馬瑛駿,萬 辰,張克強(qiáng),姜海斌,王 風(fēng),沈仕洲
農(nóng)田排水口高度對地表徑流氮磷流失的影響
馬瑛駿1,2,3,萬 辰1,3,4,張克強(qiáng)1,3,姜海斌1,3,王 風(fēng)1,3,沈仕洲1,3※
(1. 農(nóng)業(yè)農(nóng)村部環(huán)境保護(hù)科研監(jiān)測所,天津 300191; 2. 東北農(nóng)業(yè)大學(xué)資源與環(huán)境學(xué)院,哈爾濱 150030;3. 國家農(nóng)業(yè)環(huán)境大理觀測實(shí)驗(yàn)站,大理 671004; 4. 云南農(nóng)業(yè)大學(xué)資源與環(huán)境學(xué)院,昆明 650201)
洱海流域農(nóng)田徑流氮磷污染嚴(yán)重,大量氮磷污染物隨雨水進(jìn)入洱海,導(dǎo)致洱海水質(zhì)雨季下降。為從源頭控制氮磷污染物的輸出,該研究采用人工模擬降雨的方法,探究5、10、15、20、25 cm 5種不同高度的排水口對農(nóng)田徑流氮磷流失的控制作用。結(jié)果表明,農(nóng)田排水口較低會造成產(chǎn)流初期硝態(tài)氮和顆粒態(tài)氮濃度升高,將排水口高度提高到15 cm以上可有效降低徑流中各形態(tài)氮磷濃度,并穩(wěn)定在較低水平;排水口高度從5 cm提高至15~25 cm產(chǎn)流中總氮、顆粒態(tài)氮、銨態(tài)氮、硝態(tài)氮流失量分別降低了85.60%~93.13%、88.39%~95.77%、84.59%~91.72%、63.05%~65.15%,總磷、顆粒態(tài)磷流失量分別降低了86.75%~92.66%,61.64%~94.61%,且排水口設(shè)置在15 cm高度處氮、磷流失量削減效果突出,在15 cm基礎(chǔ)上繼續(xù)提高排水口不會對氮磷流失量產(chǎn)生明顯影響。綜上所述,將排水口提高到15~25 cm對農(nóng)田徑流污染控制效果優(yōu)越。結(jié)合洱海流域多年降雨資料及建設(shè)成本,推薦將農(nóng)田排水口設(shè)置于距土壤表面15 cm高度處,對控制農(nóng)田養(yǎng)分流失,減少面源污染起到顯著效果。
農(nóng)田;徑流;排水口高度;模擬降雨;氮磷流失
農(nóng)田徑流污染是指在雨水的沖刷作用下,大氣沉降物及農(nóng)田里各種污染物質(zhì)隨徑流進(jìn)入水體環(huán)境造成的污染[1],是農(nóng)業(yè)面源污染的主要來源[2-3],也是引起水體富營養(yǎng)化的重要原因[4]。近年來,國內(nèi)外學(xué)者針對農(nóng)田徑流污染展開了大量研究,2015年美國環(huán)保局[5]發(fā)布數(shù)據(jù)顯示農(nóng)田徑流污染對水資源污染的貢獻(xiàn)率接近50%,更是河流氮的主要來源(占70%)。根據(jù)中國2020年發(fā)布的《第二次全國污染源普查公報(bào)》[6]顯示農(nóng)田徑流產(chǎn)生的總氮排放量達(dá)71.95萬t,總磷排放量達(dá)7.6萬t,占農(nóng)業(yè)源總氮排放量的51.2%,總磷排放量的35.4%。洱海地處西南山區(qū),降雨量大,且降雨比較集中,是典型的徑流易發(fā)區(qū),項(xiàng)頌等[7]研究表明2019年洱海流域農(nóng)田徑流總氮、總磷排放量為1 173.8、100.7 t,在總等標(biāo)污染負(fù)荷中占比最高,為42.6%和38.8%。研究表明,在作物種植期間,少數(shù)幾次大的流失事件往往決定了氮磷等養(yǎng)分的年流失總量,高超等[8]研究發(fā)現(xiàn)施肥后立即降雨會導(dǎo)致磷素大量流失,單次流失量達(dá)到當(dāng)季總流失量的39.8%,三次強(qiáng)降雨中磷的流失量占整季磷流失量的72.0%。因此,控制由強(qiáng)降雨引發(fā)的徑流氮磷流失極為關(guān)鍵,對農(nóng)田面源污染防控具有重要意義。
洱海是云南省第二大高原淡水湖,是國家重點(diǎn)保護(hù)水域,是大理人民的飲用水源,受自然條件和人類活動加劇的影響,近年來洱海水質(zhì)呈現(xiàn)旱季較好、雨季超標(biāo),水體富營養(yǎng)化程度逐步加重等特點(diǎn)[9-11]。氮、磷是引起水體富營養(yǎng)化的主要因子。洱海流域?yàn)榈湫托缘霓r(nóng)業(yè)流域,水稻種植面積大,占該流域總面積的10%左右,且水稻種植季正處該流域年內(nèi)降雨高峰月份,暴雨事件多發(fā),由此引發(fā)的農(nóng)田營養(yǎng)鹽流失是影響洱海水質(zhì)雨季下降的關(guān)鍵環(huán)境因子[12-14]。目前,針對洱海流域農(nóng)田氮磷流失的問題已展開大量研究,研究主要側(cè)重于施肥管理和輪作模式[15-18],而利用農(nóng)田排水口進(jìn)行防控的研究鮮有報(bào)道。農(nóng)田排水口是農(nóng)田水利設(shè)施的組成部分之一,具有防洪排澇、灌溉排水等功能,同時(shí)也是陸源污染物進(jìn)入江河、湖泊等水體的通道[19]。因此,通過提高排水口高度減少降雨產(chǎn)生的農(nóng)田排水,可為削減氮磷等營養(yǎng)物質(zhì)的輸出提供有效方法。基于以上背景,該研究采用人工模擬降雨的方法,根據(jù)該流域農(nóng)田排水口高度設(shè)計(jì)5種不同高度的排水口,在流域最大降雨強(qiáng)度70 mm/h條件下探究洱海流域農(nóng)田徑流氮磷流失特征,篩選有效控制農(nóng)田徑流污染的排水口高度,為洱海流域農(nóng)田排水口高度的設(shè)定提供科學(xué)依據(jù)。
供試土壤取自國家農(nóng)業(yè)環(huán)境大理觀測實(shí)驗(yàn)站(北緯25°53′34″,東經(jīng)100°10′27″),0~20 cm供試土壤pH值為7.2、容重為1.4 g/cm3、有機(jī)質(zhì)含量為36.2 g/kg、全氮為3.1 g/kg、全磷為0.9 g/kg、有效磷為35.3 g/kg。根據(jù)洱海流域農(nóng)業(yè)施肥習(xí)慣,選用YNFHFL2021-00345復(fù)合肥,N+P2O5+K2O≥25%,配比為13:5:7,施肥水平N 195 kg/hm2、P2O575 kg/hm2、K2O 105 kg/hm2。
模擬降雨試驗(yàn)在國家農(nóng)業(yè)環(huán)境大理觀測實(shí)驗(yàn)站降雨廳內(nèi)進(jìn)行,采用南京南林電子科技有限公司NLJY-10人工模擬降雨系統(tǒng),共設(shè)4組降雨噴頭,每組由3種不同大小的噴頭組成,降雨區(qū)域?yàn)? m×4 m,雨強(qiáng)在15~240 mm/h范圍內(nèi)連續(xù)可調(diào),降雨均勻度系數(shù)大于88%。大理州氣象局發(fā)布的氣候公報(bào)[20-21]顯示該流域降雨高峰期(7-8月)暴雨事件多發(fā),最大降雨強(qiáng)度達(dá)70 mm/h,結(jié)合試驗(yàn)?zāi)康模_定70 mm/h為本試驗(yàn)?zāi)M降雨強(qiáng)度。試驗(yàn)土槽箱結(jié)構(gòu)如圖1所示,規(guī)格為0.70 m×0.50 m× 0.55 m(長×寬×高)。根據(jù)洱海流域農(nóng)田排水口高度實(shí)測結(jié)果(距土壤表面5~10 cm)和降雨高峰期水稻植株高度(50~100 cm),設(shè)置5種不同高度的排水口,排水口底端距土壤表面5、10、15、20、25 cm記為H1、H2、H3、H4、H5。共計(jì)5個(gè)處理,每個(gè)處理設(shè)3次重復(fù)。
將采集的0~20 cm土壤充分混勻,填充于15個(gè)土槽箱中,測定土壤容重為1.4 g/cm3。土壤填充后,向土槽箱內(nèi)注入自來水,直至田面水深度達(dá)到5 cm,并對自來水進(jìn)行各形態(tài)氮磷濃度檢測,自來水總氮濃度為0.66 mg/L,顆粒態(tài)氮濃度為0.14 mg/L,銨態(tài)氮濃度為0.21 mg/L,硝態(tài)氮濃度為0.28 mg/L,總磷濃度為0.10 mg/L,顆粒態(tài)磷濃度為0.03 mg/L。將復(fù)合肥均勻撒入土槽箱內(nèi),靜置一周后對箱內(nèi)田面水進(jìn)行氮磷濃度測定,田面水總氮濃度為63.59 mg/L,顆粒態(tài)氮濃度為14.32 mg/L,銨態(tài)氮濃度為38.65 mg/L,硝態(tài)氮濃度為1.34 mg/L,總磷濃度為7.71 mg/L,顆粒態(tài)磷濃度為0.73 mg/L。降雨開始后,記錄每個(gè)土槽箱的初始產(chǎn)流時(shí)間,產(chǎn)流后進(jìn)行60min徑流取樣,前30min內(nèi)每5 min采集一次徑流,后30min每隔10 min采集一次,同時(shí)記錄流量。降雨結(jié)束后,記錄停止產(chǎn)流時(shí)間。將收集的徑流液帶回實(shí)驗(yàn)室進(jìn)行分析測定,徑流液總氮(Total Nitrogen,TN)含量采用堿性過硫酸鉀紫外分光光度法,總磷(Total Phosphorus,TP)采用鉬酸銨分光光度法測定;將水樣經(jīng)0.45m濾膜過濾后用紫外分光光度法、納氏試劑分光光度法、堿性過硫酸鉀紫外分光光度法、鉬酸銨分光光度法測定濾液中硝態(tài)氮(Nitrate Nitrogen,NO-3-N)、銨態(tài)氮(Ammonium Nitrogen,NH+4-N)、溶解態(tài)總氮(Total Dissolved Nitrogen,TDN)和溶解態(tài)總磷(Total Dissolved Phosphorus,TDP)含量;徑流液中顆粒態(tài)氮(Particulate Nitrogen,PN)和顆粒態(tài)磷(Particulate Phosphorus,PP)的含量利用差減法計(jì)算得出。
采用Excel 2019進(jìn)行數(shù)據(jù)處理和圖表制作,SAS 9.0軟件對數(shù)據(jù)進(jìn)行方差分析(顯著性差異水平設(shè)置為 0.05)和相關(guān)性分析。
圖2顯示了不同的排水口初始產(chǎn)流時(shí)間,H5初始產(chǎn)流所需時(shí)間最長,平均達(dá)到186.44 min,顯著高于其他4組。H1與田面水高度接近,初始產(chǎn)流所需時(shí)間最短,在降雨后2~3 min立即開始產(chǎn)流。初始產(chǎn)流時(shí)間與排水口高度之間呈對數(shù)關(guān)系。
圖3展示了5種不同高度的排水口所產(chǎn)徑流中總氮、銨態(tài)氮、硝態(tài)氮、顆粒態(tài)氮的濃度變化趨勢。由圖3a可知H1在產(chǎn)流過程中總氮濃度從63.90 mg/L下降至23.34 mg/L,且產(chǎn)流60 min內(nèi)各時(shí)段總氮濃度均顯著高于其他處理;H2產(chǎn)流過程中總氮濃度表現(xiàn)為平緩下降趨勢,濃度從36.01 mg/L降低至18.72 mg/L;H3、H4、H5在產(chǎn)流過程中總氮濃度無顯著性變化,濃度均穩(wěn)定在2.22~6.91 mg/L內(nèi)。圖3b展示了銨態(tài)氮濃度的變化趨勢,H1、H2徑流中銨態(tài)氮濃度呈現(xiàn)平緩下降趨勢;H3、H4、H5在產(chǎn)流過程中銨態(tài)氮濃度無顯著變化,穩(wěn)定在1.53~3.85 mg/L范圍內(nèi),且各時(shí)段濃度均顯著低于H1、H2。圖3c、3d顯示了硝態(tài)氮、顆粒態(tài)氮濃度變化趨勢,分析發(fā)現(xiàn)H3、H4、H5在產(chǎn)流60 min內(nèi)硝態(tài)氮、顆粒態(tài)氮濃度均保持在0.30~0.55、0.15~6.28 mg/L范圍內(nèi),呈穩(wěn)定狀態(tài);而H1在產(chǎn)流過程中硝態(tài)氮、顆粒態(tài)氮濃度則隨著產(chǎn)流時(shí)間的增加呈現(xiàn)先上升后下降的趨勢,經(jīng)分析,H1中硝態(tài)氮濃度和顆粒態(tài)氮濃度之間相關(guān)性系數(shù)達(dá)到0.949,相關(guān)性強(qiáng)。
圖4a可知,H1產(chǎn)流中總磷濃度不斷下降,從5.98 mg/L下降至2.17 mg/L;H2中總磷濃度呈現(xiàn)平緩下降趨勢,且H1、H2在產(chǎn)流60 min內(nèi)各時(shí)段總磷濃度顯著高于其他3組;H3、H4、H5徑流中總磷的濃度隨產(chǎn)流時(shí)間的增加未發(fā)生明顯變化,濃度穩(wěn)定在0.20~0.48 mg/L。圖4b展示了顆粒態(tài)磷濃度變化趨勢,H1產(chǎn)流過程中顆粒態(tài)磷濃度不斷降低,從0.93 mg/L降至0.13 mg/L;而H2、H3、H4、H5產(chǎn)流中顆粒態(tài)磷濃度相接近,且各時(shí)段無明顯變化。
由圖5可知,提高農(nóng)田排水口高度能夠顯著降低氮磷流失量。圖5a、5b中H5總氮、顆粒態(tài)氮、銨態(tài)氮、硝態(tài)氮流失量最低分別為1.77、0.52、1.06、0.21 kg/hm2;H1總氮、顆粒態(tài)氮、銨態(tài)氮、硝態(tài)氮流失量最高分別為25.80、12.29、12.84、0.62 kg/hm2。對于磷素,圖5c,H4、H5總磷、顆粒態(tài)磷的流失量最低分別為0.15~0.16、0.01~0.02 kg/hm2;H1總磷、顆粒態(tài)磷流失量最高分別為1.98和0.22 kg/hm2。
整體分析發(fā)現(xiàn),5個(gè)處理中顆粒態(tài)氮、磷流失量明顯低于溶解態(tài)總氮、磷流失量,經(jīng)計(jì)算,溶解態(tài)總氮、磷的流失量可達(dá)到總氮、磷流失量的52.37%~83.64%和67.83%~92.29%;銨態(tài)氮流失量明顯高于硝態(tài)氮流失量,銨態(tài)氮流失量占總氮的47.85%~80.80%,硝態(tài)氮流失量僅占2.15%~11.80%。
排水口高度變化對氮磷流失削減率的影響如表1所示。首先,對總氮、總磷流失量削減率進(jìn)行分析,排水口高度從距離土壤表面5 cm提高到15 cm高度處時(shí)總氮、總磷流失削減效果突出,削減率達(dá)到85%以上,與排水口提高到10 cm高度處相比總氮、總磷流失削減率提高了43.43% 和47.41%;排水口高度從5 cm提高到20、25 cm高度處時(shí)總氮、總磷流失量削減率達(dá)到91%以上,削減效果最好,但與排水口提高到15 cm高度處相比削減率僅提高了5.82~7.53個(gè)百分點(diǎn),削減率提升幅度很小。再對不同形態(tài)氮磷流失量削減率進(jìn)行分析,排水口高度從5 cm提高到25 cm高度處時(shí)銨態(tài)氮、硝態(tài)氮流失量削減率最高,削減率分別為91.72%和65.15%,同樣在排水口提高到15 cm高度處時(shí)削減率基本穩(wěn)定,分別達(dá)到84.59%和64.49%。顆粒態(tài)氮流失量削減率在排水口提高到10 cm高度處時(shí)到達(dá)80.14%,削減效果突出,繼續(xù)將排水口提高到15~25 cm高度處顆粒態(tài)氮流失量削減率僅有8.25~15.62個(gè)百分點(diǎn)的提升空間。顆粒態(tài)磷流失量削減率在排水口提高到20 cm高度處時(shí)基本達(dá)到穩(wěn)定值90.98%,此后繼續(xù)提高排水口高度對顆粒態(tài)磷流失量削減率的影響較低。
表1 不同高度農(nóng)田排水口產(chǎn)流中各形態(tài)氮、磷流失量的削減率
注: “5→10”表示排水口從5 cm提高至10 cm,其余類似。
Note: ‘5→10’ indicates that the drainage outlet increases from 5 cm to 10 cm, other similar.
田面水對地表有保護(hù)作用,可使土壤表層免受雨水直接沖擊,5 cm的排水口高度較低,田面水少,受雨水沖擊后淺層土壤被剝離,釋放出細(xì)顆粒態(tài)氮;硝態(tài)氮在土壤中形態(tài)較為穩(wěn)定,與土壤顆粒之間的作用力較弱,在雨水的沖刷下極易流失[22-24]。因此,本研究中排水口高度為5 cm的處理組在降雨初期產(chǎn)流中硝態(tài)氮和顆粒態(tài)氮濃度先上升,后隨著降雨時(shí)間增加,雨水積累,田面水上升,土壤緊實(shí)度增加,不易被剝離,硝態(tài)氮和顆粒態(tài)氮濃度開始下降。
試驗(yàn)中氮磷主要的流失形式是溶解態(tài),溶解態(tài)總氮流失量占總氮流失量的52.37%~83.64%,溶解態(tài)總磷占總磷流失量的67.83%~92.29%;銨態(tài)氮流失總量顯著大于硝態(tài)氮,其中銨態(tài)氮流失量占總氮流失量的47.85%~80.80%,硝態(tài)氮流失量僅占2.15%~11.80%,說明總氮流失的主要形式是銨態(tài)氮。這一結(jié)果與前人研究結(jié)論一致[25-27],原因是化肥中的氮磷主要以無機(jī)態(tài)形式存在,遇水極易轉(zhuǎn)化為溶解態(tài)氮磷,直接撒施固體復(fù)合肥可使田面水中溶解態(tài)氮磷濃度迅速升高,極易隨徑流損失;另一方面,隨著雨水的不斷積累,田面水上升,表層土免受雨水直接沖擊,因此顆粒態(tài)氮、磷流失程度較低。
由于洱海流域水稻種植季正處該流域年內(nèi)降雨高峰月份(5-10月),降雨量占全年的75.26%~91.40%(1989-2019年),多年最大月降雨量達(dá)到356.0 mm(1999年8月),雨季月均降雨量為147.9 mm,24 h降雨量超過50 mm的強(qiáng)降雨情況時(shí)有發(fā)生[12],結(jié)合不同高度農(nóng)田排水口對氮磷流失的削減效果,將排水口從5 cm提高至15 cm削減效果突出,總氮流失量降低85.60%,總磷流失量降低86.75%;在15 cm基礎(chǔ)上繼續(xù)提高排水口高度對氮磷流失削減效果影響很小。因此,在距離土壤表面15 cm高度處設(shè)置農(nóng)田排水口最合適。段四喜等[28]通過生態(tài)攔截系統(tǒng)對洱海流域農(nóng)田尾水進(jìn)行凈化,研究結(jié)果顯示生態(tài)溝渠+表流庫塘系統(tǒng)對污染物總氮、總磷削減效果最好,削減率為59.70%、55.90%。姜海斌等[29]通過探究洱海流域水稻種植的合理施肥模式減少農(nóng)田徑流氮磷流失,結(jié)果顯示有機(jī)無機(jī)配施總氮流失量降低31.60%~40.40%,但會引起籽粒產(chǎn)量下降11.80%~42.90%。楊世琦等[30]通過模擬試驗(yàn)探究了植物籬埂壟向區(qū)田技術(shù)對農(nóng)田徑流氮磷流失的控制作用,結(jié)果表明植物籬埂處理農(nóng)田氮流失平均降低了19.70%。姚金玲等[31]則是通過探究合理的輪作與施肥方式對農(nóng)田土壤徑流氮磷損失進(jìn)行控制,結(jié)果表明施用相應(yīng)作物專用緩釋摻混肥能夠有效降低土壤徑流氮磷損失,削減率達(dá)到10.70%~28.80%和17.10%~47.90%。對比以上氮磷減排措施,本研究中通過提高農(nóng)田排水高度,氮磷流失削減率可達(dá)到85%以上,是一種較為有效的氮磷減排措施,對農(nóng)業(yè)面源污染防治有一定價(jià)值。
1)農(nóng)田排水口較低會造成產(chǎn)流初期硝態(tài)氮和顆粒態(tài)氮濃度升高,將排水口高度提高到15 cm以上可有效降低徑流中各形態(tài)氮磷濃度,并穩(wěn)定在較低水平。
2)提高農(nóng)田排水口高度,徑流中各形態(tài)氮磷流失量明顯下降。將農(nóng)田排水口高度從5 cm提高至15~25 cm產(chǎn)流中總氮、總磷流失量分別降低了85.60%~93.13%、86.75%~92.66%。且農(nóng)田排水口設(shè)置在15 cm高度處氮磷減排效果突出,在15 cm基礎(chǔ)上繼續(xù)提高排水口則不會對氮磷流失量產(chǎn)生明顯影響。
3)水田養(yǎng)分流失的主要形態(tài)是溶解態(tài),溶解態(tài)總氮、磷流失量占總氮、磷流失量的52.37%~83.64%和67.83%~92.29%,氮素流失以銨態(tài)氮為主,占總氮流失量47.85%~80.80%。
從以上結(jié)論能夠看出,農(nóng)田排水口設(shè)置在距離土面15~25 cm高度處對農(nóng)田徑流氮磷流失控制效果優(yōu)越,結(jié)合洱海流域多年降雨資料及建設(shè)成本,推薦將農(nóng)田排水口設(shè)置于距土壤表面15 cm高度處,對控制農(nóng)田養(yǎng)分流失,減少面源污染起到顯著效果。由于模擬試驗(yàn)存局限性,自然環(huán)境下影響農(nóng)田徑流氮磷流失的因素更為復(fù)雜,將排水口提高到15 cm高度是否對作物產(chǎn)量造成影響仍需探討,后續(xù)會在田間自然環(huán)境下進(jìn)一步試驗(yàn),為洱海流域農(nóng)田排水口高度的確定提供科學(xué)依據(jù)。
[1] Hou X, Zhou F, Leip A, et al. Spatial patterns of nitrogen runoff from Chinese paddy fields[J]. Agriculture, Ecosystems and Environment, 2016, 231: 246-254
[2] Liu R, Wang J, Shi J, et al. Runoff characteristics and nutrient loss mechanism from plain farmland under simulated rainfall conditions[J]. Science of the Total Environment, 2014, 468/469: 1069-1077.
[3] Wang J, Lü G, Guo X, et al. Conservation tillage and optimized fertilization reduce winter runoff losses of nitrogen and phosphorus from farmland in the Chaohu Lake region, China[J]. Nutrient Cycling in Agroecosystems, 2015, 101(1): 93-106.
[4] Han J, Li Z, Li P, et al. Nitrogen and phosphorous concentrations in runoff from a purple soil in an agricultural watershed[J]. Agricultural Water Management, 2010, 97(5): 757-762.
[5] US Environmental Protection Agency. National Management Measures to Control Nonpoint Source Pollution From Agriculture[M]. Washington: Createspace, 2015: 128-132.
[6] 第二次全國污染源普查公報(bào)[J]. 環(huán)境保護(hù),2020,48(18):8-10.
[7] 項(xiàng)頌,吳越,呂興菊,等. 洱海流域農(nóng)業(yè)面源污染空間分布特征及分類控制策略[J]. 環(huán)境科學(xué)研究,2020,33(11):2474-2483.
Xiang Song, Wu Yue, Lü Xingju, et al. Characteristics and spatial distribution of agricultural non-point source pollution in Erhai Lake Basin and its classified control strategy[J]. Research of Environmental Sciences, 2020, 33(11): 2474-2483. (in Chinese with English abstract)
[8] 高超,朱繼業(yè),朱建國,等. 不同土地利用方式下的地表徑流磷輸出及其季節(jié)性分布特征[J]. 環(huán)境科學(xué)學(xué)報(bào),2005,22(11):115-121.
Gao Chao, Zhu Jiye, Zhu Jianguo, et al. Phosphorus exports via overland runoff under different land uses and their seasonal pattern[J]. Acta Scientiae Circumstantiae, 2005, 22(11): 115-121. (in Chinese with English abstract)
[9] 馬巍,蘇建廣,楊洋,等. 洱海水質(zhì)演變特征及主要影響因子分析[J/OL]. 中國水利水電科學(xué)研究院學(xué)報(bào),(2021-06-23)[2021-07-01].https://doi.org/10.13244/j.cnki.jiwhr.
Ma Wei, Su Jianguang, Yang Yang, et al. Study on the evolution characteristics of water quality and its key impact factors of Erhai Lake[J/OL]. Journal of China Institute of Water Resources and Hydropower Research, (2021-06-23)[2021-07-01].https://doi.org/10.13244/j.cnki.jiwhr. (in Chinese with English abstract)
[10] 張紅葉,蔡慶華,唐濤,等. 洱海流域湖泊生態(tài)系統(tǒng)健康綜合評價(jià)與比較[J]. 中國環(huán)境科學(xué),2012,32(4):715-720.
Zhang Hongye, Cai Qinghua, Tang Tao, et al. Comprehensive assessment and comparison of lakes’ ecosystem health in Erhai watershed[J]. China Environmental Science, 2012, 32(4): 715-720. (in Chinese with English abstract)
[11] 任澤,楊順益,汪興中,等. 洱海流域水質(zhì)時(shí)空變化特征[J]. 生態(tài)與農(nóng)村環(huán)境學(xué)報(bào),2011,27(4):14-20.
Ren Ze, Yang Shunyi, Wang Xingzhong, et al. Spatial and temporal variation of water quality of Erhai Basin[J]. Journal of Ecology and Rural Environment, 2011, 27(4): 14-20. (in Chinese with English abstract)
[12] 安國英,郭兆成,葉佩. 云南大理地區(qū)1989-2019年期間氣候變化及其對洱海水質(zhì)的影響[J/OL]. 現(xiàn)代地質(zhì),(2021-06-11)[2021-07-01].https://doi.org/10.19657/j.geoscience.
An Guoying, Guo Zhaocheng, Ye Pei. Climate impacts and its effects on water quality of Erhai Lake during the period of 1989-2019 in Dali area, Yunnan[J/OL]. Geoscience, (2021-06-11)[2021-07-01].https://doi.org/10.19657/j.geoscience. (in Chinese with English abstract)
[13] 項(xiàng)頌,龐燕,竇嘉順,等. 不同時(shí)空尺度下土地利用對洱海入湖河流水質(zhì)的影響[J]. 生態(tài)學(xué)報(bào),2018,38(3):876-885.
Xiang Song, Pang Yan, Dou Jiashun, et al. Impact of land use on the water quality of inflow river to Erhai Lake at different temporal and spatial scales[J]. Acta Ecologica Sinica, 2018, 38(3): 876-885. (in Chinese with English abstract)
[14] 謝坤,羅元,馮弋洋,等. 改進(jìn)灰色模式識別模型評價(jià)洱海雨季灌排溝渠水質(zhì)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(23):234-241.
Xie Kun, Luo Yuan, Feng Yiyang, et al. Water quality evaluation of Erhai drainage ditch based on improved grey-mode identification model[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(23): 234-241. (in Chinese with English abstract)
[15] Husain A. Analysis of Nitrogen and Phosphorus Losses in Leached and Surface Runoff Water with Application of Different Fertilizers and Management Strategies under Typical Crop Rotation System in the Erhai Lake Basin, Yunnan, China[D]. Beijing: Chinese Academy of Agricultural Sciences, 2019.
[16] 劉培財(cái). 保護(hù)性施肥對洱海北部農(nóng)田氮素流失及作物產(chǎn)量的影響[D]. 北京:中國農(nóng)業(yè)科學(xué)院,2011.
Liu Peicai. Effects of Conservation Fertilization on Nitrogen Loss and Crops Yield in Northern Erhai Lake Basin[D]. Beijing: Chinese Academy of Agricultral Sciences, 2011. (in Chinese with English abstract)
[17] 湯秋香,劉宏斌,雷寶坤,等. 洱海北部地區(qū)環(huán)境友好型種植模式篩選[J]. 中國農(nóng)業(yè)科學(xué),2012,45(12):2375-2383.
Tang Qiuxiang, Liu Hongbin, Lei Baokun, et al. Screening of environment-friendly cropping mode in the northern region of Erhai Lake[J]. Scientia Agricultura Sinica, 2012, 45(12): 2375-2383. (in Chinese with English abstract)
[18] 王哲,謝杰,方達(dá),等. 洱海北部2種典型種植制度下農(nóng)田氮污染負(fù)荷研究[J]. 生態(tài)與農(nóng)村環(huán)境學(xué)報(bào),2013,29(5):625-629.
Wang Zhe, Xie Jie, Fang Da, et al. Nitrogen pollution load in farmlands under two typical farming systems in the north of Lake Erhai region[J]. Journal of Ecology and Rural Environment, 2013, 29(5): 625-629. (in Chinese with English abstract)
[19] 朱俊,高小孟,陳佳,等. 浙江平原河網(wǎng)地區(qū)農(nóng)田排水口監(jiān)管思路初探:以長興縣為例[J]. 安徽農(nóng)學(xué)通報(bào),2021,27(4):117-119,122.
Zhu Jun, Gao Xiaomeng, Chen Jia, et al. Preliminary study on the supervision of farmland drainage outlets in the plain river network region of Zhejiang province: Take Changxing couny as an example[J]. Anhui Agricultural Science Bulletin, 2021, 27(4): 117-119, 122. (in Chinese with English abstract)
[20] 大理州環(huán)境生態(tài)局.氣候公報(bào)[EB/OL]. (2021-02-22) [2021-06-28].http://www.dali.gov.cn/dlrmzf/index.shtml.
[21] 云南省生態(tài)環(huán)境廳.云南省環(huán)境狀況公報(bào)[EB/OL]. (2021-06-03)[2021-06-28]. http://sthjt.yn.gov.cn.
[22] 曹瑞霞,劉京,鄧開開,等. 三峽庫區(qū)典型紫色土小流域徑流及氮磷流失特征[J]. 環(huán)境科學(xué),2019,40(12):5330-5339.
Cao Ruixia, Liu Jing, Deng Kaikai, et al. Characteristics of nitrogen and phosphorus losses and runoff in a typical purple soil watershed in the Three Gorges Reservoir Area[J]. Environmental Science, 2019, 40(12): 5330-5339. (in Chinese with English abstract)
[23] 陳正維,朱波,劉興年. 自然降雨條件下紫色土坡地氮素隨徑流遷移特征[J]. 人民長江,2014,45(13):82-85.
Chen Zhengwei, Zhu Bo, Liu Xingnian. Characteristics of nitrogen transfer with runoff on sloping cropland of purple soil under natural rainfall[J]. Yangtze River, 2014, 45(13): 82-85. (in Chinese with English abstract)
[24] 張洋,樊芳玲,周川,等. 三峽庫區(qū)農(nóng)桑配置對地表氮磷流失的影響[J]. 土壤學(xué)報(bào),2016,53(1):189-201.
Zhang Yang, Fan Fangling, Zhou Chuan, et al. Effects of crop/mulberry intercropping on surface nitrogen and phosphorus losses in Three Gorges Reservoir Area[J]. Acta Pedologica Sinica, 2016, 53(1): 189-201. (in Chinese with English abstract)
[25] Guo H, Zhu J, Wang X, et al. Case study on nitrogen and phosphorus emissions from paddy field in Taihu region[J]. Environmental Geochemistry and Health, 2004, 26(2): 1-11.
[26] 夏紅霞,朱啟紅,劉希東,等. 模擬徑流試驗(yàn)條件下紫色土有機(jī)肥氮素流失特征研究[J]. 河南農(nóng)業(yè)科學(xué),2020,49(6):74-83.
Xia Hongxia, Zhu Qihong, Liu Xidong, et al. Characteristics of nitrogen losses of organic fertilizers in purplish soil in simulating runoff experiments[J]. Journal of Henan Agricultural Sciences, 2020, 49(6): 74-83. (in Chinese with English abstract)
[27] 王帥兵,宋婭麗,王克勤,等. 不同雨型下反坡臺階減少紅壤坡耕地氮磷流失的效果[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(13):160-169.
Wang Shuaibing,Song Yali, Wang Keqin, et al. Effects of reverse-slope terrace on nitrogen and phosphorus loss in sloping farmland of red loam under different rainfall patterns[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2018, 34(13): 160-169. (in Chinese with English abstract)
[28] 段四喜,張磊,楊芳,等. 典型生態(tài)攔截措施水質(zhì)凈化效果研究[J/OL]. 農(nóng)業(yè)資源與環(huán)境學(xué)報(bào),(2021-04-21) [2021-07-01]. https://doi.org/10.13254/j.jare.
Duan Sixi, Zhang Lei, Yang Fang, et al. Study on water purification effect of typical ecological interception measures[J/OL]. Journal of Agricultural Resources and Environment, (2021-04-21) [2021-07-01]. https://doi.org/10.13254/j.jare. (in Chinese with English abstract)
[29] 姜海斌,沈仕洲,谷艷茹,等. 洱海流域不同施肥模式對稻田氮磷徑流流失的影響[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2021,40(6):1305-1313.
Jiang Haibin, Shen Shizhou, Gu Yanru, et al. Effects of different fertilization treatments on runoff losses of nitrogen and phosphorus in paddy fields in Erhai Lake Basin[J]. Journal of Agricultural Resources and Environment, 2021, 40(6): 1305-1313. (in Chinese with English abstract)
[30] 楊世琦,邢磊,劉宏元,等. 植物籬埂壟向區(qū)田技術(shù)對坡耕地水土和氮磷流失控制研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(22):209-215.
Yang Shiqi, Xing Lei, Liu Hongyuan, et al. Effect of reducing runoff, sediment, soil nitrogen and phosphorus losses in sloping farmland based on short ridge of clover hedgerow with ridge tillage[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(22): 209-215. (in Chinese with English abstract)
[31] 姚金玲,張克強(qiáng),郭海剛,等. 不同施肥方式下洱海流域水稻-大蒜輪作體系氮磷徑流損失研究[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2017,36(11):2287-2296.
Yao Jinling, Zhang Keqiang, Guo Haigang, et al. Nitrogen and phosphorus runoff losses during rice-garlic rotation in Erhai Lake Basin under different fertilization methods[J]. Journal of Agro-Environment Science, 2017, 36(11): 2287-2296. (in Chinese with English abstract)
Effects of the heights of farmland drainage outlets on nitrogen and phosphorus loss from surface runoff
Ma Yingjun1,2,3, Wan Chen1,3,4, Zhang Keqiang1,3, Jiang Haibin1,3, Wang Feng1,3, Shen Shizhou1,3※
(1.,,300191,; 2.,,150030,; 3.,671004,; 4.,,650201,)
The Erhai Lake is the second second-largest freshwater resource in the Yunnan Plateau (southwest China). The lake is also a national protected area and drinking water source for Dali residents. The water quality of the Erhai Lake is has gradually aggravated eutrophication, even above an acceptable level in the rainy season, due mainly to global natural conditions and intensified human activities in recent years. Specifically, nitrogen (N) and phosphorus (P) are the main factors causing eutrophication. Furthermore, the rice planting area accounts for about 10% of the total area of Erhai Lake Basin, a typical agricultural basin. The rice planting season is in the peak month of rainfall in the basin, where rainstorm events occur frequently. The loss of nutrients in farmland subjected to rainstorms has been a key environmental factor to determine the water quality of Erhai Lake in the rainy season. Much effort has been dedicated to the loss of nitrogen and phosphorus in the farmland of the Erhai Lake Basin, particularly on fertilization management and rotation mode. Farmland drainage outlets can serve as the channels for terrestrial pollutants to enter rivers, lakes, and other water bodies. However, only a few studies focused on the farmland drainage outlets for pollution prevention and flood control. Taking the height of the drainage outlet in the Erhai Lake Basin as a research object, this study aims to find an effective way to reduce the nitrogen and phosphorus loss from surface runoff in farmland. An artificial rainfall simulation was also adopted. Five drainage outlets were set with different heights, according to the height of the farmland drainage outlet (5-10 cm from the soil surface), and the height of the rice plant in the peak period of rainfall in the study area. The bottom distances of the drainage outlet were 5, 10, 15, 20, and 25 cm from the soil surface. An investigation was finally made to evaluate the control of drainage outlets at different heights on nitrogen and phosphorus losses in farmland runoff. The results showed that: 1) The low drainage outlet of farmland resulted in the increase of nitrate nitrogen and particulate nitrogen concentrations at the early stage of runoff generation. The drainage outlet height of more than 15 cm effectively reduced the concentrations of nitrogen and phosphorus in various forms, all of which be stabilized at a low level. 2) The losses of nitrogen and phosphorus were significantly reduced, with the increase in the height of farmland drainage outlets. A better control was achieved at the height of the farmland drainage outlet increasing from 5 to 15-25 cm. Specifically, the losses of total nitrogen, particulate nitrogen, ammonium nitrogen, and nitrate nitrogen reduced by 85.60%-93.13%, 88.39%-95.77%, 84.59%-91.72%, 63.05%-65.15%, respectively. The losses of total phosphorus and particulate phosphorus decreased by 86.75%-92.66%, 61.64%-94.61%, respectively. Moreover, there was an extremely high reduction of nitrogen and phosphorus losses, when the farmland drainage outlet was set at a height of 15 cm. But there was no significant change over 15 cm. 3) The main form of nutrient loss was the dissolved state in the paddy field. The dissolved nitrogen and phosphorus losses accounted for 52.37%-83.64% and 67.83%-92.29% of the total nitrogen and phosphorus losses, respectively. The inorganic nitrogen loss in runoff was mostly ammonium nitrogen, accounting for 47.85%-80.80% of the total nitrogen loss. Consequently, the drainage outlet at the height of 15-25 cm can be expected to achieve a superior performance for the runoff pollution control in farmland. Anyway, it is strongly recommended to be 15 cm high for the farmland drainage outlet in the Erhai Lake Basin. This finding can provide a significant support to control nutrient loss in farmland, thereby to improve improving the ecological environment.
agriculture; runoff; heights of drainage outlets; simulated rainfall; loss of nitrogen and phosphorus
馬瑛駿,萬辰,張克強(qiáng),等. 農(nóng)田排水口高度對地表徑流氮磷流失的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(15):114-120.doi:10.11975/j.issn.1002-6819.2021.15.014 http://www.tcsae.org
Ma Yingjun, Wan Cen, Zhang Keqiang, et al. Effects of the heights of farmland drainage outlets on nitrogen and phosphorus loss from surface runoff[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(15): 114-120. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.15.014 http://www.tcsae.org
2021-05-31
2021-07-01
國家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2017YFD0800103);云南省科技創(chuàng)新開放基金(2017HC015);云南省基礎(chǔ)研究青年基金(2019FD120);中央級公益性科研院所基本科研業(yè)務(wù)費(fèi)專項(xiàng)(Y2021PT01)
馬瑛駿,研究方向?yàn)檗r(nóng)業(yè)面源污染防治。Email:ma_yingjun@126.com
沈仕洲,博士,助理研究員,研究方向?yàn)檗r(nóng)業(yè)面源污染治。Email:shenshizhou@126.com
10.11975/j.issn.1002-6819.2021.15.014
S282
A
1002-6819(2021)-15-0114-07