• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Antiferromagnetic spin dynamics in exchanged-coupled Fe/GdFeO3 heterostructure*

    2021-11-23 07:31:16NaLi李娜JinTang湯進(jìn)LeiSu蘇磊YaJiaoKe柯亞嬌WeiZhang張偉ZongKaiXie謝宗凱RuiSun孫瑞XiangQunZhang張向群WeiHe何為andZhaoHuaCheng成昭華
    Chinese Physics B 2021年11期
    關(guān)鍵詞:張偉李娜

    Na Li(李娜) Jin Tang(湯進(jìn)) Lei Su(蘇磊) Ya-Jiao Ke(柯亞嬌)Wei Zhang(張偉) Zong-Kai Xie(謝宗凱) Rui Sun(孫瑞)Xiang-Qun Zhang(張向群) Wei He(何為) and Zhao-Hua Cheng(成昭華)

    1State Key Laboratory of Magnetism and Beijing National Laboratory for Condensed Matter Physics,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China

    2School of Physical Sciences,University of Chinese Academy of Sciences,Beijing 100049,China

    3Songshan Lake Materials Laboratory,Dongguan 523808,China

    Keywords: ultrafast magnetization dynamics,antiferromagnetics,magnetic oxides,magnetization dynamics

    1. Introduction

    In antiferromagnetic (AFM) materials, the neighboring magnetic moments point in opposite directions, resulting in null macroscopic magnetization and the absence of stray fields. These features make antiferromagnets invisible to common probes and quite robust over external magnetic perturbation.[1,2]In addition,due to strong AFM exchange interaction, antiferromagnets show typical terahertz (THz) resonance frequencies, which make them promising for future high-frequency spintronic applications and now attract significant attention.[3,4]However,the almost zero net magnetic moment makes it extremely challenging to effectively manipulate and probe the antiferromagnetic order.[2]Thus, the efficient detection of AFM spin dynamics with frequency up to the terahertz range has been interested and gazed widely.

    The rare-earth orthoferritesRFeO3(Rstands for a rareearth element),[5]with canted spin and a weak net magnetic moment originating from antiferromagnetic exchange interaction and Dzyaloshinsky-Moriya interaction, are natural candidates for observing antiferromagnetic spin dynamics.[6]For typical orthoferrites, such as HoFeO3and TmFeO3, the AFM spin dynamics has been widely investigated via the optical methods for its sensitivity and short stimulus.[7-11]However,some limitations are indeed non-negligible and to be addressed. Using the all-optical method, the spin dynamics ofRFeO3can only be probed near the spin reorientation phase transition temperature region. In addition,the dynamic amplitude via the nonthermal stimulus dramatically decreases with temperature due to phonon scattering.[12,13]Moreover, there are also some rare-earth orthoferrites(R=Y,Eu,Gd,Tb)remained unexplored via all-optical technique due to their single magnetic phase. The GdFeO3(GFO) is a typical canted antiferromagnet without the spin reorientation phase transition,whose AFM spin dynamics triggered by optical method remains elusive. It has only been detected via second harmonic generation at extremely low temperature 1.5 K,[14]whereas the roomtemperature spin dynamics via optical excitation is to be explored. Recently,in the case of the interfacial exchange coupling with an Fe layer,the AFM spin dynamics in ErFeO3can be probed via an all-optical method away from the spin reorientation temperature range.[15]Inspired by this,it is with tremendous possibility of extending on GFO-type materials,where there is potential for greatly expanding the operating temperature and efficiency.

    In this work, we investigate the room-temperature AFM spin dynamics of GdFeO3via an all-optical method in exchange-coupled Fe/GdFeO3(100) heterostructure. Both quasiferromagnetic and impurity modes, as well as phonon mode, are observed in low magnetic field in Fe/GFO while absent in pure GFO. Although the excitation efficiency of AFM dynamics is hardly affected by the magnetic moment arrangement (antiparallel or parallel) between interfacial layers, it can be modified by the fluence of pump laser presenting as the change of the AFM resonance amplitude, which results from optical modification of the interfacial exchange coupling interaction. Considering the great importance of the AFM resonance excitation for energy-efficient opto-spintronic devices,the efficient interaction stimulation via exchange coupling may drastically expand the advanced AFM dynamics detection of tremendous materials in near future.

    2. Experimental methods

    The GFO single crystal was grown using the floating zone method with crystallinity and crystallographic orientation confirmed by powder x-ray diffractometer and Laue xray diffraction as reported previously.[16]The sample was cut perpendicularly to theaaxis and then polished, so a flat GFO (100) substrate was obtained. To fabricate the Fe/GFO(100) heterostructure, the GFO (100) substrate with thickness of 2 mm was put into the ultrahigh vacuum chamber(~5×10?10mbar) to warm up to about 500 K, which is far smaller than the growth temperature (1200 K) of the single crystal to remove the surface gas contaminants. Then,the GFO(100)substrate underwent natural cooling,and was kept at room temperature during the subsequent film growth. A 35-nm-thick Fe film was deposited by electron beam evaporator onto the GFO substrate, and with a 2.5-nm-thick Cu film as the capping layer forex situmeasurements. The deposition rate of Fe and Cu were kept at 0.15 nm/min and 0.10 nm/min,respectively. During the deposition, half the GFO substrate was shadowed for convenience to monitor the change of magnetic properties. Furthermore, the magnetic hysteresis loops of GFO (100) and Fe/GFO (100) heterostructure were determined by longitudinal magneto-optical Kerr effect (MOKE)at room temperature.

    The AFM spin dynamics in Fe/GFO(100)was achieved using the all-optical magneto-optical Kerr effect (TRMOKE)technique at room temperature. A Ti:sapphire oscillator generates a train of laser pluses at repetition rate of 5.2 MHz,duration of 55 fs and with a wavelength of 780 nm, which was used as the pump laser with linearly polarization perpendicular to the projection direction.Moreover,the 780 nm femtosecond laser was doubled by a BBO crystal as the probe light,which was linearly polarized along the projection direction. Both the pump and probe beams were incident vertically onto the sample with spot diameters of about 10μm and 5μm,respectively.Here, the pump fluence varied from 0.5 to 4.0 mJ/cm2while the probe fluence was kept at 0.1 mJ/cm2.

    3. Results and discussion

    The GdFeO3(GFO) is a canted antiferromagnet possessing a weak net moment along thecaxis below 641 K without spin reorientation.[17]Figure 1(a) shows the normalized longitudinal Kerr signals along thecaxis for pure GFO (100)and Fe/GFO (100) heterostructure. The magnetic hysteresis loop of heterostructure presents two-step magnetization reversal process with a larger switching field reaching 160 Oe and a lower one about 50 Oe. It is noteworthy that the penetration depth of light with a wavelength of 632 nm is about 15 nm,[18]and consequently the MOKE can probe both the magnetic moment of Fe and the net magnetic moment of substrate simultaneously. Compared with the signal of pure substrate GFO(100),the coercivity of net moment of GFO almost keeps unchanged,revealing the influence of the net moment of Fe film and the treatments of substrate on the magnetic property of GFO is quite small.

    Fig. 1. (a) Normalized Kerr loops for the pure GFO (100) substrate and Fe/GFO(100)heterostructure with external magnetic field of 2.5 kOe applied along the c axis. The inset shows the parallel or anti-parallel spin configuration in the FM-AFM interface.(b)The minor loops along the c axis in Fe/GFO(100)heterostructure with maximum field of 250 Oe after the net moment of GFO fixed under an initial field of+2.5 kOe and ?2.5 kOe,respectively.

    Figure 1(b) presents the distinctly shifted minor loops known as exchange bias effect,with a maximum applied field of 250 Oe along thecaxis in Fe/GFO(100)after the net moment of GFO fixed under an initial field of+2.5 and?2.5 kOe,respectively.When the GFO net moment fixed along the[001]axis under a positive field (+2.5 kOe), the minor loop exhibits a positive shift, and vice versa. That is to say, the net moment of GFO can reverse the Fe moment by inverting its own direction. Moreover, the positive (negative) shift of minor hysteresis loop under positive(negative)initial magnetic field indicates the positive exchange bias, similar to the FM/AFM system.[19-21]Hence, the positive bias effect indicates the robust AFM interfacial exchange coupling between the net moment of GFO orthoferrite and the neighboring soft Fe layer,which is the keystone for further study of AFM spin dynamic via stimulation of Fe layer. In addition, the magnetization orientation of Fe layer and pinning layer(GFO layer)under various external magnetic fields is depicted schematically in Fig.1(a),which provides the possibility to investigate the spin configuration related terahertz dynamics of GFO in heterostructure.

    Fig. 2. (a) The schematic diagram of optical stimulus of AFM dynamics in Fe/GFO (100) heterostructure via optical modification of the interfacial exchange coupling at room temperature. (b)Room-temperature TRMOKE signals of Fe/GFO(100)heterostructure and pure GFO(100)substrate with a laser fluence of 3 mJ/cm2 and a 2.5 kOe field applied along the c axis. The inset is the experimental configuration for TRMOKE measurement. (c)Frequency component obtained by the FFT method. (d)The magnetic field dependent resonance amplitude for impurity mode, phonon mode and Q-FM mode in Fe/GFO (100), respectively. The inset shows the typical TRMOKE signals for different magnetization configurations at the interface of Fe and GFO.

    Figure 2(b) shows the typical dynamic signals of heterostructure and pure GFO substrate in a magnetic field of 2.5 kOe along thecaxis of GFO at room temperature. As is expected, no obvious dynamic signal is observed in the pure GFO substrate because the all-optical method cannot effectively stimulate AFM resonance far away from the phase transition region.[9,12,22]Nevertheless, for Fe/GFO (100) heterostructure, a quite complex and fast response in 0-50 ps time range is observed and followed by a slow spin precession till 700 ps reasonably assigned to the precession of the Fe film. Naturally, the multiple high-frequency modes are obtained from the fast Fourier transform (FFT) power spectra with a low frequency of 8 GHz and three high resonance modes at 0.08 THz, 0.23 THz, and 0.38 THz presented in Fig. 2(c). In addition, the signal in the 0-50 ps time range is fitted by damped function with three frequency modesfivia the following equation:

    whereAi,?iandτi(i=1,2,3)represent oscillatory amplitude,initial phase of magnetic precession, and relaxation time, respectively. The last two terms are related to the background signal with the amplitudeBandC, and recovery time constantτ0. Similarly, the dynamic parameters of the Fe layer can be extracted by fitting the data[23]in a subsequent range but beyond the scope of our discussion here. Through the fitting curve in Fig. 2(b), we obtain three resonance modes at 0.078 THz, 0.23 THz, 0.39 THz, which are consistent with the FFT peaks. The two-sublattice model of the magnetic structure of the orthoferrites predicts the quasi-ferromagnetic(Q-FM) mode at 100-300 GHz.[24,25]Thus, we ascribe the 0.23 THz mode to photo-induced Q-FM mode of GFO, governed by the exchange interactions of Fe3+-Fe3+ions.[14]Moreover,the highest-frequency mode at 0.39 THz is assigned to the impurity mode because of its typical characteristic of possessing an initial phase almostπdifferent from the Q-FM mode.[26,27]This mode stems from the occupation of the6A1ground state of the Fe3+ions in rare-earth positions.[6,26]In addition,we attribute the resonance of 0.08 THz to the phonon mode for its imperviousness to the magnetic field.The phonon mode derived from the lattice oscillation[14,28]was also reported in ErFeO3with the same frequency.[15]Therefore, the room-temperature AFM spin dynamics of GFO is successfully excited via the all-optical method in the exchange coupled Fe/GFO(100)system. As mentioned above,by adjusting the applied field,we can investigate the interfacial spin configuration related dynamics.Distinctly,the phases of the two signals are nearly 180°different for the parallel and antiparallel spin configurations(see the inset of Fig.2(d)). From Fig.2(d),the amplitude of each resonance mode is nearly invariant with the magnetic field,meaning that the excitation efficiency is hardly modulated by changing the in-plane magnetic moment configuration. It is quite sturdy for AFM order and intrinsic exchange interaction subject to the magnetic field. Furthermore,the relatively weak external fieldHcannot align the AFM spin configuration at the FM/AFM interface, with the internal exchange interaction remaining constant.

    Fig.3. The TRMOKE signals at different fluences of the pump laser(a)and their corresponding FFT spectra(b). The fluence of pump laser dependent precession frequency(c)and resonance amplitude(d)of impurity mode,phonon mode and Q-FM mode for Fe/GFO(100),respectively. The magnetic field(2.5 kOe)was applied along the c axis. The solid lines are of guide for the eyes.

    To investigate the optical modification of excitation efficiency of AFM spin dynamics we adjust the pump laser fluence to excite the Fe/GFO(100)heterostructure with the typical signals shown in Figs. 3(a) and 3(b). Figure 3(c) reveals the resonance frequency of the phonon mode keeps constant,suggesting that the laser intensity cannot affect the lattice vibration rate.However,regarding the impurity mode and Q-FM mode,we observe a slight shift of the resonance frequency by varying laser fluence. According to the Sigma model,[29]the resonant frequency for Q-FM mode is determined by the uniaxial magnetic anisotropy, as well as the interfacial exchange coupling interaction for the interfacial AFM spins at room temperature in our system. Thus, the optical absorption of the system impacts the moment of the Fe layer, then modifies the interfacial exchange coupling with the GFO layer,and even the thermal effect, which are possibly responsible for the frequency shift of the Q-FM mode. Meanwhile, the impurity mode also comes from magnetic source, related to the Fe3+ions in rare-earth positions. Thus, the shift of its frequency may have the same origins. Furthermore, the laser fluence can significantly modify the dynamic amplitude of all modes in heterostructure with different tendencies, which indicates the tunable excitation efficiency as shown in Fig.3(d).Here, the direct interaction between laser and the GFO substrate can be ignored because of the low optical absorption of the orthoferrite,[30,31]namely,the pump laser can solely modulate the Fe layer. Consequently,we can conclude that optical modulation of AFM excitation amplitude is possible due to optical modification of interfacial exchange coupling interaction.The simple diagram of the excitation is depicted in Fig.2(a).The laser induces the instantaneous nonequilibrium state of the Fe layer, then the interfacial exchange coupling is perturbed,as a result the precession of the net moment of GFO occurs.

    The oscillation amplitude of the phonon mode exhibits nearly a linear relation with fluence, like that in FeBO3[28]interpreted with an intense lattice vibration for intense optical absorption. Similarly, the excitation amplitude of impurity mode related to the Fe3+ions in rare-earth is linearly increased with largened influence, which may result from the perturbated AFM state near the interface by coupling with more unbalanced Fe layer. The oscillation amplitude of QFM mode increases linearly with influence from 0.5 mJ/cm2to 1.5 mJ/cm2, which can be ascribed to optical modification of the interfacial exchange interaction as well,according to early reports[6,31]Interestingly,continually intensifying the pump laser, the Q-FM resonance amplitude becomes weak.The impact of the high fluence on Fe film is comparatively large such as heat transport effect or the destruction of the magnetic anisotropy[32]resulting in the magnetic disorder or charge redistribution.[33-35]Therefore, weakening of the amplitude may come from the moment destruction or the charge redistribution by the intensive laser,leading to the saltation of the exchange coupling. However,the microscopic mechanism for optical modification of interfacial exchange coupling and the impact on magnetic order needs more experimental and theoretical studies. Besides,optically modifying the dynamics of the Fe layer may also need further research.

    4. Conclusion

    In summary,we have investigated the AFM spin dynamics of GdFeO3via an all-optical pump-probe method at room temperature by modification of interfacial exchange coupling in Fe/GdFeO3(100). Multimode AFM dynamic behavior of GdFeO3including quasiferromagnetic, impurity and phonon mode is observed in low magnetic field. In addition,the AFM dynamic properties are less affected by the relative moment arrangement(antiparallel or parallel)of Fe and GdFeO3. The excitation efficiency of AFM resonance can be tuned tremendously by the pump influence via optical modification of the interfacial exchange coupling. The feasible triggering of multimode spin dynamics and easy tuning of excitation efficiency of orthoferrite via all-optical technique shed new lights on ultrafast magnetization manipulation of AFM for fast optospintronic devices.

    猜你喜歡
    張偉李娜
    李娜作品
    大眾文藝(2022年22期)2022-12-01 11:52:58
    Nanosecond laser preheating effect on ablation morphology and plasma emission in collinear dual-pulse laser-induced breakdown spectroscopy
    Nonlinear vibration of iced cable under wind excitation using three-degree-of-freedom model?
    Application research of bamboo materials in interior design
    昨天 今天
    金秋(2020年14期)2020-10-28 04:15:40
    藝術(shù)百家:張偉 何是雯
    看得到的轉(zhuǎn)變
    中華家教(2018年9期)2018-10-19 09:30:00
    Analysis of the Effects of Introversion and Extroversion Personality Traits on Students’ English Reading And Writing Abilities with its Relevant Teaching Advice
    李娜作品
    藝術(shù)家(2017年2期)2017-11-26 21:26:20
    數(shù)學(xué)潛能知識(shí)月月賽
    亚洲欧美一区二区三区黑人| 99国产综合亚洲精品| 无限看片的www在线观看| 熟女少妇亚洲综合色aaa.| 亚洲精品久久久久久婷婷小说| 国产熟女欧美一区二区| 成人免费观看视频高清| 亚洲久久久国产精品| 天天躁狠狠躁夜夜躁狠狠躁| 丝袜在线中文字幕| 欧美日韩av久久| 午夜福利视频精品| 真人做人爱边吃奶动态| 在线av久久热| 女人精品久久久久毛片| 最新的欧美精品一区二区| 51午夜福利影视在线观看| 只有这里有精品99| 满18在线观看网站| 亚洲男人天堂网一区| 亚洲第一av免费看| 极品少妇高潮喷水抽搐| 嫩草影视91久久| av天堂在线播放| 午夜激情av网站| 91精品国产国语对白视频| 久久久久精品国产欧美久久久 | 亚洲精品国产区一区二| 老司机在亚洲福利影院| 男人爽女人下面视频在线观看| 亚洲国产最新在线播放| 久久 成人 亚洲| 久久久国产一区二区| 国产一区二区三区av在线| 色精品久久人妻99蜜桃| 亚洲av欧美aⅴ国产| 一级片免费观看大全| 亚洲欧美一区二区三区黑人| 一级片免费观看大全| 男女下面插进去视频免费观看| 欧美激情高清一区二区三区| 99精国产麻豆久久婷婷| 99精国产麻豆久久婷婷| 亚洲国产精品999| 久久久欧美国产精品| tube8黄色片| 精品国产超薄肉色丝袜足j| 亚洲 欧美一区二区三区| 午夜久久久在线观看| av网站在线播放免费| 好男人电影高清在线观看| netflix在线观看网站| 成人18禁高潮啪啪吃奶动态图| 菩萨蛮人人尽说江南好唐韦庄| 午夜老司机福利片| 国产激情久久老熟女| 男男h啪啪无遮挡| 青青草视频在线视频观看| 大话2 男鬼变身卡| av网站免费在线观看视频| 超色免费av| 色综合欧美亚洲国产小说| 丝袜美足系列| 亚洲av片天天在线观看| 午夜两性在线视频| 国产野战对白在线观看| 少妇被粗大的猛进出69影院| 我的亚洲天堂| 男女国产视频网站| 国精品久久久久久国模美| 色婷婷久久久亚洲欧美| 丰满饥渴人妻一区二区三| 飞空精品影院首页| 亚洲欧美色中文字幕在线| 人妻 亚洲 视频| 久久精品国产亚洲av涩爱| 成年美女黄网站色视频大全免费| 汤姆久久久久久久影院中文字幕| 国产成人欧美在线观看 | 色播在线永久视频| 999精品在线视频| 波多野结衣av一区二区av| 久久鲁丝午夜福利片| 人成视频在线观看免费观看| 午夜老司机福利片| 国产片内射在线| 国产在视频线精品| 美女国产高潮福利片在线看| 亚洲欧美精品综合一区二区三区| 午夜激情av网站| 国产1区2区3区精品| 美女福利国产在线| 天天躁日日躁夜夜躁夜夜| a 毛片基地| 99热全是精品| 9热在线视频观看99| 少妇猛男粗大的猛烈进出视频| 多毛熟女@视频| 视频区图区小说| 亚洲欧美成人综合另类久久久| 在线av久久热| 91麻豆av在线| 伦理电影免费视频| 夫妻午夜视频| 一级毛片电影观看| 我的亚洲天堂| 夜夜骑夜夜射夜夜干| 国产片特级美女逼逼视频| 一本大道久久a久久精品| 在现免费观看毛片| 亚洲午夜精品一区,二区,三区| 手机成人av网站| 亚洲欧美中文字幕日韩二区| a级毛片黄视频| a 毛片基地| 又紧又爽又黄一区二区| 一级黄色大片毛片| 国产精品国产三级国产专区5o| 久久久久国产精品人妻一区二区| 国产精品99久久99久久久不卡| 久久久久国产精品人妻一区二区| 亚洲中文字幕日韩| 欧美亚洲日本最大视频资源| www.自偷自拍.com| 久久亚洲精品不卡| 捣出白浆h1v1| 最近中文字幕2019免费版| 免费观看av网站的网址| 日韩大码丰满熟妇| 一本—道久久a久久精品蜜桃钙片| www.精华液| 日本av手机在线免费观看| 国精品久久久久久国模美| 少妇 在线观看| 男女午夜视频在线观看| 国产在线观看jvid| 午夜免费观看性视频| 老汉色av国产亚洲站长工具| 亚洲精品自拍成人| 亚洲一区二区三区欧美精品| 亚洲av男天堂| 大片电影免费在线观看免费| 男女国产视频网站| 国产av国产精品国产| 亚洲av片天天在线观看| 午夜日韩欧美国产| 一本久久精品| 精品福利观看| 老司机靠b影院| 国产在线观看jvid| 两个人免费观看高清视频| 欧美黄色片欧美黄色片| 大香蕉久久网| 在线看a的网站| 欧美亚洲 丝袜 人妻 在线| 99精品久久久久人妻精品| 精品久久久久久电影网| 可以免费在线观看a视频的电影网站| 国产精品免费大片| 国产成人av激情在线播放| 99国产精品99久久久久| 色婷婷久久久亚洲欧美| 999久久久国产精品视频| 91成人精品电影| 欧美97在线视频| 日本黄色日本黄色录像| 狠狠婷婷综合久久久久久88av| 日本色播在线视频| 日本vs欧美在线观看视频| 一边亲一边摸免费视频| 另类亚洲欧美激情| 欧美精品人与动牲交sv欧美| 婷婷丁香在线五月| 在线观看免费高清a一片| 日韩中文字幕欧美一区二区 | 欧美黄色淫秽网站| 丝袜美足系列| av线在线观看网站| 亚洲国产日韩一区二区| 免费人妻精品一区二区三区视频| 精品卡一卡二卡四卡免费| avwww免费| 国产熟女午夜一区二区三区| 狂野欧美激情性bbbbbb| 99国产综合亚洲精品| 丰满人妻熟妇乱又伦精品不卡| 纯流量卡能插随身wifi吗| 久久精品国产亚洲av高清一级| 欧美久久黑人一区二区| 欧美在线黄色| 亚洲国产av影院在线观看| 亚洲精品一卡2卡三卡4卡5卡 | 国产亚洲精品久久久久5区| 国产高清videossex| 好男人电影高清在线观看| 美女大奶头黄色视频| 啦啦啦在线免费观看视频4| 欧美97在线视频| 男人操女人黄网站| 侵犯人妻中文字幕一二三四区| 九草在线视频观看| 伦理电影免费视频| 日本欧美视频一区| 日本wwww免费看| 水蜜桃什么品种好| 国产有黄有色有爽视频| 国产成人免费无遮挡视频| 美女午夜性视频免费| 亚洲熟女精品中文字幕| 亚洲欧美精品综合一区二区三区| 国产亚洲精品久久久久5区| 黄片播放在线免费| 波多野结衣av一区二区av| 中文欧美无线码| 亚洲精品国产av成人精品| 亚洲,欧美精品.| 七月丁香在线播放| 午夜精品国产一区二区电影| 国产黄色免费在线视频| 女性被躁到高潮视频| 一二三四社区在线视频社区8| 大码成人一级视频| 亚洲伊人色综图| 汤姆久久久久久久影院中文字幕| 欧美 亚洲 国产 日韩一| 欧美人与善性xxx| 中文精品一卡2卡3卡4更新| 女人被躁到高潮嗷嗷叫费观| 国产成人精品久久久久久| 久久影院123| 亚洲av在线观看美女高潮| 又大又爽又粗| 97人妻天天添夜夜摸| 国产精品一区二区在线观看99| 久久久久精品国产欧美久久久 | 久久天堂一区二区三区四区| 欧美日韩亚洲国产一区二区在线观看 | 美女福利国产在线| 99国产精品免费福利视频| 一边亲一边摸免费视频| 波多野结衣av一区二区av| 69精品国产乱码久久久| 天堂俺去俺来也www色官网| 亚洲七黄色美女视频| 久久久久久久久免费视频了| 日韩视频在线欧美| 国产精品亚洲av一区麻豆| 蜜桃国产av成人99| 免费人妻精品一区二区三区视频| 亚洲欧美一区二区三区国产| 亚洲七黄色美女视频| 国产成人免费无遮挡视频| 久久天堂一区二区三区四区| 男女边吃奶边做爰视频| 亚洲国产看品久久| av又黄又爽大尺度在线免费看| 久久久久久久国产电影| 亚洲精品久久久久久婷婷小说| 欧美性长视频在线观看| 美女脱内裤让男人舔精品视频| 黄色a级毛片大全视频| 亚洲精品久久成人aⅴ小说| 精品久久久久久电影网| 久久人人97超碰香蕉20202| 欧美日韩成人在线一区二区| 亚洲欧美一区二区三区国产| 欧美在线一区亚洲| 2021少妇久久久久久久久久久| 亚洲国产日韩一区二区| 黄色怎么调成土黄色| av视频免费观看在线观看| 日韩大片免费观看网站| 国产日韩欧美亚洲二区| 久久这里只有精品19| 亚洲精品中文字幕在线视频| 亚洲五月婷婷丁香| 国产精品国产三级国产专区5o| 满18在线观看网站| 2021少妇久久久久久久久久久| 看十八女毛片水多多多| 久久 成人 亚洲| 尾随美女入室| 成人18禁高潮啪啪吃奶动态图| 男人添女人高潮全过程视频| xxx大片免费视频| 精品亚洲乱码少妇综合久久| 国产日本99.免费观看| 成人av一区二区三区在线看| 男人操女人黄网站| 丝袜在线中文字幕| 黄片大片在线免费观看| 国产亚洲av高清不卡| 亚洲一码二码三码区别大吗| www日本在线高清视频| 欧美性猛交黑人性爽| 国内精品久久久久精免费| 精品国产美女av久久久久小说| 91麻豆av在线| 美女午夜性视频免费| 夜夜夜夜夜久久久久| 成人国产一区最新在线观看| 一本一本综合久久| 欧美成人午夜精品| 一边摸一边抽搐一进一小说| 亚洲精品一卡2卡三卡4卡5卡| 亚洲七黄色美女视频| 国产熟女xx| 欧美日韩中文字幕国产精品一区二区三区| 国产精品野战在线观看| 国产亚洲欧美在线一区二区| 脱女人内裤的视频| 国产av不卡久久| 国产又黄又爽又无遮挡在线| 亚洲第一青青草原| 国产在线精品亚洲第一网站| 日本精品一区二区三区蜜桃| 午夜免费鲁丝| 天堂动漫精品| 日韩大尺度精品在线看网址| 在线天堂中文资源库| 观看免费一级毛片| 美女高潮喷水抽搐中文字幕| 欧美久久黑人一区二区| 欧美黑人欧美精品刺激| 91老司机精品| 天堂√8在线中文| 91老司机精品| 哪里可以看免费的av片| 淫妇啪啪啪对白视频| 久久精品国产清高在天天线| 国内久久婷婷六月综合欲色啪| 日韩精品免费视频一区二区三区| 99热这里只有精品一区 | 人妻丰满熟妇av一区二区三区| 国产91精品成人一区二区三区| 日本三级黄在线观看| 男女下面进入的视频免费午夜 | 午夜福利高清视频| 三级毛片av免费| 国产爱豆传媒在线观看 | 99精品在免费线老司机午夜| 亚洲精品美女久久久久99蜜臀| 制服人妻中文乱码| 香蕉av资源在线| 在线播放国产精品三级| 18禁国产床啪视频网站| 最新美女视频免费是黄的| 久久天堂一区二区三区四区| 黑人欧美特级aaaaaa片| 黄片小视频在线播放| www.精华液| 搡老岳熟女国产| 国产精品亚洲av一区麻豆| 久久人人精品亚洲av| e午夜精品久久久久久久| 男人舔奶头视频| 亚洲成人久久爱视频| 99久久久亚洲精品蜜臀av| 久9热在线精品视频| 欧美亚洲日本最大视频资源| 在线观看免费午夜福利视频| 国产精品影院久久| 亚洲一区高清亚洲精品| 国产真人三级小视频在线观看| 婷婷丁香在线五月| 久久精品国产亚洲av香蕉五月| 校园春色视频在线观看| 中文字幕人成人乱码亚洲影| 精品久久久久久成人av| 91麻豆精品激情在线观看国产| 中文字幕最新亚洲高清| www.999成人在线观看| 黑人欧美特级aaaaaa片| 黄色视频不卡| 看片在线看免费视频| 国产黄a三级三级三级人| 可以在线观看毛片的网站| 啦啦啦 在线观看视频| 窝窝影院91人妻| 欧美激情极品国产一区二区三区| 精品卡一卡二卡四卡免费| 亚洲性夜色夜夜综合| 精品国产国语对白av| 丝袜美腿诱惑在线| 欧美国产精品va在线观看不卡| 亚洲一码二码三码区别大吗| 久久国产精品影院| 久久久久国内视频| 亚洲 欧美 日韩 在线 免费| 精品熟女少妇八av免费久了| 亚洲精品一区av在线观看| 欧美黄色淫秽网站| 国内揄拍国产精品人妻在线 | 丁香欧美五月| 亚洲国产中文字幕在线视频| 国产精品免费一区二区三区在线| 成人一区二区视频在线观看| 成在线人永久免费视频| 久久久久国产精品人妻aⅴ院| 免费搜索国产男女视频| 一区二区三区激情视频| 免费在线观看黄色视频的| 亚洲av成人不卡在线观看播放网| 国产亚洲欧美98| 啦啦啦免费观看视频1| 成人三级做爰电影| 国内揄拍国产精品人妻在线 | 精品国产一区二区三区四区第35| 午夜成年电影在线免费观看| 男女床上黄色一级片免费看| 精品高清国产在线一区| 香蕉丝袜av| 两性午夜刺激爽爽歪歪视频在线观看 | 久久精品成人免费网站| 在线观看www视频免费| tocl精华| 此物有八面人人有两片| 亚洲成国产人片在线观看| 国产一区在线观看成人免费| 制服人妻中文乱码| av有码第一页| 欧美乱码精品一区二区三区| 日韩av在线大香蕉| 精品国产亚洲在线| 一进一出抽搐动态| 成人三级黄色视频| 欧美国产日韩亚洲一区| 美女高潮喷水抽搐中文字幕| 亚洲中文日韩欧美视频| 欧美成人性av电影在线观看| 熟女电影av网| 亚洲人成电影免费在线| 天天躁狠狠躁夜夜躁狠狠躁| 国产av一区在线观看免费| 久久久久久久久久黄片| 一区二区三区国产精品乱码| 18禁美女被吸乳视频| 国产精品免费视频内射| 亚洲一卡2卡3卡4卡5卡精品中文| 人人妻,人人澡人人爽秒播| 国产v大片淫在线免费观看| 男女做爰动态图高潮gif福利片| 久久人妻av系列| 哪里可以看免费的av片| 欧美乱色亚洲激情| av超薄肉色丝袜交足视频| 精品国产超薄肉色丝袜足j| 18禁黄网站禁片午夜丰满| 国产三级在线视频| 亚洲第一电影网av| 国产av不卡久久| 欧美乱码精品一区二区三区| a级毛片在线看网站| 亚洲一区二区三区色噜噜| x7x7x7水蜜桃| 国产主播在线观看一区二区| 看免费av毛片| 日本免费a在线| 亚洲专区国产一区二区| 99精品久久久久人妻精品| 男女午夜视频在线观看| 成人18禁在线播放| 国产三级黄色录像| 超碰成人久久| 黄片大片在线免费观看| 久久久久亚洲av毛片大全| 色av中文字幕| 午夜免费激情av| 日韩精品中文字幕看吧| 丝袜人妻中文字幕| 嫩草影视91久久| 99久久综合精品五月天人人| 18禁国产床啪视频网站| 色播在线永久视频| 国产精品 国内视频| 黄色 视频免费看| 夜夜夜夜夜久久久久| 国产高清激情床上av| 中文字幕久久专区| 精品免费久久久久久久清纯| 一边摸一边做爽爽视频免费| 久久这里只有精品19| avwww免费| 精品一区二区三区av网在线观看| 国产精品精品国产色婷婷| 国产精品99久久99久久久不卡| 麻豆国产av国片精品| 久久久国产欧美日韩av| 黄色丝袜av网址大全| av有码第一页| 成人国产综合亚洲| 午夜精品久久久久久毛片777| 久久国产乱子伦精品免费另类| 伦理电影免费视频| or卡值多少钱| 欧美精品亚洲一区二区| 可以在线观看的亚洲视频| 97人妻精品一区二区三区麻豆 | 欧美又色又爽又黄视频| 欧美国产日韩亚洲一区| 亚洲av日韩精品久久久久久密| 成人欧美大片| 久久久久久久精品吃奶| 少妇粗大呻吟视频| 国产亚洲欧美精品永久| 国产黄a三级三级三级人| 天天一区二区日本电影三级| 真人一进一出gif抽搐免费| 日韩成人在线观看一区二区三区| 两个人看的免费小视频| 久久人妻福利社区极品人妻图片| 亚洲五月色婷婷综合| 精品一区二区三区四区五区乱码| 欧美黑人精品巨大| 成人精品一区二区免费| 男女视频在线观看网站免费 | 亚洲黑人精品在线| 久久久久久人人人人人| 亚洲精品国产一区二区精华液| 久久精品影院6| 99国产精品一区二区三区| 在线观看免费日韩欧美大片| 男人舔奶头视频| 日本在线视频免费播放| 国产精品爽爽va在线观看网站 | 51午夜福利影视在线观看| 国产午夜福利久久久久久| 亚洲一区高清亚洲精品| 亚洲精品色激情综合| 亚洲专区字幕在线| 欧美乱妇无乱码| 午夜福利18| 国产精品一区二区免费欧美| 国内毛片毛片毛片毛片毛片| 精品国产超薄肉色丝袜足j| 女人被狂操c到高潮| 久久久久久久久久黄片| 欧美性长视频在线观看| 午夜精品久久久久久毛片777| 中文字幕人成人乱码亚洲影| 中文字幕av电影在线播放| 亚洲av熟女| 国产99白浆流出| 中出人妻视频一区二区| 在线天堂中文资源库| 欧美不卡视频在线免费观看 | 亚洲国产欧美网| 丝袜人妻中文字幕| 亚洲成人精品中文字幕电影| 国内精品久久久久精免费| 成人午夜高清在线视频 | 亚洲欧美精品综合久久99| 久久精品影院6| 亚洲午夜精品一区,二区,三区| 亚洲一卡2卡3卡4卡5卡精品中文| 日韩精品免费视频一区二区三区| 成人精品一区二区免费| 日韩高清综合在线| 天天躁狠狠躁夜夜躁狠狠躁| 久久青草综合色| 日韩av在线大香蕉| 此物有八面人人有两片| 成人18禁高潮啪啪吃奶动态图| 日本免费a在线| 12—13女人毛片做爰片一| 99热这里只有精品一区 | 女人高潮潮喷娇喘18禁视频| 日本一本二区三区精品| 性色av乱码一区二区三区2| 亚洲国产欧美日韩在线播放| 欧美日韩亚洲国产一区二区在线观看| 久久久久久久午夜电影| 国产精品免费视频内射| 最新在线观看一区二区三区| 99精品欧美一区二区三区四区| 女性被躁到高潮视频| 国产国语露脸激情在线看| 欧美午夜高清在线| 欧美绝顶高潮抽搐喷水| 欧美日韩福利视频一区二区| 在线永久观看黄色视频| 又黄又粗又硬又大视频| 麻豆国产av国片精品| 日韩欧美一区视频在线观看| 色播在线永久视频| 久久九九热精品免费| 国产不卡一卡二| 看黄色毛片网站| 亚洲五月婷婷丁香| 精华霜和精华液先用哪个| 真人做人爱边吃奶动态| 俺也久久电影网| 国产在线观看jvid| 真人做人爱边吃奶动态| 男人的好看免费观看在线视频 | 夜夜爽天天搞| 男女午夜视频在线观看| 脱女人内裤的视频| 欧美成人一区二区免费高清观看 | 97碰自拍视频| 亚洲人成网站高清观看| 亚洲国产精品成人综合色| 日韩精品青青久久久久久| xxx96com| 99久久无色码亚洲精品果冻| 免费看a级黄色片| 啦啦啦韩国在线观看视频| 视频在线观看一区二区三区| 丁香欧美五月| 真人做人爱边吃奶动态| 91国产中文字幕| 一区福利在线观看| 午夜日韩欧美国产| 真人一进一出gif抽搐免费| 国产精品久久久人人做人人爽|