周 慧,史海濱,張文聰,王維剛,蘇永德,閆 妍
有機(jī)無機(jī)肥配施對(duì)鹽漬化土壤微生物量和呼吸的影響
周 慧,史海濱※,張文聰,王維剛,蘇永德,閆 妍
(1. 內(nèi)蒙古農(nóng)業(yè)大學(xué)水利與土木建筑工程學(xué)院,呼和浩特 010018;2. 內(nèi)蒙古農(nóng)業(yè)大學(xué)旱區(qū)農(nóng)業(yè)節(jié)水與水土環(huán)境研究所,呼和浩特 010018)
微生物可以通過攝入能量合成有機(jī)滲透壓物質(zhì)來實(shí)現(xiàn)對(duì)鹽度的適應(yīng),然而,不同程度鹽漬土微生物對(duì)能量的需求可能會(huì)發(fā)生改變。因此,該研究于2018-2019年開展田間定位試驗(yàn),選取河套灌區(qū)輕度鹽漬土S1(電導(dǎo)率為0.46 dS/m)及中度鹽漬土S2(電導(dǎo)率為1.07 dS/m)為研究對(duì)象,設(shè)置了6個(gè)處理,包括不施氮(CK),單施無機(jī)氮(U1)以及分別用有機(jī)氮(U3O1、U1O1、U1O3和O1)替代25%、50%、75%和100%的無機(jī)氮,監(jiān)測(cè)了土壤微生物量碳氮及土壤呼吸在第二個(gè)生長季的動(dòng)態(tài)狀況。結(jié)果表明:土壤鹽漬化程度增加會(huì)導(dǎo)致土壤微生物量及微生物活性下降,S1土壤較S2土壤微生物量碳高12.01%~68.81%,土壤微生物量氮高14.31%~58.58%,土壤呼吸速率高11.75%~54.71%。不同鹽分條件下,適當(dāng)?shù)挠袡C(jī)肥施入比例可以顯著提高土壤微生物量及微生物活性,S1和S2鹽漬土分別以U1O1及O1處理較優(yōu)。相關(guān)性分析表明,土壤呼吸速率與土壤微生物量碳氮呈極顯著正相關(guān)(<0.01),土壤溫度、土壤礦質(zhì)氮與土壤微生物量碳氮、土壤呼吸速率呈顯著正相關(guān)(<0.05)。從玉米產(chǎn)量及改善土壤微生物生存環(huán)境角度,得到該地區(qū)適宜的施肥模式為,輕度鹽漬土:有機(jī)氮替代50%無機(jī)氮;中度鹽漬土:有機(jī)氮替代100%無機(jī)氮。
碳;氮;土壤;鹽漬化;有機(jī)無機(jī)肥配施;微生物量;呼吸
土壤鹽漬化是限制干旱地區(qū)農(nóng)業(yè)發(fā)展的主要問題[1]。耕地次生鹽堿化的發(fā)生將對(duì)全球農(nóng)業(yè)生產(chǎn)產(chǎn)生嚴(yán)重威脅,預(yù)計(jì)在未來25年內(nèi)造成30%的土地?fù)p失,而在21世紀(jì)中葉這一數(shù)據(jù)將達(dá)到50%左右[2]。統(tǒng)計(jì)數(shù)據(jù)表明,目前全球約有8.31×108~9.32×108hm2土地受鹽分影響[1],高土壤鹽分濃度通過滲透脅迫、營養(yǎng)失衡、氧化損傷和離子毒性等[3]對(duì)植物產(chǎn)生負(fù)面影響,造成農(nóng)業(yè)生產(chǎn)資源萎縮[4]。鹽分不僅會(huì)直接影響植物生長發(fā)育,還會(huì)影響與之相互作用的土壤微生物[5]。鹽漬土中植物覆蓋量較少導(dǎo)致輸入土壤的有機(jī)質(zhì)不足,從而降低了土壤微生物量[6]。此外,高土壤鹽分濃度會(huì)降低土壤呼吸速率[7-8],并殺死對(duì)鹽分敏感的微生物[9]。鹽分脅迫降低了微生物活性及生物量,從而抑制土壤養(yǎng)分轉(zhuǎn)化,導(dǎo)致土壤生產(chǎn)力下降[5,10]。因此,改善鹽漬化土壤微生物生存環(huán)境對(duì)于農(nóng)業(yè)可持續(xù)發(fā)展至關(guān)重要。
微生物主要通過積累滲透壓物質(zhì)來適應(yīng)鹽漬土中的低滲透勢(shì),而有機(jī)滲透壓物質(zhì)的合成需要大量的能量[11]。近年來,有機(jī)農(nóng)業(yè)被認(rèn)為是可持續(xù)農(nóng)業(yè)文化的典范[12],有機(jī)添加物可作為微生物容易獲取的能源,以抵消土壤鹽分的負(fù)面影響。有機(jī)肥可以通過改變土壤理化性質(zhì)從而降低鹽分產(chǎn)生的負(fù)面影響[13]。此外,有機(jī)肥料的施用不僅向土壤中接種了大量的外源微生物直接影響土壤微生物[14],且為微生物生長提供碳源和能源,其養(yǎng)分的緩慢釋放還可為微生物提供更穩(wěn)定的棲息環(huán)境[15]。同時(shí),有機(jī)化合物解吸可以增加底物的有效性,從而增加土壤呼吸[16]??梢钥闯?,施入有機(jī)肥是改善鹽漬化土壤微環(huán)境的一項(xiàng)有效措施。
內(nèi)蒙古河套灌區(qū)是重要的糧食產(chǎn)區(qū),鹽漬化土地已超過當(dāng)?shù)毓喔让娣e的50%以上[17]。此外,灌區(qū)生產(chǎn)實(shí)踐過程中化肥用量已超過60萬t/a,單位面積的施用量遠(yuǎn)高于世界平均水平[18]。一方面,施用化肥對(duì)土壤生態(tài)功能和理化特性造成不利影響[19-20]。另一方面,過量施用化肥可能加重土壤鹽漬化程度[21]。因此,合理將化肥與有機(jī)肥料結(jié)合施用是創(chuàng)造集約型可持續(xù)發(fā)展農(nóng)業(yè)的有效施肥模式。當(dāng)前關(guān)于有機(jī)無機(jī)肥配施對(duì)于土壤微生物的研究大多集中于非鹽漬化土壤或單一程度的鹽漬化土壤中[7,9,22]。然而,土壤微生物隨著鹽分梯度改變會(huì)產(chǎn)生明顯變化[23],有機(jī)氮投入比例對(duì)于不同程度鹽漬化土壤微生物生物量及微生物活性的影響尚不清楚,因此,亟需量化不同鹽漬化程度土壤微生物對(duì)有機(jī)肥的響應(yīng)程度。本文針對(duì)不同鹽分水平土壤,探討了不同有機(jī)無機(jī)氮肥配施比例對(duì)河套灌區(qū)輕、中度鹽漬化土壤微生物活性及微生物生物量的影響。本研究的目的是:1)確定有機(jī)氮投入比例對(duì)不同程度鹽漬化土壤微生物生物量碳(MBC)、氮(MBN)和微生物活性(呼吸)的影響;2)探討有機(jī)無機(jī)肥配施對(duì)鹽漬化土壤微生物量及微生物活性的影響機(jī)理。
本試驗(yàn)于內(nèi)蒙古河套灌區(qū)解放閘灌域沙壕渠試驗(yàn)站(40°54′40″N, 107°9′57″E)進(jìn)行,該地區(qū)為典型干旱地區(qū),多年平均氣溫為7.7 ℃,降雨量為143 mm,蒸發(fā)量2 100 mm。大于10 ℃的年積溫為3 551 ℃,年平均日照時(shí)數(shù)3 200 h,年凍融期大約180 d。全年太陽總輻射約為6 000 MJ/m2。2019年生育期有效降雨量為52.2 mm,灌溉總量為225 mm(分別于玉米拔節(jié)期、大喇叭口期和抽雄期灌水75 mm)。土壤為硫酸鹽-氯化物型鹽土,0~20 cm和40~60 cm土層為粉壤土,>20~40 cm土層為粉質(zhì)黏壤土,>60~100 cm為砂壤土。試驗(yàn)區(qū)輕、中度鹽漬土初始土壤性質(zhì)如下:有機(jī)質(zhì)14.04、13.04 g/kg,全氮1.43、1.07g/kg,堿解氮54.68、46.54 mg/kg,速效磷37.78、23.58 mg/kg,速效鉀199.67、176.33 mg/kg,pH值分別為8.2、8.4。
本試驗(yàn)開展于2018—2019年,種植作物為玉米(內(nèi)單314),大小行種植,大行距70 cm,小行距40 cm,株距27.7 cm。播種日期為4月末,收獲日期為9月中旬。參考當(dāng)?shù)貎?yōu)化畦灌灌水定額750 m3/hm2作為灌水量,優(yōu)化施氮量240 kg/hm2為施氮總量,在S1(輕度鹽漬土,播前電導(dǎo)率:0.46 dS/m)、S2(中度鹽漬土,播前電導(dǎo)率:1.07 dS/m)鹽漬化農(nóng)田分別設(shè)置6個(gè)處理,各重復(fù)3次,包括不施氮(CK)、單施無機(jī)氮(U1)以及用有機(jī)氮分別替代25%、50%、75%和100%的無機(jī)氮(U3O1、U1O1、U1O3和O1)。小區(qū)規(guī)格為6 m×5 m。各小區(qū)間設(shè)有隔離帶以防止相互水氮影響。選取尿素(含氮46%)及商品有機(jī)肥(由玉米秸稈制造而成,含N 10%,有機(jī)質(zhì)≥45%)進(jìn)行氮素配施試驗(yàn)。有機(jī)肥和磷肥(過磷酸鈣50 kg/hm2)作為基肥一次性施用(均勻撒施后旋耕20 cm),尿素按1:1比例于玉米播前和拔節(jié)期灌水時(shí)施入。
1.3.1 土壤呼吸及溫度測(cè)定
2019年在各小區(qū)內(nèi)放置2根PVC管(直徑20 cm),分別置于株間(用于測(cè)定土壤全呼吸速率,高10 cm,嵌入土壤5 cm)和裸地(用于測(cè)定土壤異養(yǎng)呼吸速率)。裸地布置前清理其中可見根系,PVC管高50 cm,嵌入土壤45 cm,在管壁四周處鉆孔(從管口5 cm處向下鉆孔),試驗(yàn)期間保證管內(nèi)無活體植物。使用Li-8100土壤碳通量自動(dòng)測(cè)量系統(tǒng)(Li-Cor,Inc,NE,USA)測(cè)定土壤全呼吸速率(R,mol/(m2?s))和土壤異養(yǎng)呼吸速率(R,mol/(m2?s)),土壤全呼吸速率與土壤異養(yǎng)呼吸速率的差值為土壤自養(yǎng)呼吸速率(R,mol/(m2?s))。由于有機(jī)肥肥效較慢,故于連續(xù)施肥的第二年(2019年)春玉米苗期(5月21日)、拔節(jié)期(6月20日)、抽雄期(7月11日)、灌漿期(8月5日)及成熟期(9月5日)各觀測(cè)1次,每次測(cè)量在10:00-14:00之間完成。土壤溫度由Li-8100碳通量自動(dòng)測(cè)量系統(tǒng)自帶的土壤溫度探針測(cè)定(10 cm)。
1.3.2土壤微生物量碳氮、礦質(zhì)氮、含水率、電導(dǎo)率及pH測(cè)定
2019年,每次進(jìn)行土壤呼吸測(cè)定的當(dāng)天利用5點(diǎn)法進(jìn)行土壤采樣(0~20 cm),過2 mm篩,一部分在4 ℃下保存,測(cè)定土壤微生物量[24],另一部分用于測(cè)定土壤理化性質(zhì)。土壤含水率采用烘干法測(cè)定,土壤礦質(zhì)氮用氯化鈣浸提法[25]。
10值計(jì)算方法為[26]
10=e10b(1)
式中10值是土壤溫度敏感性系數(shù),是土壤呼吸與溫度單因素指數(shù)曲線模型R=e中的溫度反應(yīng)常數(shù)(為溫度0 ℃時(shí)的R,為土壤溫度, ℃)。將2019年5月—2019年9月R及相對(duì)應(yīng)的值進(jìn)行指數(shù)分布曲線回歸,將所得的值代入式(1)中計(jì)算10值[26]。
微生物量C、N,微生物代謝熵計(jì)算方法為[24]
同一采樣時(shí)間不同有機(jī)無機(jī)肥配施對(duì)土壤各指標(biāo)的影響采用單因素方差分析(one-way ANOVA),土壤微生物指標(biāo)與各環(huán)境因子的關(guān)系采用Pearson相關(guān)分析以及線性、非線性回歸分析。利用Origin 2018軟件作圖。
從表1可以看出,有機(jī)無機(jī)肥配施對(duì)土壤溫濕度、土壤EC及pH大多沒有顯著影響。在整個(gè)生育期,土壤溫度呈先升高后降低的趨勢(shì),在苗期最低,在拔節(jié)期最高;由于試驗(yàn)區(qū)周邊在4月底和5月中旬進(jìn)行了2次灌水,在整個(gè)苗期地下水位(0.52~0.83 m)較高,在地下水補(bǔ)給作用下使得此時(shí)期土壤含水率較高,而隨著生育期推進(jìn),地下水位逐漸降低,地下水對(duì)土壤水補(bǔ)給量減少,再加氣溫升高導(dǎo)致騰發(fā)量增加,因而土壤含水率隨著生育期推進(jìn)呈逐漸降低趨勢(shì)。土壤EC則在蒸發(fā)作用下隨時(shí)間推移呈逐漸增加的態(tài)勢(shì)(除拔節(jié)期灌水后降低外),而土壤pH則在時(shí)間上沒有明顯變化。
有機(jī)無機(jī)肥配施對(duì)輕、中度鹽漬土土壤礦質(zhì)氮含量產(chǎn)生極顯著影響(<0.01),輕度鹽漬土礦質(zhì)氮含量在玉米生育前期(苗期及拔節(jié)期)以U1處理較大,而在后期則以U1O1處理較高;隨著土壤鹽分增大,無機(jī)肥氮素有效性降低,而有機(jī)肥的施入為氮素礦化創(chuàng)造了良好的環(huán)境,導(dǎo)致中度鹽漬土基本表現(xiàn)出配施有機(jī)肥比例較大的處理土壤礦質(zhì)氮含量較高,其中U1O3和O1處理之間無顯著性差異。
表1 2019年不同施肥處理下土壤溫濕度、電導(dǎo)率、pH及礦質(zhì)氮?jiǎng)討B(tài)變化
注:不同小寫字母表示處理間差異顯著(<0.05),S1為輕度鹽漬土,S2為中度鹽漬土,CK、U1、U3O1、U1O1、U1O3和O1分別為不施氮、單施無機(jī)氮以及用有機(jī)氮分別替代25%、50%、75%和100%的無機(jī)氮處理,下同。
Note: Different lowercase letters indicate statistically significant difference in treatment (<0.05), S1is mild saline soil, S2is moderate saline soil, no fertilization (CK); urea (U1); and 25%, 50%, 75%, and 100% of the urea N substituted by organic fertilizers U3O1, U1O1, U1O3, and O1, respectively, the same below.
從表2可以發(fā)現(xiàn),施氮促進(jìn)了生長季MBC、MBN的增長,但變化趨勢(shì)隨著鹽分水平與有機(jī)無機(jī)肥配施比例不同而有所差異。在整個(gè)生育期內(nèi),同一處理S1土壤微生物量要明顯高于S2土壤,隨著有機(jī)肥施入比例增加兩者之間的差異先增后減,生育期內(nèi)S1土壤平均MBC、MBN分別較S2土壤顯著高出12.01%~68.81%、14.31%~58.58%。
隨著生育期推移,S1、S2土壤MBC、MBN基本呈現(xiàn)出先升后降的趨勢(shì),在拔節(jié)期達(dá)到最大值,成熟期出現(xiàn)最低值。在S1土壤,土壤微生物量隨有機(jī)肥施入比例增加呈現(xiàn)出先升后降的趨勢(shì),其中以U1O1處理最大,土壤平均MBC、MBN分別比其余施氮處理顯著高出12.41%~49.56%和5.45%~42.99%(土壤MBN與U1O3處理不顯著);S2土壤則表現(xiàn)出有機(jī)肥施入比例越大土壤MBC、MBN越大的趨勢(shì),O1處理土壤平均MBC、MBN分別比其余施氮處理顯著高出11.88%~68.07%和10.14%~48.99%(<0.05)。
從表2可以看出,隨著生育期推移,土壤微生物碳氮比整體呈增加的態(tài)勢(shì),S1土壤MBC/MBN要顯著高于S2土壤(除CK處理外)。說明在同一鹽漬化土壤中,各施肥處理對(duì)于土壤MBC/MBN的改變較為一致。
從表3可以發(fā)現(xiàn),土壤鹽分的增加導(dǎo)致土壤呼吸速率顯著下降,生育期S1土壤平均全呼吸速率、自養(yǎng)呼吸速率、異養(yǎng)呼吸速率比S2土壤分別高出11.75%~54.71%、19.68%~51.51%和16.42%~69.24%。
施氮增加了土壤呼吸速率。隨著生育期推移,土壤呼吸速率呈先升后降的趨勢(shì),在抽雄期達(dá)到最大值,在成熟期出現(xiàn)最小值。各土壤呼吸指標(biāo)變化基本一致,在S1土壤,隨著有機(jī)肥施入比例增加呈現(xiàn)先增加后降低的趨勢(shì),其中以U1O1處理最大,土壤平均全呼吸速率、自養(yǎng)呼吸速率和異養(yǎng)呼吸速率較其余施氮處理分別顯著高出11.59%~31.74%、6.30%~34.66%(與U1O3處理不顯著)、13.24%~36.07%(<0.05)。在S2土壤則隨著有機(jī)肥施入比例增加土壤呼吸速率呈逐漸增加的變化趨勢(shì),土壤平均全呼吸、自養(yǎng)呼吸和異養(yǎng)呼吸速率較其余施氮處理分別顯著高出8.07%~45.19%、5.89%~41.49%(與U1O3處理不顯著)、9.55%~47.73%(<0.05)。
本試驗(yàn)中CK處理土壤微生物代謝熵最高(表3),這是因?yàn)槭┓适沟梦⑸锟衫玫奶荚摧^為充足,提高了土壤碳利用效率而導(dǎo)致。S1、S2土壤配施有機(jī)肥均可以降低土壤微生物代謝熵,說明施有機(jī)肥能緩解環(huán)境脅迫對(duì)微生物的影響,使微生物更有效地利用有機(jī)碳轉(zhuǎn)化為生物量碳。
表2 土壤微生物量碳氮對(duì)施氮的響應(yīng)
表3 土壤呼吸和微生物代謝熵對(duì)施氮的響應(yīng)
Person相關(guān)性分析表明(表4),S1、S2土壤溫度與呼吸均呈顯著正相關(guān);土壤含水率與MBN呈極顯著正相關(guān),而與MBC/MBN呈極顯著負(fù)相關(guān);土壤礦質(zhì)氮含量與土壤呼吸、MBC、MBN呈極顯著正相關(guān);土壤pH與MBC/MBN呈極顯著正相關(guān);土壤EC與土壤呼吸、MBC和MBN呈顯著負(fù)相關(guān),而與MBC/MBN呈極顯著正相關(guān);土壤呼吸與MBC和MBN呈極顯著正相關(guān)。此外,S2土壤pH與土壤微生物量氮呈極顯著負(fù)相關(guān)。
表4 S1、S2土壤呼吸和代謝與土壤理化性質(zhì)的相關(guān)分析
注:樣本數(shù)90,*,<0.05;**,<0.01。
Note: Sample size is 90,*,<0.05;**,<0.01.
進(jìn)一步地,對(duì)于S1、S2土壤,各處理土壤呼吸與土壤溫度之間存在顯著的指數(shù)回歸關(guān)系(表5),決定系數(shù)2在0.273~0.602之間。S1土壤10值在1.17~1.31之間,S2土壤10值在1.11~1.29之間,10值較小且各處理之間差異并不顯著。通過二次函數(shù)擬合方程發(fā)現(xiàn),S1、S2各處理土壤呼吸速率與土壤含水率關(guān)系不顯著(>0.05),故本文土壤呼吸與含水率不符合二次函數(shù)關(guān)系(表6)。
表5 土壤呼吸速率與土壤溫度關(guān)系
注:樣本數(shù)15,為土壤溫度,℃。
Note: Sample size is 15,is soil temperature, ℃.
表6 土壤呼吸速率與土壤含水率關(guān)系
注:樣本數(shù)15,1為土壤含水率,%。
Note: Sample size is 15,1is Soil moisture, %.
通過回歸分析得到了土壤微生物量、各土壤呼吸指標(biāo)在有機(jī)肥施入比例與土壤鹽分交互作用下的二元二次非線性回歸模型(表7),通過顯著性分析得知,各回歸方程顯著水平均小于0.05,獲得了較好的擬合度。
分析回歸方程各系數(shù)可知,在本研究條件下(施氮總量240 kg/hm2,土壤EC在0.59~1.56 dS/m之間),適當(dāng)增加土壤鹽分及有機(jī)肥施入比例可以提高土壤微生物量,并促進(jìn)土壤呼吸,而過高的土壤鹽分則會(huì)減少土壤微生物量,抑制土壤呼吸??梢钥闯觯诓煌}分水平下,適宜的有機(jī)無機(jī)肥配施比例才能最大程度提高土壤微生物量及微生物活性。
表7 土壤微生物量及土壤呼吸在氮與鹽分作用下的回歸模型
注:樣本數(shù)10,數(shù)據(jù)為全生育期平均值;1表示有機(jī)肥施入比例(%);2表示土壤鹽分(dS·m-1)。
Note: Sample size is 10, the data is the average of the whole growth period;1is organic fertilizer application ratio (%);2is soil salinity (dS·m-1).
由圖1可以看出,S1土壤作物產(chǎn)量顯著高于S2土壤(<0.05);有機(jī)無機(jī)氮配施比例在不同鹽分條件下對(duì)玉米產(chǎn)量影響不一,在S1鹽漬土,表現(xiàn)出隨著有機(jī)肥施入比例越大產(chǎn)量先增后降的趨勢(shì),S2鹽漬土則表現(xiàn)出著有機(jī)肥施入比例越大產(chǎn)量越大的趨勢(shì),S1、S2鹽漬土分別以U1O1及O1處理玉米產(chǎn)量最大,分別為11 902.91、7 609.67 kg/hm2(S2中U1O3與O1處理差異不顯著,>0.05)。究其原因,這主要與有機(jī)無機(jī)氮配施在不同鹽分土壤中產(chǎn)生的氮素供應(yīng)過程不同,適宜的配施比例可以滿足玉米對(duì)氮素的需求,從而利于玉米增產(chǎn)。
研究表明高土壤鹽濃度會(huì)導(dǎo)致土壤微生物量降低[27-29]。本研究結(jié)果也表明,土壤微生物量碳氮隨著土壤鹽漬化程度增加顯著減少,這與Porcel等[4]的研究結(jié)果一致。一般來說,細(xì)菌和真菌的碳氮比分別在3~5和7~12之間[22],本研究S1土壤MBC/MBN在3.58~7.68之間,隨著生育期推進(jìn)逐漸由細(xì)菌向真菌群落轉(zhuǎn)變,這可能是因?yàn)榈蚵湮镞M(jìn)入土壤為真菌繁殖創(chuàng)造了良好的條件而造成[23]。隨著鹽分增加會(huì)明顯降低MBC/MBN,S2土壤MBC/MBN在2.92~5.41之間,在整個(gè)生長季內(nèi)均以細(xì)菌為主,這是因?yàn)檎婢诟啕}分條件下更容易死亡[7]。本研究結(jié)果發(fā)現(xiàn),隨著生育期推進(jìn),S1、S2土壤MBC/MBN大部分逐漸增大,這可能是由于生長后期土壤氮素供應(yīng)不足,MBN降低所導(dǎo)致。
施肥是影響土壤MBC、MBN的主要因素。本研究發(fā)現(xiàn),單施無機(jī)肥可以促進(jìn)土壤MBC、MBN的增加,這可能是因?yàn)槭┑档土送寥繡/N比會(huì)加速土壤有機(jī)碳的礦化,或作為能量來源而產(chǎn)生正激發(fā)效應(yīng)[30]。前人研究表明,在鹽漬土中施入有機(jī)肥可以為土壤微生物提供能量和養(yǎng)分,促使微生物合成滲透壓物質(zhì),從而減少鹽度對(duì)微生物的負(fù)面影響[5]。本研究也表明,在S1、S2土壤,配施有機(jī)肥均可以提高土壤MBC、MBN含量,但隨有機(jī)肥施入比例不同而不同。在鹽度較低的S1土壤,以有機(jī)無機(jī)各半配施較為適宜,而S2土壤則以單施有機(jī)肥能最大程度提高微生物量。這可能是因?yàn)樵邴}分脅迫較低時(shí),有機(jī)肥所提供的養(yǎng)分并不能完全滿足玉米生長的需求,加劇其與土壤微生物的競爭,導(dǎo)致土壤MBC、MBN減少,因此需要配施適量的無機(jī)肥來滿足微生物對(duì)礦質(zhì)氮的同化需求;隨著鹽漬化程度增加,一方面,鹽脅迫會(huì)抑制作物對(duì)養(yǎng)分的吸收利用,另一方面,在鹽分較高時(shí)無機(jī)肥有效性降低,所產(chǎn)生的礦質(zhì)氮含量和有機(jī)肥差異減小[31],而較多的有機(jī)物輸入可以為微生物提供更多的底物及能量,從而減少鹽度對(duì)微生物的負(fù)面影響,使土壤微生物量增加。這也是導(dǎo)致輕、中度鹽漬土分別以有機(jī)無機(jī)氮各半配施和單施有機(jī)氮處理能產(chǎn)生較好的氮素供應(yīng)過程的原因。
相關(guān)性分析表明,土壤含水率與土壤MBN呈顯著正相關(guān),而與MBC/MBN呈極顯著負(fù)相關(guān),這可能是因?yàn)橥寥罎穸却龠M(jìn)了土壤氮素的礦化,增加了微生物固氮量。此外,本研究發(fā)現(xiàn)在pH較大的S2土壤,土壤pH與土壤MBN呈顯著負(fù)相關(guān)關(guān)系,這表明土壤堿化可能會(huì)成為土壤微生物量的限制性因素。
土壤呼吸是衡量微生物對(duì)C循環(huán)總體貢獻(xiàn)的最直接的指標(biāo)[8]。在鹽漬化土壤中,鹽分是土壤呼吸的主要限制因子之一,在大多數(shù)情況下,自然鹽梯度下土壤呼吸與鹽度呈顯著負(fù)相關(guān)[32-33]。本研究結(jié)果表明,與S1土壤相比,S2土壤各呼吸指標(biāo)均有所降低,這可以解釋為鹽分限制了作物生長,由于土壤滲透脅迫導(dǎo)致微生物活性減弱[34],還可能是因?yàn)楦啕}度土壤具有較低的C底物可利用性,導(dǎo)致呼吸速率降低[34]。
本研究發(fā)現(xiàn),單施無機(jī)肥使S1、S2土壤全呼吸速率分別顯著提高10.32%~23.94%、21.43%~31.91%。這是因?yàn)橥寥利}漬化和養(yǎng)分匱乏是河套灌區(qū)作物生產(chǎn)力的限制條件,施氮增加了土壤微生物可利用底物,并緩解了土壤鹽分脅迫,增加了土壤微生物生物固氮量[35],這使得微生物呼吸得到了加強(qiáng)。而微生物活性的提高會(huì)促進(jìn)作物根系對(duì)氮素的吸收,使土壤異養(yǎng)呼吸也得到加強(qiáng)[36]。有研究表明,使用有機(jī)物料改良的土壤中鹽度對(duì)土壤呼吸的負(fù)面影響有所減少[37]。本研究發(fā)現(xiàn),施入有機(jī)肥對(duì)不同程度鹽漬土各呼吸指標(biāo)均有所提高,這可能是因?yàn)橛袡C(jī)肥的施入增加了對(duì)底物的利用率將產(chǎn)生剩余資源,微生物可以用于滲透壓物質(zhì)的生產(chǎn)[38],從而提高微生物活性。S1、S2土壤分別以有機(jī)無機(jī)各半配施和單施有機(jī)肥處理土壤呼吸強(qiáng)度較高,表明不同鹽分水平下需要適宜的有機(jī)無機(jī)肥配施才能使土壤微生物處于良好的狀態(tài),可以存儲(chǔ)和循環(huán)更多養(yǎng)分。
本研究發(fā)現(xiàn),土壤呼吸與土壤溫度呈顯著正相關(guān)(<0.05),但是各處理敏感性系數(shù)10值均較小。這可能是由于本試驗(yàn)施肥時(shí)間較早,此時(shí)期土壤溫度較低,而土壤礦質(zhì)氮含量與土壤呼吸、微生量碳氮呈極顯著正相關(guān)(<0.01),表明在作物生長前期氮素是影響土壤呼吸的主要原因,導(dǎo)致土壤呼吸對(duì)溫度變化敏感性不高。本研究發(fā)現(xiàn)土壤呼吸速率與土壤含水率的二次函數(shù)關(guān)系并不顯著,這可能是因?yàn)橥寥篮手挥性谶^低或過高時(shí)才會(huì)成為土壤呼吸的限制因子[39],本試驗(yàn)條件下土壤含水率不構(gòu)成脅迫,所以二者之間的二次函數(shù)關(guān)系不顯著(>0.05)。
研究表明,土壤微生物量的增加會(huì)導(dǎo)致土壤呼吸的增加,而微生物量的改變也回引起土壤呼吸變化[40]。對(duì)于N素匱乏的鹽漬化地區(qū),由于微生物受到可用性N的限制,會(huì)使土壤呼吸受到抑制[41]。本研究通過有機(jī)無機(jī)肥配施提高了土壤的供氮能力,且在土壤溫濕度適宜的條件下,土壤微生物量和根系生物量增加,最終導(dǎo)致土壤全呼吸速率得到增強(qiáng)。
微生物代謝熵是反映環(huán)境因素、管理措施變化等對(duì)微生物活性影響的一個(gè)敏感指標(biāo),其值的增加或減少與微生物代謝的變化有關(guān)[42]。低微生物代謝熵(高碳利用效率)表示土壤較少的C損失并將其轉(zhuǎn)化為微生物量,反之則表示大量C通過土壤呼吸損失到大氣中,最終減少了土壤微生物量以及土壤固碳量[43]。因此,微生物代謝熵被應(yīng)用為評(píng)價(jià)土壤微生物代謝狀況[44]和土壤碳循環(huán)[45]的參數(shù)。本研究發(fā)現(xiàn),適宜的有機(jī)無機(jī)肥配施可以降低土壤微生物代謝熵,說明配施有機(jī)肥可以緩解鹽分等環(huán)境因子對(duì)微生物的脅迫,增加了碳利用效率。
在鹽漬化地區(qū),鹽分對(duì)土壤微生物量及微生物活性的影響不容忽視,而鹽度隨著季節(jié)的變化而改變,因此了解微生物對(duì)鹽度變化的響應(yīng)十分重要。由于河套灌區(qū)地下水埋深較淺(0.52~2.41 m),而地下水含鹽量較高,在強(qiáng)蒸發(fā)作用下生育期內(nèi)土壤EC基本呈現(xiàn)出逐漸增加的趨勢(shì),本研究發(fā)現(xiàn)鹽濃度與土壤呼吸、MBC、MBN均呈顯著或極顯著負(fù)相關(guān)關(guān)系。Asghar等[46]研究表明,在底物存在的條件下,鹽漬土中微生物群落可以適應(yīng)由于淋溶、灌溉或水位變化而可能發(fā)生的田間鹽度波動(dòng)。因此,底物的變化可能是引起土壤微生物量及活性變化的主要原因,生長季內(nèi)鹽濃度波動(dòng)是否會(huì)引起土壤微生物量及活性變化的原因還有待進(jìn)一步研究。
1)本研究通過連續(xù)2 a有機(jī)無機(jī)肥配施試驗(yàn)發(fā)現(xiàn),有機(jī)無機(jī)肥配施對(duì)土壤溫濕度、pH及電導(dǎo)率(Electrical conductivity)值大多沒有顯著影響,而合理的有機(jī)無機(jī)氮配施可以產(chǎn)生良好的氮素釋放過程。
2)隨著鹽漬化程度升高,土壤微生物量碳(Microbial Biomass Carbon,MBC)、微生物量氮(Microbial Biomass Nitrogen,MBN)、土壤全呼吸、異養(yǎng)呼吸、自養(yǎng)呼吸顯著降低;配施有機(jī)肥可以提高土壤微生物量及微生物活性,輕、中度鹽漬土分別以有機(jī)無機(jī)各半配施及單施有機(jī)肥較優(yōu),同時(shí)可以獲得最高產(chǎn)量。
3)相關(guān)性分析表明,土壤呼吸與土壤MBC、MBN呈極顯著正相關(guān)(<0.01),土壤溫度與土壤呼吸、土壤微生物量碳氮呈顯著正相關(guān)(<0.05)。不同有機(jī)無機(jī)肥配施比例能夠調(diào)控土壤礦質(zhì)氮水平,是土壤微生物量及土壤呼吸的主要調(diào)控因子。
4)回歸分析表明,土壤呼吸與土壤溫度之間存在顯著的指數(shù)回歸關(guān)系(<0.05),各處理敏感性系數(shù)值均較?。?.11~1.31)。輕、中度鹽漬土各處理土壤呼吸速率與土壤含水率之間二次函數(shù)關(guān)系不顯著(>0.05)。土壤微生物量及土壤呼吸與有機(jī)肥施入比例、土壤鹽分呈顯著二元二次非線性回歸模型(<0.05),回歸系數(shù)表明,針對(duì)不同鹽分土壤,施入適量有機(jī)氮才能最大程度提高土壤微生物量及土壤呼吸。
[1] Osman K T. Management of soil problems[C]. American: Springer International Publishing AG, 2018: 255-298.
[2] Wang W X, Vinocur B, Altman A. Plant responses to drought,salinity and extreme temperatures: Towards genetic engineering for stress tolerance[J]. Planta, 2003, 218: 1-14.
[3] Chinnusamy V, Jagendorf A, Zhu J K. Understanding and improving salt tolerance in plants[J]. Crop Science, 2005, 45(2): 437-448.
[4] Porcel R, Aroca R, Ruiz-Lozano J M. Salinity stress alleviation using arbuscular mycorrhizal fungi: A review[J]. Agronomy for Sustainable Development, 2012, 32(1): 181-200.
[5] Elmajdoub B, Marschner P. Salinity reduces the ability of soil microbes to utilisecellulose[J]. Biology and Fertility of Soils, 2013, 49(4): 379-386.
[6] Rath K M, Rousk J. Salt effects on the soil microbial decomposer community and their role in organic carbon cycling: A review[J]. Soil Biology & Biochemistry, 2015, 81: 108-123.
[7] Chowdhury N, Marschner P, Burns R G. Soil microbial activity and community composition: Impact of changes in matric and osmotic potential[J]. Soil Biology & Biochemistry, 2011, 43(6): 1229-1236.
[8] Rousk J, Elyaagubi F K, Jones D L, et al. Bacterial salt tolerance is unrelated to soil salinity across an arid agroecosystem salinity gradient[J]. Soil Biology and Biochemistry 2011, 43: 1881-1884.
[9] Yan N, Marschner P, Cao W, et al. Influence of salinity and water content on soil microorganisms[J]. International Soil & Water Conservation Research, 2015, 3(4): 316-323.
[10] Tripathi S, Kumari S, Chakraborty A, et al. Microbial biomass and its activities in salt-affected coastal soils[J]. Biology and Fertility of Soils, 2006, 42(3): 273-277.
[11] Oren A. The bioenergetic basis for the decrease in metabolic diversity at increasing salt concentrations: Implications for the functioning of saltlake ecosystems[J]. Hydrobiologia, 2001, 466(1/2/3): 61-72.
[12] Bueren E T L V, Struik P C, Jacobsen E. Ecological concepts in organic farmingand their consequences for an organic crop ideotype[J]. NJAS-Wageningen Journal of Life Science, 2002, 50: 1-26.
[13] Shao H S, Lei T, Fahad N,et al. Response of microbial communities and enzyme activities to amendments in saline-alkaline soils[J]. Applied Soil Ecology, 2019, 135: 16-24.
[14] 于淑玲. 腐生真菌在有機(jī)質(zhì)分解過程中的作用研究進(jìn)展[J]. 河北師范大學(xué)學(xué)報(bào):自然科學(xué)版,2003,27(5):519-522.
Yu Shuling. A study of function that rot funguses have in the decomposition of organic matter[J]. Journal of Hebei Normal University: Natural Science Edition, 2003, 27(5): 519-522. (in Chinese with English abstract)
[15] 魏巍,許艷麗,朱琳,等. 長期施肥對(duì)黑土農(nóng)田土壤微生物群落的影響[J]. 土壤學(xué)報(bào),2013,50(2):372-380.
Wei Wei, Xu Yanli, Zhu Lin, et al. Effect of long-term fertilization on soil microbial communities in farmland of black soil[J]. Acta Pedologica Sinica, 2013, 50(2): 372-380. (in Chinese with English abstract)
[16] Mavi M S, Sanderman J, Chittleborough D J, et al. Sorption of dissolved organic matter in salt-affected soils: Effect of salinity, sodicity and texture[J]. Science of the Total Environment, 2012, 435: 337-344.
[17] Feng Z Z, Wang X, Feng Z W. Soil N and salinity leaching after the autumn irrigation and its impact on groundwater in Hetao Irrigation District, China[J]. Agricultural Water Management, 2005, 71(2): 131-143.
[18] 杜軍,楊培嶺,李云開,等. 基于水量平衡下灌區(qū)農(nóng)田系統(tǒng)中氮素遷移及平衡的分析[J]. 生態(tài)學(xué)報(bào),2011,31(16):4549-4559.
Du Jun, Yang Peiling, Li Yunkai, et al. Nitrogen balance in the farmland system based on water balance[J]. Acta Ecologica Sinica, 2011, 31(16): 4549-4559. (in Chinese with English abstract)
[19] Saha S, Prakash V, Kundu S, et al. Soil enzymatic activity as affected by long term application of farm yard manure and mineral fertilizer under a rainfed soybean–wheat system in N-W Himalaya[J]. European Journal of Soil Biology, 2008, 44(3): 309-315.
[20] Soares J R, Cantarella H, Menegale M L D C. Ammonia volatilization losses from surface-applied urea with urease and nitrification inhibitors[J]. Soil Biology & Biochemistry, 2012, 52(8): 82-89.
[21] Céccoli G, Senn M E, Bustos D, et al. Genetic variability for responses to short- and long-term salt stress in vegetative sunflower plants[J]. Journal of Plant Nutrition and Soil Science 2012, 175(6): 882-890.
[22] 王宇峰,孟會(huì)生,李廷亮,等. 培肥措施對(duì)復(fù)墾土壤微生物碳代謝功能多樣性的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(24):81-90.
Wang Yufeng, Meng Huisheng, Li Tingliang, et al. Effects of fertilization regime on the functional diversity of microbial carbon and nitrogen metabolism in reclaimed soil[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(24): 81-90. (in Chinese with English abstract)
[23] Morrissey E M, Gillespie J L, Morina J C, et al. Salinity affects microbial activity and soil organic matter content in tidal wetlands[J]. Global Change Biology, 2014, 20(4): 1351-1362.
[24] Varma A, Oelmüller R. Advanced techniques in soil microbiology[J]. Soil Biology, 2007, 11: 202-207.
[25] Houba V J G, Novozamsky J, Huybregts A W M, et al. Comparison of soil extractions by 0.01 mol/LCaCl2by EUF and by some conventional extraction procedures[J]. Plant Soil, 1986, 96: 433-437.
[26] 涂利華,胡庭興,黃立華,等. 華西雨屏區(qū)苦竹林土壤呼吸對(duì)模擬氮沉降的響應(yīng)[J]. 植物生態(tài)學(xué)報(bào),2009,33(4):728-738.
Tu Lihua, Hu Tingxing, Huang Lihua, et al. Response of soil respiration to simulated nitrogen deposition in pleioblastusamarus forest, rainy area of west China[J]. Chinese Journal of Plant Ecology, 2009, 33(4): 728-738. (in Chinese with English abstract)
[27] Zhang Y, Cao C, Guo L, et al. Soil properties, bacterial community composition, and metabolic diversity responses to soil salinization of a semiarid grassland in northeast China[J]. Journal of Soil and Water Conservation, 2015, 70(2): 110-120.
[28] Bannur E, Stephen B, Petra M. Response of microbial activity and biomass in rhizosphere and bulk soils to increasing salinity[J]. Plant and Soil, 2014, 381(1/2): 297-306.
[29] Zhang X M, Xue C H, Wang C X. Effects of imidacloprid on soil microbial communities in different saline soils[J]. Environmental Science and Pollution Research, 2015, 22: 19667-19675.
[30] Kuzyakov Y, Friedel J K, Stahr K. Review of mechanisms and quantification of priming effects[J]. Soil Biology and Biochemistry, 2000, 32(11/12): 1485-1498.
[31] 周慧,史海濱,徐昭,等. 有機(jī)無機(jī)肥配施對(duì)鹽漬土供氮特性與作物水氮利用的影響[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2020,51(4):299-307.
Zhou Hui, Shi Haibin, Xu Zhao, et al. Effects of Combined application of organic and inorganic fertilizers on nitrogen supply and crop water and nitrogen utilization in salinized soils[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(4): 299-307. (in Chinese with English abstract)
[32] Yuan B C, Li Z Z, Liu H, et al. Microbial biomass and activity in salt affected soils under arid conditions[J]. Applied Soil Ecology, 2007, 35: 319-328.
[33] Sardinha M, Torsten M, Schmeisky H, et al. Microbial performance in soils along a salinity gradient under acidic conditions[J]. Applied Soil Ecology, 2003, 23(3): 237-244.
[34] Rietz D N, Haynes R J. Effects of irrigation-induced salinity and sodicity on soil microbial activity[J]. Soil Biology & Biochemistry, 2003, 35(68): 45-854.
[35] 陶朋闖,陳效民,靳澤文,等. 生物質(zhì)炭與氮肥配施對(duì)旱地紅壤微生物量碳、氮和碳氮比的影響[J]. 水土保持學(xué)報(bào),2016,30(1):231-235.
Tao Pengchuang, Chen Xiaoming, Jing Zewen, et al. Effects of combined with nitrogen fertilizers on microbial biomass C, N and carbon-to-nitrogen ratio of upland red soil[J]. Journal of Soil and Water Conservation, 2016, 30(1): 231-235. (in Chinese with English abstract)
[36] 曾清蘋,何丙輝,毛巧芝,等. 重慶縉云山兩種林分土壤呼吸對(duì)模擬氮沉降的季節(jié)響應(yīng)差異性[J]. 生態(tài)學(xué)報(bào),2016,36(11):3244-3252.
Zeng Qingping, He Binghui, Mao Qiaozhi, et al. Seasonal response of soil respiration to simulated nitrogen deposition in a cirus plantation and masson pine forest in Mt.Jinyun, Chongqing, China[J]. Acta Ecologica, 2016, 36(11):3244-3252. (in Chinese with Englishabstract)
[37] Muhammad S T, Müller T, Joergensen R G. Decomposition of pea and maize straw in Pakistani soils along a gradient in salinity[J]. Biology & Fertility of Soils, 2006, 43(1): 93-101.
[38] Schimel J, Balser T C, Wallenstein M. Microbial stress-response physiology and its implications for ecosystem function[J]. Ecology, 2007, 88: 1386-1394.
[39] Luo Y Q, Zhou X H. Soil Respiration and the Environment[M]. American: Springer International Publishing AG, 2006: 257-305.
[40] 劉靜,孫濤,程云云,等. 氮沉降和土壤線蟲對(duì)落葉松人工林土壤有機(jī)碳礦化的影響[J]. 生態(tài)學(xué)雜志,2017,36(8):2085-2093.
Liu Jing, Sun Tao, Cheng Yunyun, et al. Effect of nitrogen deposition and soil nematode on soil organic carbon mineralization in a Larixgmeliniiplantation[J]. Chinese Journal of Ecology, 2017, 36(8): 2085-2093. (in Chinese with Englishabstract)
[41] Bowden R D, Davidson E, Savage K, et al. Chronic nitrogen additions reduce total soil respiration and microbial respiration intemperate forest soils at the Harvard Forest[J]. Forest Ecology and Management, 2004, 196(1): 43-56.
[42] Fierer N, Morse J L, Berthrong S T, et al. Environmental controls on the landscape-scale biogeography of stream bacterial communities[J]. Ecology, 2007, 88: 2162-2173.
[43] Manzonis S, Taylor P, Richter A, et al. Environmental and stoichiometric controls on microbial carbon-use efficiency in soils[J]. New Phytologist, 2012, 96: 79-91.
[44] Wardle D A, Ghani A. A critique of the microbial metabolic quotient (q CO2) as a bioindicator of disturbance and ecosystem development[J]. Soil Biology and Biochemistry, 1995, 27: 1601-1610.
[45] Sulman B N, Phillips R P, Oishi A C, et al. Microbe-driven turnover offsets mineral-mediated storage of soil carbon under elevated CO2[J]. Nature Climate Change, 2014, 4: 1099-1102.
[46] Asghar H N, Setia R, Marschner P. Community composition and activity of microbes from saline soils and non-saline soils respond similarly to changes in salinity[J]. Soil Biology & Biochemistry, 2012, 47: 175-178.
Effects of the combined application of organic and inorganic fertilizers on soil microbial biomass and soil respiration in saline soil
Zhou Hui, Shi Haibin※, Zhang Wencong, Wang Weigang, Su Yongde, Yan Yan
(1.,,010018,; 2.,,010018)
Microorganisms can adapt to the salinity by ingesting energy, further to synthesize organic osmolytes in soil. However, microbial demand for energy may change, as the soil salinity changes. In this study, a field experiment was carried out to explore the effects of the combined application of organic and inorganic fertilizers on soil respiration and microbial biomass in saline soil. The samples were taken as the mild saline soil, S1(electrical conductivity (EC) 0.46 dS/m) and moderate saline soil, S2(electrical conductivity (EC) 1.07 dS/m) in Hetao Irrigation District of Inner Mongolia, China, in 2018. Soil respiration rate was measured by a li-8100 soil carbon flux automatic measurement system. Surface soil samples of 0-20 cm depths were collected under various fertilization regimes in mild and moderate saline soil. Calcium chloride and chloroform fumigation extraction were used to investigate the effect of various fertilization regimes on the mineral nitrogen contents and microbial biomass in soil. Six treatments were set, including no fertilization (CK), urea (U1), and 25%, 50%, 75%, as well as 100% of urea N substituted by organic fertilizers U3O1, U1O1, U1O3, and O1, respectively, during the second growing season (April-September). The parameters were measured under equal N application rates of 240 kg/hm2, the dynamics of soil microbial biomass (i.e., microbial biomass carbon [MBC] and microbial biomass nitrogen [MBN]), and soil respiration (i.e., soil respiration rate, soil autotrophic respiration rate, and soil heterotrophic respiration rate). The results showed that the contents of mineral nitrogen in S1soil were higher in the U1treatment during the early growing stage (seedling and stem elongation stage), but higher in the U1O1treatment in the later stage. S2soil showed that the soil mineral nitrogen contents were higher in the whole growing stage, as the application rate of organic fertilizer increased. Furthermore, the increase of soil salinization resulted in the decrease of microbial biomass and microbial activity in the soil. The MBC in S1soil increased by 12.01%-68.81%, while the MBN increased by 14.31%-58.58%, and the soil respiration flux increased by 11.75%-54.71%, compared with S1soil. Furthermore, the organic fertilizer significantly increased the microbial biomass and microbial activity under different degrees of saline soils. The S1saline soils treated with U1O1presented the higher MBC, MBN, and soil respiration flux, indicating a significant increase compared with U1treatment (<0.05). The performance of S2saline soil after the O1treatment was better than that after the U1treatment, where the MBC, MBN, and soil respiration flux increased (<0.05). The highest maize yield was also achieved in the S1and S2soil treated with U1O1and O1, which were 11 902.91, and 7 609.67 kg/hm2, respectively. A correlation analysis was found that the soil respiration presented a significant positive correlation with the MBC and MBN (<0.05). The soil temperature and mineral nitrogen had a significant positive correlation with the soil respiration, MBC, and MBN (<0.05). Regression analysis showed that there was a significant exponential relationship between the soil respiration and temperature (<0.05), but the relationship between soil respiration rate and soil moisture content was not significant. Additionally, there was a significant nonlinear relationship of soil microbial biomass and respiration rate with the organic fertilizer rate and soil salt concentration. The regression coefficient demonstrated that the appropriate organic fertilizer rate contributed to maximizing the soil microbial biomass and respiration rate in different saline soils. Optimal organic and chemical fertilizer management models were achieved for the mild saline soil in the Hetao irrigation area. Specifically, the mild saline soil (120 kg/hm2urea+120 kg/hm2organic fertilizer), and moderate saline soil (240 kg/hm2organic fertilizer) can be expected for the higher corn yield under the improved soil microbial environment.
carbon; nitrogen; soils; salinization; combined application of organic and inorganic fertilizers; microbial biomass; respiration
周慧,史海濱,張文聰,等. 有機(jī)無機(jī)肥配施對(duì)鹽漬化土壤微生物量和呼吸的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(15):86-95.doi:10.11975/j.issn.1002-6819.2021.15.011 http://www.tcsae.org
Zhou Hui, Shi Haibin, Zhang Wencong, et al. Effects of the combined application of organic and inorganic fertilizers on soil microbial biomass and soil respiration in saline soil[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(15): 86-95. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.15.011 http://www.tcsae.org
2021-01-02
2021-06-10
國家自然科學(xué)基金項(xiàng)目(51769024、51539005)
周慧,博士生,研究方向?yàn)榈匮h(huán)與環(huán)境效應(yīng)。Email:792606382@qq.com
史海濱,教授,博士生導(dǎo)師,研究方向?yàn)楣?jié)水灌溉原理及應(yīng)用。Email:shi_haibin@sohu.com
10.11975/j.issn.1002-6819.2021.15.011
S154.4
A
1002-6819(2021)-15-0086-10