解氣中呋喃類和酚類物質(zhì)的生成,與本文的結(jié)果一致。眾多研究表明,纖維素單獨(dú)熱解主要生成左旋葡萄糖(LG),LG可通過脫水、脫羰等反應(yīng)進(jìn)一步生成呋喃類物質(zhì)[25-26]。Zhang等[27]研究發(fā)現(xiàn)AC有利于催化LG脫水重排生成5-甲基呋喃甲醛,5-甲基呋喃甲醛可在AC活性位點(diǎn)上進(jìn)一步發(fā)生脫水、脫氫和重排反應(yīng)生成苯酚類物質(zhì)。他們利用AC催化熱解纖維素得到酚類物質(zhì)的選擇性高達(dá)99%,這與本文的研究結(jié)果不一致,可能的原因是所制備的AC催化劑在性質(zhì)方面存在差異,AC的介孔結(jié)構(gòu)和含磷官能團(tuán)越多,酚類的選擇性越高[28]。木質(zhì)素單獨(dú)熱解主要生成愈創(chuàng)木基苯酚和紫丁香基苯酚等大分子酚類,如2-甲氧基苯酚、2,6-二甲氧基苯酚和2,6-二甲氧基丙烯基苯酚等[29]。然而,AC催化劑的存在促進(jìn)了酚類大分子脫甲氧基反應(yīng),有利于簡(jiǎn)單酚類的生成。這與Duan等[30]利用AC催化木質(zhì)素?zé)峤獾难芯拷Y(jié)果一致。
AC催化熱解四種生物質(zhì)原料所得氣體產(chǎn)物的分布情況如圖3c所示。四種原料主要的氣體組分為H2、CH4、CO、CO2,而C2H6/C2H4、C3H8/C3H6、C4H10/C4H8等小分子烴類氣體的體積分?jǐn)?shù)較低。纖維素催化熱解所得氣體的主要組成成分是CO(39.6%)和CO2(36.4%),說明纖維素?zé)峤猱a(chǎn)物在AC催化劑活性位點(diǎn)上主要發(fā)生脫羰和脫羧反應(yīng)。對(duì)于木聚糖而言,其氣體產(chǎn)物主要為CO2(40.7%)和H2(26.2%),說明AC有利于催化木聚糖熱解產(chǎn)物發(fā)生脫羧和脫氫反應(yīng)。木質(zhì)素的氣體主要組分為H2(39.9%)和CO2(39.2%),二者主要來自于木質(zhì)素結(jié)構(gòu)單元側(cè)鏈脫氫和脫羧反應(yīng)[14]。DF中氣體體積分?jǐn)?shù)由高到低依次為CO>CO2>CH4>H2。綜上所述,由于四種生物質(zhì)原料結(jié)構(gòu)不同,其熱解產(chǎn)物組成不同,因而在AC催化劑活性位點(diǎn)上發(fā)生脫羰、脫羧、脫氫及脫甲基反應(yīng)的程度不同,導(dǎo)致氣體產(chǎn)物分布存在一定的差異。
圖4給出了AC催化熱解LDPE所得產(chǎn)物產(chǎn)率及分布情況。AC催化熱解LDPE所得液體產(chǎn)率為67.7%,氣體產(chǎn)率為22.3%,催化劑結(jié)焦量為10%,無熱解炭產(chǎn)生,說明LDPE在500 ℃下發(fā)生完全分解。AC催化LDPE熱解所得液體產(chǎn)物的組成明顯不同于生物質(zhì)原料,其主要組分為芳烴和脂肪烴,其中單環(huán)芳烴、雙環(huán)芳烴和三環(huán)芳烴的質(zhì)量分?jǐn)?shù)分別為28.0%、23.7%和5.5%,C9~C16和C16以上脂肪烴的質(zhì)量分?jǐn)?shù)分別為24.9%和12.3%。LDPE熱解所得脂肪烴類物質(zhì)進(jìn)入AC孔道內(nèi),在其活性位點(diǎn)上發(fā)生了裂化、環(huán)化、低聚化和芳構(gòu)化等一系列反應(yīng)形成芳烴,同時(shí)釋放出大量的氫氣[12]。由圖4可知,LDPE催化熱解所得氫氣體積分?jǐn)?shù)高達(dá)94.4%。此外,氣體組分中還含有少量C1~C4烴類小分子,主要來源于LDPE分子鏈C-C鍵斷裂和脫甲基反應(yīng)。
AC作為催化劑催化熱解四種生物質(zhì)與LDPE混合物所得產(chǎn)物產(chǎn)率及分布情況如圖5所示。與理論計(jì)算值相比,四種混合物共催化熱解所得液體產(chǎn)率降低了8.7%~11.4%,氣體產(chǎn)率提高了22.6%~64.0%。從圖5a可知,四種混合物共催化熱解所得液體產(chǎn)率為40.3%~54.3%,其中液體產(chǎn)率最高的為纖維素/LDPE,而木質(zhì)素/LDPE共催化熱解所得液體產(chǎn)率最低。相反地,木質(zhì)素/LDPE中熱解炭的產(chǎn)率最高,約為25.0%。四種混合物的氣體產(chǎn)率由高到底依次為:DF/LDPE>木聚糖/LDPE>木質(zhì)素/LDPE>纖維素/LDPE。纖維素/LDPE和DF/LDPE兩種混合物共催化熱解過程中AC的結(jié)焦率較高,分別為8.0%和7.0%。根據(jù)三相產(chǎn)物的產(chǎn)率情況,分析原因可能是纖維素/LDPE和DF/LDPE在AC活性位點(diǎn)上發(fā)生催化反應(yīng)的熱解氣的量明顯高于其他兩種混合物,從而導(dǎo)致其結(jié)焦率較高。
由圖5b可知,四種混合物共催化熱解所得液體產(chǎn)物主要組分為單環(huán)芳烴、雙環(huán)芳烴和C9~C16脂肪烴類物質(zhì)。此外,還含有少量C16以上脂肪烴、三環(huán)芳烴和氧化物。AC催化熱解四種生物質(zhì)原料主要生成呋喃類和苯酚類等氧化物。然而,四種生物質(zhì)原料與LDPE共催化熱解后氧化物的質(zhì)量分?jǐn)?shù)僅為3.5%~6.4%,推測(cè)生物質(zhì)熱解組分與LDPE熱解組分在AC催化劑活性位點(diǎn)上發(fā)生了相互作用。Duan等[14]研究發(fā)現(xiàn)AC催化木質(zhì)素/皂角共熱解液體產(chǎn)物主要為芳烴和脂肪烴類物質(zhì),沒有檢測(cè)到酚類物質(zhì),他們認(rèn)為皂腳可作為供氫體在共熱解過程中產(chǎn)生大量的氫自由基,該自由基促進(jìn)了酚類物質(zhì)的脫甲氧基和脫羥基反應(yīng),從而形成芳烴。四種混合物中,木聚糖/LDPE液體產(chǎn)物中單環(huán)芳烴的質(zhì)量分?jǐn)?shù)最高為40.5%。纖維素/LDPE液體產(chǎn)物中主要包含單環(huán)芳烴和雙環(huán)芳烴,其質(zhì)量分?jǐn)?shù)分別為35.2%和34.7%。木質(zhì)素/LDPE和DF/LDPE液體產(chǎn)物中C9~C16脂肪烴類物質(zhì)的質(zhì)量分?jǐn)?shù)較高,分別為26.1%和21.3%。木質(zhì)素/LDPE的雙環(huán)芳烴質(zhì)量分?jǐn)?shù)明顯低于纖維素/LDPE和木聚糖/LDPE,這可能與生物質(zhì)熱解生成的氧化物類型有關(guān)。在以介孔結(jié)構(gòu)為主的AC催化劑作用下,呋喃類物質(zhì)更易在活性位點(diǎn)上發(fā)生脫氧、低聚等反應(yīng)生成多環(huán)芳烴。
四種混合物共催化熱解所得氣體產(chǎn)物分布情況如圖5c所示。從圖5c可以看出,氫氣是氣體產(chǎn)物的主要組成部分,其體積分?jǐn)?shù)保持在80.6%~91.9%范圍內(nèi)。這與HZSM-5催化生物質(zhì)與塑料共熱解所得氣體產(chǎn)物分布明顯不同,其主要為C1~C4烴類小分子、CO和CO2,H2的體積分?jǐn)?shù)較低[31-32]。AC催化所產(chǎn)生的氫氣主要來自于生物質(zhì)組分與LDPE組分熱解過程中脫氫。Xu等[33]利用Ni/生物炭催化生物質(zhì)與聚乙烯共熱解的研究表明,H2產(chǎn)率與混合物中聚乙烯的比例有關(guān),高的聚乙烯比例協(xié)同促進(jìn)了H2的生成。此外,混合物熱解氣在AC活性位點(diǎn)上發(fā)生芳構(gòu)化反應(yīng)形成芳烴的過程中也會(huì)釋放出大量的氫氣。四種混合物共催化熱解氣體產(chǎn)物中還含有少量C1~C4烴類小分子、CO和CO2等,分別來源于LDPE分子鏈斷裂和生物質(zhì)原料脫氧等??梢姡珹C催化生物質(zhì)與塑料混合物共熱解所得氣體主要組分為H2等可燃?xì)怏w,可直接在鍋爐中燃燒發(fā)電或供熱而不需要其他處理。
假設(shè)生物質(zhì)原料與LDPE共催化熱解過程中不存在任何相互作用,根據(jù)二者共催化熱解時(shí)的原料比例,以及二者單獨(dú)催化熱解所得產(chǎn)物的產(chǎn)率,計(jì)算了共催化熱解的理論值。表3對(duì)AC催化四種混合物共熱解所得產(chǎn)物的試驗(yàn)值與計(jì)算值進(jìn)行了比較。如表3所示,四種混合物共催化熱解所得液體產(chǎn)率的試驗(yàn)值均低于計(jì)算值,而氣體產(chǎn)率的試驗(yàn)值均高于計(jì)算值。這與Dyer等[34]的試驗(yàn)結(jié)果一致。例如纖維素/LDPE共催化熱解所得液體和氣體產(chǎn)率的試驗(yàn)值分別為54.3%和31.3%,而其計(jì)算值分別為61.3%和20.9%。與液體產(chǎn)率相似,四種混合物中熱解炭和催化劑焦炭產(chǎn)率的試驗(yàn)值也均低于計(jì)算值。上述結(jié)果說明,生物質(zhì)與LDPE熱解氣在AC催化劑活性位點(diǎn)上的相互作用促進(jìn)了其進(jìn)一步裂化生成小分子氣體,并抑制了焦炭的生成。四種生物質(zhì)原料熱解產(chǎn)物不同,因而其與LDPE共催化熱解過程的相互作用程度也不相同。
四種混合物共催化熱解所得液體產(chǎn)物組成的試驗(yàn)值與計(jì)算值存在明顯差異。單環(huán)芳烴、雙環(huán)芳烴和C9~C16脂肪烴類質(zhì)量分?jǐn)?shù)的試驗(yàn)值均高于計(jì)算值,而C16以上脂肪烴和氧化物質(zhì)量分?jǐn)?shù)的試驗(yàn)值明顯低于計(jì)算值。眾多研究表明,催化劑的存在協(xié)同促進(jìn)了生物質(zhì)與塑料共熱解所得芳烴的質(zhì)量分?jǐn)?shù),降低了氧化物的質(zhì)量分?jǐn)?shù)[35-36]。纖維素和木聚糖催化熱解所得氧化物主要為呋喃類物質(zhì),在共催化熱解過程中,呋喃類物質(zhì)可與LDPE裂化生成的小分子烯烴發(fā)生Diels-Alder反應(yīng)形成芳烴,同時(shí)釋放出大量的氫氣[32]。而木質(zhì)素催化熱解所得氧化物主要為苯酚類物質(zhì),在共催化熱解過程中,LDPE熱解生成的脂肪烴類物質(zhì)可作為供氫體,促進(jìn)苯酚類物質(zhì)發(fā)生脫甲氧基和脫羥基反應(yīng)形成芳烴,同時(shí)酚類自由基也促進(jìn)了烴類大分子(>C16)進(jìn)一步裂化生成輕質(zhì)烴類和芳烴??梢姡珹C催化劑作用下,生物質(zhì)原料與LDPE熱解氣之間主要發(fā)生Diels-Alder反應(yīng)和氫轉(zhuǎn)移反應(yīng)等相互作用,有助于芳烴和輕質(zhì)脂肪烴(C9~C16)的生成,實(shí)現(xiàn)了高含氧量液體產(chǎn)物向高熱值富烴燃油方向轉(zhuǎn)變。Xue等[16]利用 HZSM-5催化生物質(zhì)三組分與聚乙烯熱解得到了相似的結(jié)果,他們分析生物質(zhì)與塑料共催化熱解過程主要發(fā)生Diels-Alder反應(yīng)、烴池機(jī)理和氫轉(zhuǎn)移相互作用,促進(jìn)了單環(huán)芳烴的生成。然而,由于纖維素、木聚糖和木質(zhì)素的熱解產(chǎn)物不同,其與塑料之間的相互作用也存在一定差異。與HZSM-5不同的是,AC催化劑主要為介孔結(jié)構(gòu),在促進(jìn)單環(huán)芳烴生成的同時(shí)也顯著提高了多環(huán)芳烴的生成。
四種混合物共催化熱解所得氣體產(chǎn)物中,氫氣體積分?jǐn)?shù)的試驗(yàn)值明顯高于其計(jì)算值,而CO和CO2體積分?jǐn)?shù)的試驗(yàn)值均低于其計(jì)算值。這可能是由于生物質(zhì)組分與LDPE共催化熱解過程中的Diels-Alder反應(yīng)和氫轉(zhuǎn)移反應(yīng)等相互作用促進(jìn)了氧原子以H2O的形式脫除。Li等[8]也研究發(fā)現(xiàn)生物質(zhì)與塑料共催化熱解過程中的相互作用降低了CO和CO2的生成。綜合上述結(jié)果可知,生物質(zhì)組分與LDPE熱解氣在AC催化劑作用下存在明顯的相互作用,有利于富烴燃油和富氫燃?xì)獾纳?,其中纖維素/LDPE和木聚糖/LDPE的相互作用程度稍高于木質(zhì)素/LDPE。
表3 四種混合物共催化熱解所得產(chǎn)物試驗(yàn)值與計(jì)算值比較
1)AC催化劑作用下,四種生物質(zhì)熱解液體產(chǎn)率由高到底依次為纖維素(55.0%)、木聚糖(36.0%)、DF(32.0%)、木質(zhì)素(22.5%);纖維素和木聚糖催化熱解所得液體產(chǎn)物主要為呋喃類物質(zhì),氣體產(chǎn)物主要為CO和CO2,木質(zhì)素?zé)峤馑靡后w產(chǎn)物主要為簡(jiǎn)單酚類物質(zhì),氣體產(chǎn)物主要為H2和CO2。AC催化LDPE熱解所得液體主要組分為芳烴和輕質(zhì)脂肪烴(C9~C16),氣體主要組分為H2(94.4%)。
2)四種混合物共催化熱解所得液體產(chǎn)率降低了8.7%~11.4%,氣體產(chǎn)率提高了22.6%~64.0%。纖維素/LDPE和木聚糖/LDPE共催化熱解過程的相互作用主要為呋喃類物質(zhì)與小分子烯烴之間發(fā)生Diels-Alder反應(yīng),而木質(zhì)素/LDPE共催化熱解過程的相互作用主要為氫轉(zhuǎn)移反應(yīng),促進(jìn)了酚類物質(zhì)脫羥基和脫甲氧基反應(yīng)。上述相互作用促進(jìn)了芳烴和輕質(zhì)脂肪烴(C9~C16)的生成,同時(shí)釋放出大量的氫氣(80.6%~91.9%)。
[1] 劉永強(qiáng),王志奇,吳晉滬,等. 銅基載氧體與可燃固體廢棄物化學(xué)鏈燃燒特性研究[J]. 燃料化學(xué)學(xué)報(bào),2013,41(9):1056-1063.
Liu Yongqiang, Wang Zhiqi, Wu Jinhu, et al. Investigation on Cu-based oxygen carrier for chemical looping combustion of combustible solid waste[J]. Journal of Fuel Chemistry and Technology, 2013, 41(9): 1056-1063. (in Chinese with English abstract)
[2] Jin Q, Wang X, Li S, et al. Synergistic effects during co-pyrolysis of biomass and plastic: Gas, tar, soot, char products and thermogravimetric study[J]. Journal of the Energy Institute. 2019, 92(1): 108-117.
[3] Yuan H, Fan H, Shan R, et al. Study of synergistic effects during co-pyrolysis of cellulose and high-density polyethylene at various ratios[J]. Energy Conversion and Management, 2018, 157: 517-526.
[4] Ephraim A, Pham M D P, Lebonnois D, et al. Co-pyrolysis of wood and plastics: Influence of plastic type and content on product yield, gas composition and quality[J]. Fuel, 2018, 231: 110-117.
[5] Hassan H, Hameed B H, Lim J K. Co-pyrolysis of sugarcane bagasse and waste high-density polyethylene: Synergistic effect and product distributions[J]. Energy, 2020, 191: 116545.
[6] Sharypov V I, Beregovtsova N G, Kuznetsov B N, et al. Co-pyrolysis of wood biomass and synthetic polymers mixtures. Part iii: Characterisation of heavy products[J]. Journal of Analytical and Applied Pyrolysis, 2003, 67(2): 325-340.
[7] Dorado C, Mullen C A, Boateng A A. H-ZSM5 catalyzed co-pyrolysis of biomass and plastics[J]. ACS Sustainable Chemistry & Engineering, 2014, 2(2): 301-311.
[8] Li X, Li J, Zhou G, et al. Enhancing the production of renewable petrochemicals by co-feeding of biomass with plastics in catalytic fast pyrolysis with ZSM-5 zeolites[J]. Applied Catalysis A: General, 2014, 481: 173-182.
[9] Lam E, Luong J H T. Carbon materials as catalyst supports and catalysts in the transformation of biomass to fuels and chemicals[J]. ACS Catalysis, 2014, 4(10): 3393-3410.
[10] 董慶,牛淼淼,畢冬梅,等. 微波輻照下活性炭載鐵催化劑催化熱解竹材特性研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(2):235-241.
Dong Qing, Niu Miaomiao, Bi Dongmei, et al. Study on microwave pyrolysis properties of bamboo by using activated carbon-supported iron catalyst[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(2): 235-241. (in Chinese with English abstract)
[11] Lu Q, Ye X, Zhang Z, et al. Catalytic fast pyrolysis of sugarcane bagasse using activated carbon catalyst in a hydrogen atmosphere to selectively produce 4-ethyl phenol[J]. Journal of Analytical and Applied Pyrolysis, 2018, 136: 125-131.
[12] Zhang Y, Duan D, Lei H, et al. Jet fuel production from waste plastics via catalytic pyrolysis with activated carbons[J]. Applied Energy, 2019, 251: 113337.
[13] Mateo W, Lei H, Villota E, et al. Synthesis and characterization of sulfonated activated carbon as a catalyst for bio-jet fuel production from biomass and waste plastics[J]. Bioresource Technology, 2020, 297: 122411.
[14] Duan D, Zhang Y, Lei H, et al. Renewable jet-fuel range hydrocarbons production from co-pyrolysis of lignin and soapstock with the activated carbon catalyst[J]. Waste Management, 2019, 88: 1-9.
[15] Lin X, Lei H, Huo E, et al. Enhancing jet fuel range hydrocarbons production from catalytic co-pyrolysis of douglas fir and low-density polyethylene over bifunctional activated carbon catalysts[J]. Energy Conversion and Management, 2020, 211: 112757.
[16] Xue Y, Kelkar A, Bai X. Catalytic co-pyrolysis of biomass and polyethylene in a tandem micropyrolyzer[J]. Fuel, 2016, 166: 227-236.
[17] Lin X, Zhang Z, Wang Q, et al. Interactions between biomass-derived components and polypropylene during wood–plastic composite pyrolysis[J/OL]. Biomass Conversion and Biorefinery, 2020. DOI: 10.1007/ s13399-020-00861-4
[18] Yeung P T, Chung P Y, Tsang H C, et al. Preparation and characterization of bio-safe activated charcoal derived from coffee waste residue and its application for removal of lead and copper ions[J]. RSC Advances. 2014, 4: 38839-38847.
[19] Villota E M, Lei H, Qian M, et al. Optimizing microwave-assisted pyrolysis of phosphoric acid-activated biomass: Impact of concentration on heating rate and carbonization time[J]. ACS Sustainable Chemistry & Engineering. 2017, 6(1): 1318-1326.
[20] Prahas D, Kartika Y, Indraswati N, et al. Activated carbon from jackfruit peel waste by h3po4 chemical activation: Pore structure and surface chemistry characterization[J]. Chemical Engineering Journal. 2008, 140(1/2/3): 32-42.
[21] Puziy A M, Poddubnaya O I, Socha R P, et al. XPS and NMR studies of phosphoric acid activated carbons[J]. Carbon. 2008, 46(15): 2113-2123.
[22] Stefanidis S D, Kalogiannis K G, Iliopoulou E F, et al. A study of lignocellulosic biomass pyrolysis via the pyrolysis of cellulose, hemicellulose and lignin[J]. Journal of Analytical and Applied Pyrolysis. 2014, 105: 143-150.
[23] Wu Y, Wu S, Zhang H, et al. Cellulose-lignin interactions during catalytic pyrolysis with different zeolite catalysts[J]. Fuel Processing Technology, 2018, 179: 436-442.
[24] Li W, Wang D, Zhu Y, et al. Efficient ex-situ catalytic upgrading of biomass pyrolysis vapors to produce methylfurans and phenol over bio-based activated carbon[J]. Biomass and Bioenergy, 2020, 142: 105794.
[25] Patwardhan P R, Satrio J A, Brown R C, et al. Product distribution from fast pyrolysis of glucose-based carbohydrates[J]. Journal of Analytical and Applied Pyrolysis, 2009, 86(2): 323-330.
[26] Shen D K, Gu S. The mechanism for thermal decomposition of cellulose and its main products[J]. Bioresour Technol, 2009, 100(24): 6496-6504.
[27] Zhang Y, Lei H, Yang Z, et al. From glucose-based carbohydrates to phenol-rich bio-oils integrated with syngas production via catalytic pyrolysis over an activated carbon catalyst[J]. Green Chemistry, 2018, 20(14): 3346-3358.
[28] Zhang Y, Lei H, Yang Z, et al. Renewable high-purity mono-phenol production from catalytic microwave-induced pyrolysis of cellulose over biomass-derived activated carbon catalyst[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(4): 5349-5357.
[29] Shen D K, Gu S, Luo K H, et al. The pyrolytic degradation of wood-derived lignin from pulping process[J]. Bioresource Technology, 2010, 101(15): 6136-6146.
[30] Duan D, Lei H, Wang Y, et al. Renewable phenol production from lignin with acid pretreatment and ex-situ catalytic pyrolysis[J]. Journal of Cleaner Production, 2019, 231: 331-340.
[31] Kim Y M, Jae J, Kim B S, et al. Catalytic co-pyrolysis of torrefied yellow poplar and high-density polyethylene using microporous HZSM-5 and mesoporous Al-MCM-41 catalysts[J]. Energy Conversion and Management, 2017, 149: 966-973.
[32] Li X, Zhang H, Li J, et al. Improving the aromatic production in catalytic fast pyrolysis of cellulose by co-feeding low-density polyethylene[J]. Applied Catalysis A: General, 2013, 455: 114-121.
[33] Xu D, Xiong Y, Zhang S, et al. The synergistic mechanism between coke depositions and gas for h2 production from co-pyrolysis of biomass and plastic wastes via char supported catalyst[J]. Waste Management, 2021, 121: 23-32.
[34] Dyer A C, Nahil M A, Williams P T. Catalytic co-pyrolysis of biomass and waste plastics as a route to upgraded bio-oil[J]. Journal of the Energy Institute, 2021, 97: 27-36.
[35] Lee H W, Kim Y M, Jae J, et al. Production of aromatic hydrocarbons via catalytic co-pyrolysis of torrefied cellulose and polypropylene[J]. Energy Conversion and Management, 2016, 129: 81-88.
[36] Fan L, Chen P, Zhang Y, et al. Fast microwave-assisted catalytic co-pyrolysis of lignin and low-density polyethylene with HZSM-5 and MgO for improved bio-oil yield and quality[J]. Bioresource Technology, 2017, 225: 199-205.
Catalytic co-pyrolysis of biomass and low-density polyethylene over activated carbon catalyst
Lin Xiaona1, Lei Hanwu2※, Yi Weiming1, Cai Hongzhen1, Chen Xiaoyun1, Guo Yadong1
(1.,,255000,; 2.,,,WA 99354-1671,USA)
This study aims to explore the interaction of biomass components and plastics in the catalytic co-pyrolysis over the Activated Carbon (AC) catalyst. A fixed bed reactor was used to conduct the catalytic pyrolysis of cellulose, xylan, lignin, Douglas Fir (DF) alone, and the catalytic co-pyrolysis of their mixture with Low-Density Polyethylene (LDPE) over AC catalyst. AC catalyst was prepared via phosphoric acid activation followed by microwave carbonization. The obtained AC catalyst was characterized by a Fourier-transform infrared spectroscopy (FTIR), Brunauer-Emmett-Teller (BET), temperature-programmed desorption of ammonia (NH3-TPD), and scanning electron microscopy (SEM). The main surface functional groups of AC were -OH (3 400 cm-1), -C-H (2 950 cm-1), -C=O (1 700 cm-1), -C=C (1 550 cm-1, 880 cm-1), and -CH-Ar (750 cm-1). Notably, the functional groups of -C-O-P (1 150 cm-1) and -P-O (1 050 cm-1) were successfully introduced in the catalyst, providing effectively active sites for the cracking and aromatization reactions to form aromatics. The BET surface area of AC was 1 440.0 m2/g, with a much higher external surface area of 1 412.8 m2/g and a lower micropore surface area of 27.2 m2/g. The total pore volume of AC was 0.86 cm3/g with low micropore volume. The peak at 100-200 ℃ was the weak acid site, which attributed to the weakly absorbed NH3on the external surface of AC catalyst, whereas, the peak at 200~300oC corresponded to the medium strength acid sites. The surface morphology of AC catalyst exhibited an irregular pore structure, due mainly to the chemical activation by phosphoric acid created the porosity in biomass matrix via the release of volatiles, shrinkage, fusion, and cracking reactions. Furthermore, the liquid yield was obtained from the catalytic pyrolysis of different feedstocks in the catalysis of AC catalyst. The order was ranked: Cellulose (55.0%) >xylan (36.0%) > DF (32.0%) > lignin (22.5%). The highest yield of char was obtained from the lignin pyrolysis, whereas, the pyrolysis of DF produced the maximum yield of gas. The catalytic pyrolysis of cellulose and xylan produced mainly furans, accounting for 78.6% and 83.2%, respectively. The main products of lignin pyrolysis were sample phenols. CO and CO2were the main gas components during catalytic pyrolysis of cellulose, indicating that carbonylation and decarboxylation reactions were dominant at the active sites of the AC catalyst. The gas composition of lignin was H2and CO2, which were from the dehydrogenation and decarboxylation reactions of side chains of lignin structural units. The results were attributed to the different structures and compositions of biomass feedstocks. The catalytic pyrolysis of LDPE produced aromatics and C9-C16hydrocarbons as the main liquid product and H2as the main gas products. The experimental liquid yield of four mixtures was reduced by 8.7%-11.4%, while the gas yield increased by 22.6%-64.0%, compared with the simulated. The content of aromatics and light aliphatic hydrocarbons (C9-C16) increased in liquid products, whereas, the content of oxygenates decreased significantly. The H2content increased, whereas, the contents of CO and CO2decreased in gas products, indicating that there were interactions between biomass components and LDPE during catalytic co-pyrolysis. The interactions of cellulose /LDPE and hemicellulose /LDPE were mainly Diels-Alder reactions between furans and olefins, while the interaction of lignin and LDPE was mainly hydrogen transfer reaction, which promoted the dehydroxylation and demethoxylation reactions of phenols. These interactions greatly contributed to the formation of aromatic hydrocarbons and light aliphatic hydrocarbons (C9-C16), meanwhile, a large amount of hydrogen (80.6%-91.9%) was released.
biomass; plastics; activated carbon; co-pyrolysis; catalysis
林曉娜,雷寒武,易維明,等. 活性炭催化生物質(zhì)與低密度聚乙烯共熱解[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(15):189-196.doi:10.11975/j.issn.1002-6819.2021.15.023 http://www.tcsae.org
Lin Xiaona, Lei Hanwu, Yi Weiming, et al. Catalytic co-pyrolysis of biomass and low-density polyethylene over activated carbon catalyst[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(15): 189-196. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.15.023 http://www.tcsae.org
2021-02-23
2021-06-02
國家自然科學(xué)基金青年基金項(xiàng)目(51806129);國家重點(diǎn)研發(fā)項(xiàng)目(2019YFD1100600)
林曉娜,博士,副教授,研究方向?yàn)榈湫凸虖U高值化利用。Email:linxiaona1120@163.com
雷寒武,博士,副教授,研究方向?yàn)樯镔|(zhì)高值化利用研究。Email:hlei@wsu.edu.cn
10.11975/j.issn.1002-6819.2021.15.023
TK6
A
1002-6819(2021)-15-0189-08